Z. Charqui, M. Boukendil, L. El moutaouakil, Z. Zrikem, A. Abdelbaki
Abstract The present study reports numerical results of coupled heat transfer by natural convection and surface radiation in an open air-filled cavity. Two heating modes are considered; in the first mode called LH (lateral heating), the cavity is heated via its lateral wall, while in the second mode named CH (corner heating), the cavity is heated via its bottom corner (the lower half of the vertical wall and the left half of the bottom wall). The rest of the walls are assumed to be perfectly adiabatic. The conservation equations were solved using the Finite Volume Method (FVM) combined with the SIMPLE algorithm (Semi-Implicit Method for Pressure Linked Equations). The radiation heat transfer between the different surfaces of the cavity was treated by the radiosity-irradiation method. Results are presented in terms of isotherms, streamlines, and Nusselt numbers. The effect of the Rayleigh number Ra on the flow structure, the distribution of temperature gradients, the local and mean Nusselt numbers is discussed. Also, a comparison between results of the two heating modes is conducted.
{"title":"Numerical study of coupled natural convection to surface radiation in an open cavity submitted to lateral or corner heating","authors":"Z. Charqui, M. Boukendil, L. El moutaouakil, Z. Zrikem, A. Abdelbaki","doi":"10.1515/cppm-2020-0056","DOIUrl":"https://doi.org/10.1515/cppm-2020-0056","url":null,"abstract":"Abstract The present study reports numerical results of coupled heat transfer by natural convection and surface radiation in an open air-filled cavity. Two heating modes are considered; in the first mode called LH (lateral heating), the cavity is heated via its lateral wall, while in the second mode named CH (corner heating), the cavity is heated via its bottom corner (the lower half of the vertical wall and the left half of the bottom wall). The rest of the walls are assumed to be perfectly adiabatic. The conservation equations were solved using the Finite Volume Method (FVM) combined with the SIMPLE algorithm (Semi-Implicit Method for Pressure Linked Equations). The radiation heat transfer between the different surfaces of the cavity was treated by the radiosity-irradiation method. Results are presented in terms of isotherms, streamlines, and Nusselt numbers. The effect of the Rayleigh number Ra on the flow structure, the distribution of temperature gradients, the local and mean Nusselt numbers is discussed. Also, a comparison between results of the two heating modes is conducted.","PeriodicalId":9935,"journal":{"name":"Chemical Product and Process Modeling","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2022-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43548838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Athabasca bitumen is an abundant resource that has successfully been upgraded using delayed coking that typically operates at 499 °C (∼930 °F), 207 kPa (∼37 psig), 1–2 min residence time on this type of crude. With society’s desire to reduce industry environmental impact while still providing energy to earth’s growing population, lower energy intensive (and thus lower greenhouse gas emissions) bitumen conversion approaches have been researched and are moving towards commercialization. The paper reviews a correlative model developed on a novel thermal cracking process, operated at lower temperatures (395–405 °C (743–761 °F)), lower pressures (<69 kPa (∼<10 psig) and up to 1 h residence time versus delayed coking, that takes various lab and pilot data, both batch and continuous, as inputs into developing the model. The purpose of the model is for use in industrial operations to provide guidance to operations for representative thermal cracker performance. The model is based on the Arrhenius equation using first order reaction kinetics for easy comprehension and use in an operational environment. Data for developing the model has been taken from various literature sources in the area of study, notably by researchers, Dr. W. Svrcek, Dr. Wiehe, Dr. Mehrotra, and Dr. Yarranton. The public data is used to create a viable range of performance that includes proprietary developments with the novel thermal cracking process. The model is configured on a mass basis so that mass balance closure can be readily calculated. A range of kinetic coefficients are provided that can be used to fit commercial plant performance based on the expected range of product outputs noted in the paper.
