Ugo Jacovella, Branko Ruscic, Ning L. Chen, Hai-Linh Le, Séverine Boyé-Péronne, Sebastian Hartweg, Madhusree Roy Chowdhury, Gustavo A. Garcia, Jean-Christophe Loison and Bérenger Gans
Fluorinated species have a pivotal role in semiconductor material chemistry and some of them have been detected beyond the Earth's atmosphere. Achieving good energy accuracy on fluorinated species using quantum chemical calculations has long been a challenge. In addition, obtaining direct experimental thermochemical quantities has also proved difficult. Here, we report the threshold photoelectron and photoion yield spectra of SiF and CF radicals generated with a fluorine reactor. The spectra were analysed with the support of ab initio calculations, resulting in new experimental values for the adiabatic ionisation energies of both CF (9.128 ± 0.006 eV) and SiF (7.379 ± 0.009 eV). Using these values, the underlying thermochemical network of Active Thermochemical Tables was updated, providing further refined enthalpies of formation and dissociation energies of CF, SiF, and their cationic counterparts.
{"title":"Refining the thermochemical properties of CF, SiF, and their cations by combining photoelectron spectroscopy, quantum chemical calculations, and the Active Thermochemical Tables approach","authors":"Ugo Jacovella, Branko Ruscic, Ning L. Chen, Hai-Linh Le, Séverine Boyé-Péronne, Sebastian Hartweg, Madhusree Roy Chowdhury, Gustavo A. Garcia, Jean-Christophe Loison and Bérenger Gans","doi":"10.1039/D3CP04244H","DOIUrl":"10.1039/D3CP04244H","url":null,"abstract":"<p >Fluorinated species have a pivotal role in semiconductor material chemistry and some of them have been detected beyond the Earth's atmosphere. Achieving good energy accuracy on fluorinated species using quantum chemical calculations has long been a challenge. In addition, obtaining direct experimental thermochemical quantities has also proved difficult. Here, we report the threshold photoelectron and photoion yield spectra of SiF and CF radicals generated with a fluorine reactor. The spectra were analysed with the support of <em>ab initio</em> calculations, resulting in new experimental values for the adiabatic ionisation energies of both CF (9.128 ± 0.006 eV) and SiF (7.379 ± 0.009 eV). Using these values, the underlying thermochemical network of Active Thermochemical Tables was updated, providing further refined enthalpies of formation and dissociation energies of CF, SiF, and their cationic counterparts.</p>","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":" 45","pages":" 30838-30847"},"PeriodicalIF":3.3,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2023/cp/d3cp04244h?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50156538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Electrical control of magnetism is of great interest for low-energy-consumption spintronic applications. Due to the recent experimental breakthrough in two-dimensional materials, with the absence of hanging bonds on the surface and strong tolerance for lattice mismatch, heterogeneous integration of different two-dimensional materials provides a new opportunity for coupling between different physical properties. Here, we report the realization of nonvolatile magnetoelectric coupling in vdW sandwich heterostructure CuInP2S6/MnCl3/CuInP2S6. Using first-principles calculations, we reveal that when interfacing with ferroelectric CuInP2S6, the Dirac half-metallic state of monolayer MnCl3 will be destroyed. Moreover, depending on the electrically polarized direction of CuInP2S6, MnCl3 can be a half-metal or a ferromagnetic semiconductor. We unveil that the obtained ferromagnetic semiconductor in MnCl3 can be attributed to the different gain and loss of electrons on the two adjacent Mn atoms due to the sublattice symmetry broken by interlayer coupling. The effects of interfacial magnetoelectric coupling on magnetic anisotropy and ferromagnetic Curie temperature of MnCl3 are also investigated, and a multiferroic memory based on this model is designed. Our work not only provides a promising way to design nonvolatile electrical control of magnetism but also renders monolayer MnCl3 an appealing platform for developing low-dimensional memory devices.
{"title":"Nonvolatile magnetoelectric coupling in two-dimensional van der Waals sandwich heterostructure CuInP2S6/MnCl3/CuInP2S6†","authors":"Zichun Wang, Honggang Pan and Baozeng Zhou","doi":"10.1039/D3CP03798C","DOIUrl":"10.1039/D3CP03798C","url":null,"abstract":"<p >Electrical control of magnetism is of great interest for low-energy-consumption spintronic applications. Due to the recent experimental breakthrough in two-dimensional materials, with the absence of hanging bonds on the surface and strong tolerance for lattice mismatch, heterogeneous integration of different two-dimensional materials provides a new opportunity for coupling between different physical properties. Here, we report the realization of nonvolatile magnetoelectric coupling in vdW sandwich heterostructure CuInP<small><sub>2</sub></small>S<small><sub>6</sub></small>/MnCl<small><sub>3</sub></small>/CuInP<small><sub>2</sub></small>S<small><sub>6</sub></small>. Using first-principles calculations, we reveal that when interfacing with ferroelectric CuInP<small><sub>2</sub></small>S<small><sub>6</sub></small>, the Dirac half-metallic state of monolayer MnCl<small><sub>3</sub></small> will be destroyed. Moreover, depending on the electrically polarized direction of CuInP<small><sub>2</sub></small>S<small><sub>6</sub></small>, MnCl<small><sub>3</sub></small> can be a half-metal or a ferromagnetic semiconductor. We unveil that the obtained ferromagnetic semiconductor in MnCl<small><sub>3</sub></small> can be attributed to the different gain and loss of electrons on the two adjacent Mn atoms due to the sublattice symmetry broken by interlayer coupling. The effects of interfacial magnetoelectric coupling on magnetic anisotropy and ferromagnetic Curie temperature of MnCl<small><sub>3</sub></small> are also investigated, and a multiferroic memory based on this model is designed. Our work not only provides a promising way to design nonvolatile electrical control of magnetism but also renders monolayer MnCl<small><sub>3</sub></small> an appealing platform for developing low-dimensional memory devices.</p>","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":" 42","pages":" 29098-29107"},"PeriodicalIF":3.3,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49671795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
You-Sheng Yu, Qiang Ren, Rong-Ri Tan and Hong-Ming Ding
Nanopore-based biomolecule detection has emerged as a promising and sought-after innovation, offering high throughput, rapidity, label-free analysis, and cost-effectiveness, with potential applications in personalized medicine. However, achieving efficient and tunable biomolecule capture into the nanopore remains a significant challenge. In this study, we employ all-atom molecular dynamics simulations to investigate the capture of double-stranded DNA (dsDNA) molecules into graphene nanopores with varying positive charges. We discover a non-monotonic relationship between the DNA capture rate and the charge of the graphene nanopore. Specifically, the capture rate initially decreases and then increases with an increase in nanopore charge. This behavior is primarily attributed to differences in the electrophoretic force, rather than the influence of electroosmosis or counterions. Furthermore, we also observe this non-monotonic trend in various ionic solutions, but not in ionless solutions. Our findings shed light on the design of novel DNA sequencing devices, offering valuable insights into enhancing biomolecule capture rates in nanopore-based sensing platforms.
{"title":"Exploring the non-monotonic DNA capture behavior in a charged graphene nanopore†","authors":"You-Sheng Yu, Qiang Ren, Rong-Ri Tan and Hong-Ming Ding","doi":"10.1039/D3CP03767C","DOIUrl":"10.1039/D3CP03767C","url":null,"abstract":"<p >Nanopore-based biomolecule detection has emerged as a promising and sought-after innovation, offering high throughput, rapidity, label-free analysis, and cost-effectiveness, with potential applications in personalized medicine. However, achieving efficient and tunable biomolecule capture into the nanopore remains a significant challenge. In this study, we employ all-atom molecular dynamics simulations to investigate the capture of double-stranded DNA (dsDNA) molecules into graphene nanopores with varying positive charges. We discover a non-monotonic relationship between the DNA capture rate and the charge of the graphene nanopore. Specifically, the capture rate initially decreases and then increases with an increase in nanopore charge. This behavior is primarily attributed to differences in the electrophoretic force, rather than the influence of electroosmosis or counterions. Furthermore, we also observe this non-monotonic trend in various ionic solutions, but not in ionless solutions. Our findings shed light on the design of novel DNA sequencing devices, offering valuable insights into enhancing biomolecule capture rates in nanopore-based sensing platforms.</p>","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":" 41","pages":" 28034-28042"},"PeriodicalIF":3.3,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41230509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dale T. Duncan, Samantha L. Piper, Maria Forsyth, Douglas R. MacFarlane and Mega Kar