{"title":"Process model correlating Athabasca bitumen thermally cracked at edge of coking induction zone","authors":"D. Remesat","doi":"10.1515/cppm-2021-0033","DOIUrl":"https://doi.org/10.1515/cppm-2021-0033","url":null,"abstract":"Abstract Athabasca bitumen is an abundant resource that has successfully been upgraded using delayed coking that typically operates at 499 °C (∼930 °F), 207 kPa (∼37 psig), 1–2 min residence time on this type of crude. With society’s desire to reduce industry environmental impact while still providing energy to earth’s growing population, lower energy intensive (and thus lower greenhouse gas emissions) bitumen conversion approaches have been researched and are moving towards commercialization. The paper reviews a correlative model developed on a novel thermal cracking process, operated at lower temperatures (395–405 °C (743–761 °F)), lower pressures (<69 kPa (∼<10 psig) and up to 1 h residence time versus delayed coking, that takes various lab and pilot data, both batch and continuous, as inputs into developing the model. The purpose of the model is for use in industrial operations to provide guidance to operations for representative thermal cracker performance. The model is based on the Arrhenius equation using first order reaction kinetics for easy comprehension and use in an operational environment. Data for developing the model has been taken from various literature sources in the area of study, notably by researchers, Dr. W. Svrcek, Dr. Wiehe, Dr. Mehrotra, and Dr. Yarranton. The public data is used to create a viable range of performance that includes proprietary developments with the novel thermal cracking process. The model is configured on a mass basis so that mass balance closure can be readily calculated. A range of kinetic coefficients are provided that can be used to fit commercial plant performance based on the expected range of product outputs noted in the paper.","PeriodicalId":9935,"journal":{"name":"Chemical Product and Process Modeling","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2022-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66934234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-02-01DOI: 10.1515/cppm-2022-frontmatter1
{"title":"Frontmatter","authors":"","doi":"10.1515/cppm-2022-frontmatter1","DOIUrl":"https://doi.org/10.1515/cppm-2022-frontmatter1","url":null,"abstract":"","PeriodicalId":9935,"journal":{"name":"Chemical Product and Process Modeling","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48121833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract An integrated novel approach employing the Taguchi method and Aspen Plus software has been applied to evaluate a new configuration for the industrial process of Zn + Pb + Cu recovery from sphalerite ore, in order to minimize the toxic gas emission. The optimum operating condition achieved by the Taguchi method has been used as initial data for the process simulation. The impact of operating parameters on the process performance is considered. The optimum condition for the conversion of sulfide toxic gases to H2SO4 have been found to be: acid concentration of 0.867 mol/L, reaction temperature of 120 °C, stirring speed of 400 rpm, leaching time of 120 min, sulfide ore particle size of 0.01 mm; solid-to-liquid ratio of 30 wt%, additives amount of 50 kg/ton and oxygen pressure of 200 psi. Under optimum condition, H2SO4 production from sulfide toxic gases is 99%, the removal percentage of Fe, Co, Mn, Ni and Cd impurities is 99% and the recovery percentage of Zn + Pd + Cu is more than 97%.
{"title":"Experimental and simulation assessment to mitigate the emission of sulfide toxic gases and removing main impurities from Zn + Pb + Cu recovery plants","authors":"M. Saidi, H. Kadkhodayan","doi":"10.1515/cppm-2021-0062","DOIUrl":"https://doi.org/10.1515/cppm-2021-0062","url":null,"abstract":"Abstract An integrated novel approach employing the Taguchi method and Aspen Plus software has been applied to evaluate a new configuration for the industrial process of Zn + Pb + Cu recovery from sphalerite ore, in order to minimize the toxic gas emission. The optimum operating condition achieved by the Taguchi method has been used as initial data for the process simulation. The impact of operating parameters on the process performance is considered. The optimum condition for the conversion of sulfide toxic gases to H2SO4 have been found to be: acid concentration of 0.867 mol/L, reaction temperature of 120 °C, stirring speed of 400 rpm, leaching time of 120 min, sulfide ore particle size of 0.01 mm; solid-to-liquid ratio of 30 wt%, additives amount of 50 kg/ton and oxygen pressure of 200 psi. Under optimum condition, H2SO4 production from sulfide toxic gases is 99%, the removal percentage of Fe, Co, Mn, Ni and Cd impurities is 99% and the recovery percentage of Zn + Pd + Cu is more than 97%.","PeriodicalId":9935,"journal":{"name":"Chemical Product and Process Modeling","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2022-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42543769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Radhika Gandu, Akash Kumar Burolia, S. R. Ambati, Uday Bhaskar Babu Gara
Abstract This paper presents cost-effective heat pump assisted vapor recompression (VRC) design algorithms for the separation of ternary wide boiling mixture in batch distillation in order to reduce total annual cost (TAC) and carbon dioxide (CO2) emissions. A minimum TAC and CO2 is required by the batch distillation process industry for any investments in heat integrated systems, such as VRC. Consequently, the design conditions for implementing VRC should be chosen such that the energetic performance is maximum at minimum TAC. The model system selected in this paper is an application involving high temperature lift, that is, hexanol–octanol–decanol ternary wide boiling mixture. First, a systematic simulation algorithm was developed for conventional multicomponent batch distillation (CMBD) and single-stage vapor recompressed multicomponent batch distillation (SiVRMBD) to determine the optimal number of stages based on the maximum TAC savings. The SiVRMBD saves more energy and TAC than CMBD. However, SiVRMBD has a high compression ratio (CR) throughout the operation, which is not practically feasible for the batch distillation processing. Second, in order to increase the performance and minimize the SiVRMBD weakness, a novel optimal multi-stage vapor recompression algorithm was proposed to operate at the lowest possible CR (<3.5) throughout the batch operation while also conserving the most TAC. Overall, the findings suggest that the proposed optimal multi-stage VRC reduces TAC and CO2 emissions significantly when compared to CMBD. Finally, the influence of the different feed compositions on VRC performance is also studied.