High-voltage sodium batteries are an appealing solution for economical energy storage applications. Currently available electrolyte materials have seen limited success in such applications therefore the identification of high-performing and safer alternatives is urgently required. Herein we synthesise six novel ionic liquids derived from two fluoroborate anions which have shown great promise in recent battery literature. This study reports for the first time the electrochemically applicable room-temperature ionic liquid (RTIL) N-ethyl-N,N,N-tris(2-(2-methoxyethoxy)ethyl)ammonium (tetrakis)hexafluoroisopropoxy borate ([N2(2O2O1)3][B(hfip)4]). The RTIL shows promising physical properties with a very low glass-transition at −73 °C and low viscosity. The RTIL exhibits an electrochemical window of 5.3 V on a glassy carbon substrate which enables high stability electrochemical cycling of sodium in a 3-electrode system. Of particular note is the strong passivation behaviour of [N2(2O2O1)3][B(hfip)4] on aluminium current-collector foil at potentials as high as 7 V (vs. Na+/Na) which is further improved with the addition of 50 mol% Na[FSI]. This study shows [B(hfip)4]− ionic liquids have the desired physical and electrochemical properties for high-voltage sodium electrolytes.
{"title":"Fluoroborate ionic liquids as sodium battery electrolytes†","authors":"Dale T. Duncan, Samantha L. Piper, Maria Forsyth, Douglas R. MacFarlane and Mega Kar","doi":"10.1039/D3CP03694D","DOIUrl":"10.1039/D3CP03694D","url":null,"abstract":"<p >High-voltage sodium batteries are an appealing solution for economical energy storage applications. Currently available electrolyte materials have seen limited success in such applications therefore the identification of high-performing and safer alternatives is urgently required. Herein we synthesise six novel ionic liquids derived from two fluoroborate anions which have shown great promise in recent battery literature. This study reports for the first time the electrochemically applicable room-temperature ionic liquid (RTIL) <em>N</em>-ethyl-<em>N,N,N</em>-tris(2-(2-methoxyethoxy)ethyl)ammonium (tetrakis)hexafluoroisopropoxy borate ([N<small><sub>2(2O2O1)3</sub></small>][B(hfip)<small><sub>4</sub></small>]). The RTIL shows promising physical properties with a very low glass-transition at −73 °C and low viscosity. The RTIL exhibits an electrochemical window of 5.3 V on a glassy carbon substrate which enables high stability electrochemical cycling of sodium in a 3-electrode system. Of particular note is the strong passivation behaviour of [N<small><sub>2(2O2O1)3</sub></small>][B(hfip)<small><sub>4</sub></small>] on aluminium current-collector foil at potentials as high as 7 V (<em>vs.</em> Na<small><sup>+</sup></small>/Na) which is further improved with the addition of 50 mol% Na[FSI]. This study shows [B(hfip)<small><sub>4</sub></small>]<small><sup>−</sup></small> ionic liquids have the desired physical and electrochemical properties for high-voltage sodium electrolytes.</p>","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":" 40","pages":" 27718-27730"},"PeriodicalIF":3.3,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41181426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Danfeng Qin, Tong Chen, Luzhen Xie, Ning Yang, Cheng Luo and Guanghui Zhou
A new member of the 2D carbon family, grapheneplus (G+), has demonstrated excellent properties, such as Dirac cones and high surface area. In this study, the electronic transport properties of G+, NG+, and BG+ monolayers in which the NG+/BG+ can be obtained by replacing the center sp3 hybrid carbon atoms of the G+ with N/B atoms, were studied and compared using density functional theory and the non-equilibrium Green's function method. The results revealed that G+ is a semi-metal with two Dirac cones, which becomes metallic upon doping with N or B atoms. Based on the electronic structures, the conductivities of the 2D G+, NG+ and BG+-based nanodevices were analyzed deeply. It was found that the currents of all the designed devices increased with increasing the applied bias voltage, showing obvious quasi-linear current–voltage characteristics. IG+ was significantly higher than ING+ and IBG+ at the same bias voltage, and IG+ was almost twice IBG+, indicating that the electron mobility of G+ can be controlled by B/N doping. Additionally, the gas sensitivities of G+, NG+, and BG+-based gas sensors in detecting C2H4, CH2O, CH4O, and CH4 organic gases were studied. All the considered sensors can chemically adsorb C2H4 and CH2O, but there were only weak van der Waals interactions with CH4O and CH4. For chemical adsorption, the gas sensitivities of these sensors were considerably high and steady, and the sensitivity of NG+ to adsorb C2H4 and CH2O was greater as compared to G+ and BG+ at higher bias voltages. Interestingly, the maximum sensitivity difference for BG+ toward C2H4 and CH2O was 17%, which is better as compared to G+ and NG+. The high sensitivity and different response signals of these sensors were analyzed by transmission spectra and scattering state separation at the Fermi level. Gas sensors based on G+ monolayers can effectively detect organic gases such as C2H4 and CH2O, triggering their broad potential application prospects in the field of gas sensing.
{"title":"Design and analysis of a 2D grapheneplus (G+)-based gas sensor for the detection of multiple organic gases†","authors":"Danfeng Qin, Tong Chen, Luzhen Xie, Ning Yang, Cheng Luo and Guanghui Zhou","doi":"10.1039/D3CP03081D","DOIUrl":"10.1039/D3CP03081D","url":null,"abstract":"<p >A new member of the 2D carbon family, grapheneplus (G+), has demonstrated excellent properties, such as Dirac cones and high surface area. In this study, the electronic transport properties of G+, NG+, and BG+ monolayers in which the NG+/BG+ can be obtained by replacing the center sp<small><sup>3</sup></small> hybrid carbon atoms of the G+ with N/B atoms, were studied and compared using density functional theory and the non-equilibrium Green's function method. The results revealed that G+ is a semi-metal with two Dirac cones, which becomes metallic upon doping with N or B atoms. Based on the electronic structures, the conductivities of the 2D G+, NG+ and BG+-based nanodevices were analyzed deeply. It was found that the currents of all the designed devices increased with increasing the applied bias voltage, showing obvious quasi-linear current–voltage characteristics. <em>I</em><small><sub>G+</sub></small> was significantly higher than <em>I</em><small><sub>NG+</sub></small> and <em>I</em><small><sub>BG+</sub></small> at the same bias voltage, and <em>I</em><small><sub>G+</sub></small> was almost twice <em>I</em><small><sub>BG+</sub></small>, indicating that the electron mobility of G+ can be controlled by B/N doping. Additionally, the gas sensitivities of G+, NG+, and BG+-based gas sensors in detecting C<small><sub>2</sub></small>H<small><sub>4</sub></small>, CH<small><sub>2</sub></small>O, CH<small><sub>4</sub></small>O, and CH<small><sub>4</sub></small> organic gases were studied. All the considered sensors can chemically adsorb C<small><sub>2</sub></small>H<small><sub>4</sub></small> and CH<small><sub>2</sub></small>O, but there were only weak van der Waals interactions with CH<small><sub>4</sub></small>O and CH<small><sub>4</sub></small>. For chemical adsorption, the gas sensitivities of these sensors were considerably high and steady, and the sensitivity of NG+ to adsorb C<small><sub>2</sub></small>H<small><sub>4</sub></small> and CH<small><sub>2</sub></small>O was greater as compared to G+ and BG+ at higher bias voltages. Interestingly, the maximum sensitivity difference for BG+ toward C<small><sub>2</sub></small>H<small><sub>4</sub></small> and CH<small><sub>2</sub></small>O was 17%, which is better as compared to G+ and NG+. The high sensitivity and different response signals of these sensors were analyzed by transmission spectra and scattering state separation at the Fermi level. Gas sensors based on G+ monolayers can effectively detect organic gases such as C<small><sub>2</sub></small>H<small><sub>4</sub></small> and CH<small><sub>2</sub></small>O, triggering their broad potential application prospects in the field of gas sensing.</p>","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":" 42","pages":" 29315-29326"},"PeriodicalIF":3.3,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50156514","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Scientific understanding of the molecular structure and adsorption of polymers at oil–water liquid interfaces is very limited. In this study the adsorption free energy at the oil (CCl4)–water interface was estimated using umbrella sampling molecular dynamics simulations for six carboxylate type vinyl polymers differing in hydrophobic nature and tacticity: isotactic and syndiotactic poly(acrylic acid) (i-PAA, s-PAA), isotactic and syndiotactic poly(methacrylic acid) (i-PMA, s-PMA), and atactic and syndiotactic poly(ethylacrylic acid) (a-PEA, s-PEA). ΔGads values are in the order i-PMA < a-PEA < s-PEA < s-PAA < i-PAA < s-PMA. The results show the significant and complex influence of the chemical nature as well as tacticity of the polymer on its adsorption free energy as related to hydrogen bonding and