{"title":"Reducing total annual cost and CO2 emissions in batch distillation for separating ternary wide boiling mixtures using vapor recompression heat pump","authors":"Radhika Gandu, Akash Kumar Burolia, S. R. Ambati, Uday Bhaskar Babu Gara","doi":"10.1515/cppm-2021-0057","DOIUrl":"https://doi.org/10.1515/cppm-2021-0057","url":null,"abstract":"Abstract This paper presents cost-effective heat pump assisted vapor recompression (VRC) design algorithms for the separation of ternary wide boiling mixture in batch distillation in order to reduce total annual cost (TAC) and carbon dioxide (CO2) emissions. A minimum TAC and CO2 is required by the batch distillation process industry for any investments in heat integrated systems, such as VRC. Consequently, the design conditions for implementing VRC should be chosen such that the energetic performance is maximum at minimum TAC. The model system selected in this paper is an application involving high temperature lift, that is, hexanol–octanol–decanol ternary wide boiling mixture. First, a systematic simulation algorithm was developed for conventional multicomponent batch distillation (CMBD) and single-stage vapor recompressed multicomponent batch distillation (SiVRMBD) to determine the optimal number of stages based on the maximum TAC savings. The SiVRMBD saves more energy and TAC than CMBD. However, SiVRMBD has a high compression ratio (CR) throughout the operation, which is not practically feasible for the batch distillation processing. Second, in order to increase the performance and minimize the SiVRMBD weakness, a novel optimal multi-stage vapor recompression algorithm was proposed to operate at the lowest possible CR (<3.5) throughout the batch operation while also conserving the most TAC. Overall, the findings suggest that the proposed optimal multi-stage VRC reduces TAC and CO2 emissions significantly when compared to CMBD. Finally, the influence of the different feed compositions on VRC performance is also studied.","PeriodicalId":9935,"journal":{"name":"Chemical Product and Process Modeling","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2022-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42520984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Ethyl acetate (EtAc) reactive distillation (RD) configurations often use atmospheric pressure, and this operating pressure can be reduced further to conserve energy based on the condenser cooling water temperature. Using the Aspen Plus simulator, two proposed configurations, RD column with stripper and pressure swing reactive distillation (PSRD), were simulated at lower operating pressure. The impact of RD column operating pressure on total energy usage and total annual cost (TAC) was studied. All design parameters were optimized using sequential iterative optimization procedures and sensitivity analysis to minimize the energy cost while maintaining the required product purity at 99.99%. The simulation results showed that the RD column with a stripper is better than PSRD with a saving of 23.17% in TAC and 31.53% in the specific cost of EtAc per kg. Compared to literature results, the proposed configurations have lower reboiler duty requirements and lower cost per kg of EtAc.