orientation of bonds with respect to oil and water phases. The influence of tacticity is found to be the highest for PMA, which is interpreted to occur due to the balance between interactions among side groups and those occurring between side groups and solvent. Interactions between side-groups are crucial for determining the conformation of PAA (most hydrophilic) and the solvation of the side-group in water is crucial for determining the conformation of PEA (most hydrophobic). The adsorption of PMA represents the transition between these two dominating effects. The molecular contributions to the enthalpy of adsorption indicate that adsorption is favored mainly through two interactions: polymer–CCl4 and water–water.
{"title":"Complex role of chemical nature and tacticity in the adsorption free energy of carboxylic acid polymers at the oil–water interface: molecular dynamics simulations†","authors":"Raviteja Kurapati and Upendra Natarajan","doi":"10.1039/D3CP02754F","DOIUrl":"10.1039/D3CP02754F","url":null,"abstract":"<p >Scientific understanding of the molecular structure and adsorption of polymers at oil–water liquid interfaces is very limited. In this study the adsorption free energy at the oil (CCl<small><sub>4</sub></small>)–water interface was estimated using umbrella sampling molecular dynamics simulations for six carboxylate type vinyl polymers differing in hydrophobic nature and tacticity: <em>isotactic</em> and <em>syndiotactic</em> poly(acrylic acid) (<em>i</em>-PAA, <em>s</em>-PAA), <em>isotactic</em> and <em>syndiotactic</em> poly(methacrylic acid) (<em>i</em>-PMA, <em>s</em>-PMA), and <em>atactic</em> and <em>syndiotactic</em> poly(ethylacrylic acid) (<em>a</em>-PEA, <em>s</em>-PEA). Δ<em>G</em><small><sub>ads</sub></small> values are in the order <em>i</em>-PMA < <em>a</em>-PEA < <em>s</em>-PEA < <em>s</em>-PAA < <em>i</em>-PAA < <em>s</em>-PMA. The results show the significant and complex influence of the chemical nature as well as tacticity of the polymer on its adsorption free energy as related to hydrogen bonding and orientation of bonds with respect to oil and water phases. The influence of tacticity is found to be the highest for PMA, which is interpreted to occur due to the balance between interactions among side groups and those occurring between side groups and solvent. Interactions between side-groups are crucial for determining the conformation of PAA (most hydrophilic) and the solvation of the side-group in water is crucial for determining the conformation of PEA (most hydrophobic). The adsorption of PMA represents the transition between these two dominating effects. The molecular contributions to the enthalpy of adsorption indicate that adsorption is favored mainly through two interactions: polymer–CCl<small><sub>4</sub></small> and water–water.</p>","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":" 40","pages":" 27783-27797"},"PeriodicalIF":3.3,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41181417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
José Manuel Guevara-Vela, Tomás Rocha-Rinza, Peter L. Rodríguez-Kessler and Alvaro Muñoz-Castro
The lowest energy structures and electronic properties of Ptn clusters up to n = 17 are investigated by using a genetic algorithm in combination with density functional theory calculations. There are several putative global minimum structures for platinum clusters which have been reported by using different approaches, but a comprehensive study for n = 15–17 has not been carried out so far. Herein, we perform a consensus using GGA (PBE), meta-GGA (TPSS) and hybrid (B3PW91, PBE0, PBEh-3c, M06-L) functionals in conjunction with the Def2-TZVP basis set. New most stable structures are found for Pt16 and Pt17, which are slightly lower in energy than the previously reported global minima. Molecular dynamics simulations show that the clusters are rigid at room temperature. We analyze the structural, electronic, energy and vibrational data of the investigated clusters in detail.