{"title":"Energy-saving investigation of vacuum reactive distillation for the production of ethyl acetate","authors":"G. Patil, N. Gnanasundaram","doi":"10.1515/cppm-2021-0060","DOIUrl":"https://doi.org/10.1515/cppm-2021-0060","url":null,"abstract":"Abstract Ethyl acetate (EtAc) reactive distillation (RD) configurations often use atmospheric pressure, and this operating pressure can be reduced further to conserve energy based on the condenser cooling water temperature. Using the Aspen Plus simulator, two proposed configurations, RD column with stripper and pressure swing reactive distillation (PSRD), were simulated at lower operating pressure. The impact of RD column operating pressure on total energy usage and total annual cost (TAC) was studied. All design parameters were optimized using sequential iterative optimization procedures and sensitivity analysis to minimize the energy cost while maintaining the required product purity at 99.99%. The simulation results showed that the RD column with a stripper is better than PSRD with a saving of 23.17% in TAC and 31.53% in the specific cost of EtAc per kg. Compared to literature results, the proposed configurations have lower reboiler duty requirements and lower cost per kg of EtAc.","PeriodicalId":9935,"journal":{"name":"Chemical Product and Process Modeling","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2022-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44277472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Dell’Angelo, E. M. Andoglu, S. Kaytakoğlu, F. Manenti
Abstract H2S is becoming more and more appealing as a source for hydrogen and syngas generation. Its hydrogen production potential is studied by several research groups by means of catalytic and thermal conversions. While the characterization of catalytic processes is strictly dependent on the catalyst adopted and difficult to be generalized, the characterization of thermal processes can be brought back to wide-range validity kinetic models thanks to their homogeneous reaction environments. The present paper is aimed at providing a reduced kinetic scheme for reliable thermal conversion of H2S molecule in pyrolysis and partial oxidation thermal processes. The proposed model consists of 10 reactions and 12 molecular species. Its validation is performed by numerical comparisons with a detailed kinetic model already validated by literature/industrial data at the operating conditions of interest. The validated reduced model could be easily adopted in commercial process simulators for the flow sheeting of H2S conversion processes.
{"title":"A machine-learning reduced kinetic model for H2S thermal conversion process","authors":"A. Dell’Angelo, E. M. Andoglu, S. Kaytakoğlu, F. Manenti","doi":"10.1515/cppm-2021-0044","DOIUrl":"https://doi.org/10.1515/cppm-2021-0044","url":null,"abstract":"Abstract H2S is becoming more and more appealing as a source for hydrogen and syngas generation. Its hydrogen production potential is studied by several research groups by means of catalytic and thermal conversions. While the characterization of catalytic processes is strictly dependent on the catalyst adopted and difficult to be generalized, the characterization of thermal processes can be brought back to wide-range validity kinetic models thanks to their homogeneous reaction environments. The present paper is aimed at providing a reduced kinetic scheme for reliable thermal conversion of H2S molecule in pyrolysis and partial oxidation thermal processes. The proposed model consists of 10 reactions and 12 molecular species. Its validation is performed by numerical comparisons with a detailed kinetic model already validated by literature/industrial data at the operating conditions of interest. The validated reduced model could be easily adopted in commercial process simulators for the flow sheeting of H2S conversion processes.","PeriodicalId":9935,"journal":{"name":"Chemical Product and Process Modeling","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2021-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42286925","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract This study presents a novel design and techno-economic analysis of processes for the purification of captured CO2 from the flue gas of an oxy-combustion power plant fueled by petroleum coke. Four candidate process designs were analyzed in terms of GHG emissions, thermal efficiency, pipeline CO2 purity, CO2 capture rate, levelized costs of electricity, and cost of CO2 avoided. The candidates were a classic process with flue-gas water removal via condensation, flue-gas water removal via condensation followed by flue-gas oxygen removal through cryogenic distillation, flue-gas water removal followed by catalytic conversion of oxygen in the flue gas to water via reaction with hydrogen, and oxy-combustion in a slightly oxygen-deprived environment with flue-gas water removal and no need for flue gas oxygen removal. The former two were studied in prior works and the latter two concepts are new to this work. The eco-technoeconomic analysis results indicated trade-offs between the four options in terms of cost, efficiency, lifecycle greenhouse gas emissions, costs of CO2 avoided, technical readiness, and captured CO2 quality. The slightly oxygen-deprived process has the lowest costs of CO2 avoided, but requires tolerance of a small amount of H2, CO, and light hydrocarbons in the captured CO2 which may or may not be feasible depending on the CO2 end use. If infeasible, the catalytic de-oxygenation process is the next best choice. Overall, this work is the first study to perform eco-technoeconomic analyses of different techniques for O2 removal from CO2 captured from an oxy-combustion power plant.
{"title":"Design strategies for oxy-combustion power plant captured CO2 purification","authors":"Ikenna J. Okeke, Tia Ghantous, Thomas A. Adams","doi":"10.1515/cppm-2021-0041","DOIUrl":"https://doi.org/10.1515/cppm-2021-0041","url":null,"abstract":"Abstract This study presents a novel design and techno-economic analysis of processes for the purification of captured CO2 from the flue gas of an oxy-combustion power plant fueled by petroleum coke. Four candidate process designs were analyzed in terms of GHG emissions, thermal efficiency, pipeline CO2 purity, CO2 capture rate, levelized costs of electricity, and cost of CO2 avoided. The candidates were a classic process with flue-gas water removal via condensation, flue-gas water removal via condensation followed by flue-gas oxygen removal through cryogenic distillation, flue-gas water removal followed by catalytic conversion of oxygen in the flue gas to water via reaction with hydrogen, and oxy-combustion in a slightly oxygen-deprived environment with flue-gas water removal and no need for flue gas oxygen removal. The former two were studied in prior works and the latter two concepts are new to this work. The eco-technoeconomic analysis results indicated trade-offs between the four options in terms of cost, efficiency, lifecycle greenhouse gas emissions, costs of CO2 avoided, technical readiness, and captured CO2 quality. The slightly oxygen-deprived process has the lowest costs of CO2 avoided, but requires tolerance of a small amount of H2, CO, and light hydrocarbons in the captured CO2 which may or may not be feasible depending on the CO2 end use. If infeasible, the catalytic de-oxygenation process is the next best choice. Overall, this work is the first study to perform eco-technoeconomic analyses of different techniques for O2 removal from CO2 captured from an oxy-combustion power plant.","PeriodicalId":9935,"journal":{"name":"Chemical Product and Process Modeling","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2021-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47006006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-01DOI: 10.1515/cppm-2021-frontmatter4
{"title":"Frontmatter","authors":"","doi":"10.1515/cppm-2021-frontmatter4","DOIUrl":"https://doi.org/10.1515/cppm-2021-frontmatter4","url":null,"abstract":"","PeriodicalId":9935,"journal":{"name":"Chemical Product and Process Modeling","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42268532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hamed Eghbalahmadi, P. Khadiv-Parsi, S. M. Mousavian, M. H. Eghbal Ahmadi
Abstract In this study, numerical simulations were carried out to investigate the separation of the helium-argon gas mixture by thermal diffusion column. This research determined the significant parameters and their effects on the process performance. Effects of feed flow rate, cut ratio, and hot wire temperature in a 950 mm height column with an inner tube of 9.5 mm radius were examined through the simulation of the thermal diffusion column. For minimizing the number of simulations and obtaining the optimum operating conditions, response surface methodology (RSM) was used. Analysis of separative work unit (SWU) values as a target function for helium-argon separation clearly showed that the maximum amount of SWU in thermal diffusion column was achieved, when hot wire temperature increased as large as technically possible, and the feed rate and cut ratio were equal to 55 Standard Cubic Centimeters per Minute (SCCM) and 0.44, respectively. Finally, the SWU value in optimum conditions was compared with the experimental data. Results illustrated that the experimental data were in good agreement with simulation data with an accuracy of about 90%.
{"title":"Development of a CFD-based simulation model and optimization of thermal diffusion column: application on noble gas separation","authors":"Hamed Eghbalahmadi, P. Khadiv-Parsi, S. M. Mousavian, M. H. Eghbal Ahmadi","doi":"10.1515/cppm-2021-0049","DOIUrl":"https://doi.org/10.1515/cppm-2021-0049","url":null,"abstract":"Abstract In this study, numerical simulations were carried out to investigate the separation of the helium-argon gas mixture by thermal diffusion column. This research determined the significant parameters and their effects on the process performance. Effects of feed flow rate, cut ratio, and hot wire temperature in a 950 mm height column with an inner tube of 9.5 mm radius were examined through the simulation of the thermal diffusion column. For minimizing the number of simulations and obtaining the optimum operating conditions, response surface methodology (RSM) was used. Analysis of separative work unit (SWU) values as a target function for helium-argon separation clearly showed that the maximum amount of SWU in thermal diffusion column was achieved, when hot wire temperature increased as large as technically possible, and the feed rate and cut ratio were equal to 55 Standard Cubic Centimeters per Minute (SCCM) and 0.44, respectively. Finally, the SWU value in optimum conditions was compared with the experimental data. Results illustrated that the experimental data were in good agreement with simulation data with an accuracy of about 90%.","PeriodicalId":9935,"journal":{"name":"Chemical Product and Process Modeling","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2021-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43019531","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}