{"title":"On the structure and electronic properties of Ptn clusters: new most stable structures for n = 16–17†","authors":"José Manuel Guevara-Vela, Tomás Rocha-Rinza, Peter L. Rodríguez-Kessler and Alvaro Muñoz-Castro","doi":"10.1039/D3CP04455F","DOIUrl":"10.1039/D3CP04455F","url":null,"abstract":"<p >The lowest energy structures and electronic properties of Pt<small><sub><em>n</em></sub></small> clusters up to <em>n</em> = 17 are investigated by using a genetic algorithm in combination with density functional theory calculations. There are several putative global minimum structures for platinum clusters which have been reported by using different approaches, but a comprehensive study for <em>n</em> = 15–17 has not been carried out so far. Herein, we perform a consensus using GGA (PBE), meta-GGA (TPSS) and hybrid (B3PW91, PBE0, PBEh-3c, M06-L) functionals in conjunction with the Def2-TZVP basis set. New most stable structures are found for Pt<small><sub>16</sub></small> and Pt<small><sub>17</sub></small>, which are slightly lower in energy than the previously reported global minima. Molecular dynamics simulations show that the clusters are rigid at room temperature. We analyze the structural, electronic, energy and vibrational data of the investigated clusters in detail.</p>","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":" 42","pages":" 28835-28840"},"PeriodicalIF":3.3,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49671796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
G. Dinesh Kumar, Yu-Chan Liao, Rashid Nazir, Marzena Banasiewicz, Pi-Tai Chou and Daniel T. Gryko
Quadrupolar bis-coumarins bearing dialkylamino groups, prepared by a double Pechmann reaction and subsequent oxidation, strongly emit yellow-orange light. Comparison with non-substituted analogs reveals that, the photophysical properties of the conjugated bis-coumarins are controlled both by the dialkylamino substituents and by the π-system. Analogous but non-conjugated bis-coumarins emit blue light both in solution and in crystalline state. Unusually fast oxidation process in the crystalline state is responsible for the presence of two bands in their solid-state emission. Two-center, charge-transfer transition from an orbital delocalized on the entire molecule to the central benzene ring is responsible for photophysical properties.
{"title":"Strongly emitting, centrosymmetric, ladder-type bis-coumarins with crankshaft architecture†","authors":"G. Dinesh Kumar, Yu-Chan Liao, Rashid Nazir, Marzena Banasiewicz, Pi-Tai Chou and Daniel T. Gryko","doi":"10.1039/D3CP04121B","DOIUrl":"10.1039/D3CP04121B","url":null,"abstract":"<p >Quadrupolar bis-coumarins bearing dialkylamino groups, prepared by a double Pechmann reaction and subsequent oxidation, strongly emit yellow-orange light. Comparison with non-substituted analogs reveals that, the photophysical properties of the conjugated bis-coumarins are controlled both by the dialkylamino substituents and by the π-system. Analogous but non-conjugated bis-coumarins emit blue light both in solution and in crystalline state. Unusually fast oxidation process in the crystalline state is responsible for the presence of two bands in their solid-state emission. Two-center, charge-transfer transition from an orbital delocalized on the entire molecule to the central benzene ring is responsible for photophysical properties.</p>","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":" 42","pages":" 28824-28828"},"PeriodicalIF":3.3,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49671864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zikun Yang, Xiangfeng Peng, Jingxuan Zheng and Zhao Wang
Defect regulation and the construction of a heterojunction structure are effective strategies to improve the catalytic activity of catalysts. In this work, the rapid conversion of CuO to Cu2(OH)3NO3 was achieved by fixing nitrogen in air as NO3− using dielectric barrier discharge (DBD) plasma. This innovative approach resulted in the successful synthesis of a CuO/Cu2(OH)3NO3 nanosheet heterostructure. Notably, the samples prepared using plasma exhibit thinner thickness and larger specific surface area. Importantly, oxygen vacancies are introduced, simultaneously forming heterojunction interfaces within the CuO/Cu2(OH)3NO3 structure. CuO/Cu2(OH)3NO3 using plasma effectively degraded 96% of methyl orange within 8 min in the dark. The degradation rate is 81 and 23 times that of CuO and Cu2(OH)3NO3 using hydrothermal methods, respectively. The high catalytic activity is attributed to the large specific surface area, the abundance of active sites, and the synergy between oxygen vacancies and the strong heterojunction interfacial interactions, which accelerate the transfer of electrons and the production of reactive oxygen species (˙O2− and ˙OH). The mechanism of plasma preparation was proposed on account of microstructure characterization and online mass spectroscopy, which indicated that gas etching, gas expansion, and the repulsive force of electrons play key roles in plasma exfoliation.
{"title":"Plasma synthesis of oxygen vacancy-rich CuO/Cu2(OH)3NO3 heterostructure nanosheets for boosting degradation performance†","authors":"Zikun Yang, Xiangfeng Peng, Jingxuan Zheng and Zhao Wang","doi":"10.1039/D3CP03918H","DOIUrl":"10.1039/D3CP03918H","url":null,"abstract":"<p >Defect regulation and the construction of a heterojunction structure are effective strategies to improve the catalytic activity of catalysts. In this work, the rapid conversion of CuO to Cu<small><sub>2</sub></small>(OH)<small><sub>3</sub></small>NO<small><sub>3</sub></small> was achieved by fixing nitrogen in air as NO<small><sub>3</sub></small><small><sup>−</sup></small> using dielectric barrier discharge (DBD) plasma. This innovative approach resulted in the successful synthesis of a CuO/Cu<small><sub>2</sub></small>(OH)<small><sub>3</sub></small>NO<small><sub>3</sub></small> nanosheet heterostructure. Notably, the samples prepared using plasma exhibit thinner thickness and larger specific surface area. Importantly, oxygen vacancies are introduced, simultaneously forming heterojunction interfaces within the CuO/Cu<small><sub>2</sub></small>(OH)<small><sub>3</sub></small>NO<small><sub>3</sub></small> structure. CuO/Cu<small><sub>2</sub></small>(OH)<small><sub>3</sub></small>NO<small><sub>3</sub></small> using plasma effectively degraded 96% of methyl orange within 8 min in the dark. The degradation rate is 81 and 23 times that of CuO and Cu<small><sub>2</sub></small>(OH)<small><sub>3</sub></small>NO<small><sub>3</sub></small> using hydrothermal methods, respectively. The high catalytic activity is attributed to the large specific surface area, the abundance of active sites, and the synergy between oxygen vacancies and the strong heterojunction interfacial interactions, which accelerate the transfer of electrons and the production of reactive oxygen species (˙O<small><sub>2</sub></small><small><sup>−</sup></small> and ˙OH). The mechanism of plasma preparation was proposed on account of microstructure characterization and online mass spectroscopy, which indicated that gas etching, gas expansion, and the repulsive force of electrons play key roles in plasma exfoliation.</p>","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":" 42","pages":" 29108-29119"},"PeriodicalIF":3.3,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49687780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ashraf A.A. Elameen, Arkadiusz Dawczak, Tadeusz Miruszewski, Maria Gazda and Sebastian Wachowski
This work investigates how configurational entropy in oxides could affect proton conductivity. For this purpose, three samples of different elemental compositions are synthesized. Five, six and seven elements were introduced into the A-site of ANbO4, forming La1/5 Nd1/5 Sm1/5Gd1/5 Eu1/5NbO4, La1/6Nd1/6Sm1/6Gd1/6Eu1/6Ho1/6NbO4 and La1/7Nd1/7Sm1/7Gd1/7Eu1/7Ho1/7Er1/7NbO4, respectively. The high configuration disorder changes the local environment, which can have a notable effect on many properties, including proton transport, which is the focus of this work. The conductivity was measured in different atmospheres; dry and wet and in a different temperature range (600–800 °C) to compare the proton transport as well as study the effect of temperature. A homogenous single-phase monoclinic fergusonite was obtained for the three samples. Proton conductivity, measured by means of comparing the conductivity in dry and wet atmospheres, was observed in all samples. La1/5 Nd1/5 Sm1/5Gd1/5 Eu1/5NbO4 exhibited the highest conductivity, about 3.0 × 10−6 S cm−1 at 800 °C in the wet atmosphere, while in the dry atmosphere it was about 2.2 × 10−6 S cm−1 at the same temperature, which implies a modest proton conductivity in this class of materials.
这项工作研究了氧化物中的构型熵如何影响质子电导率。为此,合成了三种不同元素组成的样品。将5、6和7种元素引入ANbO4的A位,分别形成La1/5Nd1/5Sm1/5Gd1/5Eu1/5NbO4、La1/6Nd1/6Sm1/6Eu1/6Ho1/6NbO4和La1/7Nd1/7Sm1/7Gd1/7Eu1/7Er1/7NbO4。高配位无序改变了局部环境,这会对许多性质产生显著影响,包括质子输运,这是本工作的重点。在不同的气氛中测量电导率;在不同的温度范围(600-800°C)下,比较质子传输以及研究温度的影响。三个样品都获得了均匀的单相单斜fergusonite。通过比较干燥和潮湿环境中的电导率来测量质子电导率,在所有样品中都观察到了质子电导率。La1/5Nd1/5Sm1/5Gd1/5Eu1/5NbO4在800°C的潮湿气氛中表现出最高的电导率,约为3.0×10-6 S cm-1,而在相同温度下,在干燥气氛中约为2.2×10-6 S cm-1,这表明这类材料具有适度的质子电导率。
{"title":"Proton conductivity in multi-component ABO4-type oxides†","authors":"Ashraf A.A. Elameen, Arkadiusz Dawczak, Tadeusz Miruszewski, Maria Gazda and Sebastian Wachowski","doi":"10.1039/D3CP01741A","DOIUrl":"10.1039/D3CP01741A","url":null,"abstract":"<p >This work investigates how configurational entropy in oxides could affect proton conductivity. For this purpose, three samples of different elemental compositions are synthesized. Five, six and seven elements were introduced into the A-site of ANbO<small><sub>4</sub></small>, forming La<small><sub>1/5</sub></small> Nd<small><sub>1/5</sub></small> Sm<small><sub>1/5</sub></small>Gd<small><sub>1/5</sub></small> Eu<small><sub>1/5</sub></small>NbO<small><sub>4</sub></small>, La<small><sub>1/6</sub></small>Nd<small><sub>1/6</sub></small>Sm<small><sub>1/6</sub></small>Gd<small><sub>1/6</sub></small>Eu<small><sub>1/6</sub></small>Ho<small><sub>1/6</sub></small>NbO<small><sub>4</sub></small> and La<small><sub>1/7</sub></small>Nd<small><sub>1/7</sub></small>Sm<small><sub>1/7</sub></small>Gd<small><sub>1/7</sub></small>Eu<small><sub>1/7</sub></small>Ho<small><sub>1/7</sub></small>Er<small><sub>1/7</sub></small>NbO<small><sub>4</sub></small>, respectively. The high configuration disorder changes the local environment, which can have a notable effect on many properties, including proton transport, which is the focus of this work. The conductivity was measured in different atmospheres; dry and wet and in a different temperature range (600–800 °C) to compare the proton transport as well as study the effect of temperature. A homogenous single-phase monoclinic fergusonite was obtained for the three samples. Proton conductivity, measured by means of comparing the conductivity in dry and wet atmospheres, was observed in all samples. La<small><sub>1/5</sub></small> Nd<small><sub>1/5</sub></small> Sm<small><sub>1/5</sub></small>Gd<small><sub>1/5</sub></small> Eu<small><sub>1/5</sub></small>NbO4 exhibited the highest conductivity, about 3.0 × 10<small><sup>−6</sup></small> S cm<small><sup>−1</sup></small> at 800 °C in the wet atmosphere, while in the dry atmosphere it was about 2.2 × 10<small><sup>−6</sup></small> S cm<small><sup>−1</sup></small> at the same temperature, which implies a modest proton conductivity in this class of materials.</p>","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":" 42","pages":" 29127-29134"},"PeriodicalIF":3.3,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49687781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}