Pub Date : 2025-04-01Epub Date: 2024-12-17DOI: 10.1016/j.talanta.2024.127419
Chunlan Liu, Haijing Zhang, Panpan Chen, Min Wang, Zhining Xia
Array sensing employs cross-identification among analytes and various sensing units to identify substances or complex systems. This manuscript presents a fluorescence ratio sensing array based on lectin responses for the accurate identification of different bacteria. This strategy uses a saccharide-sensitive polymer as the sensing unit within the sensor. By incorporating various saccharides, it regulates the properties of the single sensing unit at the molecular level, altering its interaction with the analyte. This modulation leads to the generation of multiple distinct detection signals for the target, effectively facilitating the goal of array sensing. This approach streamlines the design and construction of the array sensor, while simultaneously enhancing detection efficiency. Not only does this sensing strategy achieve the differentiation and quantification of various types of lectins, but it also enables the identification of different bacterial species based on their unique lectin response profiles. This research introduces a novel approach that simplifies the construction of array sensors and simultaneously furnishes a potent tool for diagnosing and assessing bacterial infections within clinical settings.
{"title":"A saccharides regulated fluorescence ratio sensing array for bacterial recognition based on lectin response.","authors":"Chunlan Liu, Haijing Zhang, Panpan Chen, Min Wang, Zhining Xia","doi":"10.1016/j.talanta.2024.127419","DOIUrl":"10.1016/j.talanta.2024.127419","url":null,"abstract":"<p><p>Array sensing employs cross-identification among analytes and various sensing units to identify substances or complex systems. This manuscript presents a fluorescence ratio sensing array based on lectin responses for the accurate identification of different bacteria. This strategy uses a saccharide-sensitive polymer as the sensing unit within the sensor. By incorporating various saccharides, it regulates the properties of the single sensing unit at the molecular level, altering its interaction with the analyte. This modulation leads to the generation of multiple distinct detection signals for the target, effectively facilitating the goal of array sensing. This approach streamlines the design and construction of the array sensor, while simultaneously enhancing detection efficiency. Not only does this sensing strategy achieve the differentiation and quantification of various types of lectins, but it also enables the identification of different bacterial species based on their unique lectin response profiles. This research introduces a novel approach that simplifies the construction of array sensors and simultaneously furnishes a potent tool for diagnosing and assessing bacterial infections within clinical settings.</p>","PeriodicalId":435,"journal":{"name":"Talanta","volume":"285 ","pages":"127419"},"PeriodicalIF":5.6,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142870966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aqueous Zn-ion batteries (AZIBs) have attracted widespread attention owing to the feature of low cost, inherent safety and eco-friendliness. However, the poor reversibility of Zn anode severely hinders the practical applicability of AZIBs. Separator modification is an effective way to functionalize the electrode/electrolyte interface and improve the cycling performance. Here, we propose a modified glass fiber separator with Au coating (Au@GF), which could realize uniform Zn2+ distribution at the electrode/electrolyte interface and regulate the plating/stripping behaviors, achieving a dense and homogenous deposition. Zn||Zn symmetric cells assembled with Au@GF separator demonstrate evidently prolonged cycle life over 1600 h at the current density of 5 mA cm-2 and the capacity of 1 mAh cm-2, while symmetric cells with GF fail in less than 40 h. Even at the condition of 15 mA cm-2/3 mAh cm-2, lifespan of Zn||Zn cells with Au@GF is extended to 750 h, which is more than 3 times compared with that of GF. The modified separator with highly conductive coating is capable of a longtime stable Zn plating/stripping. Moreover, an enhanced cycling performance is also detected in a series of full cells with different cathode materials. This work provides an easy and efficient approach to homogenize Zn2+ deposition.
含水锌离子电池以其低成本、固有安全性和生态友好性而受到广泛关注。然而,锌阳极可逆性差严重阻碍了azib的实际应用。对隔膜进行改造是实现电极/电解质界面功能化和提高循环性能的有效途径。在此,我们提出了一种带有Au涂层的改性玻璃纤维分离器(Au@GF),它可以实现Zn2+在电极/电解质界面的均匀分布,并调节镀/剥离行为,从而实现致密均匀的沉积。在电流密度为5 mA cm-2、容量为1 mAh cm-2的情况下,使用Au@GF分离器组装的Zn||对称电池的循环寿命明显延长,超过1600 h,而使用GF的对称电池的循环寿命不到40 h就失效了。即使在15 mA cm-2/3 mAh cm-2的条件下,使用Au@GF的Zn||锌电池的寿命也延长到750 h,是GF的3倍以上。采用高导电性涂层的改性分离器,能够长期稳定地镀/剥离锌。此外,在一系列不同正极材料的全电池中也检测到增强的循环性能。这项工作为均匀化Zn2+沉积提供了一种简单有效的方法。
{"title":"Ion flux regulating with Au-modified separator to realize a homogenize Zn metal deposition.","authors":"Mengyuan Shen, Anli Wang, Jianlin Chen, Siyao Song, Wenyan Hou, Yunpeng Li, Jiayu Zhang, Jiamin Yuan, Fei Shen, Xiaogang Han","doi":"10.1016/j.jcis.2024.12.117","DOIUrl":"10.1016/j.jcis.2024.12.117","url":null,"abstract":"<p><p>Aqueous Zn-ion batteries (AZIBs) have attracted widespread attention owing to the feature of low cost, inherent safety and eco-friendliness. However, the poor reversibility of Zn anode severely hinders the practical applicability of AZIBs. Separator modification is an effective way to functionalize the electrode/electrolyte interface and improve the cycling performance. Here, we propose a modified glass fiber separator with Au coating (Au@GF), which could realize uniform Zn<sup>2+</sup> distribution at the electrode/electrolyte interface and regulate the plating/stripping behaviors, achieving a dense and homogenous deposition. Zn||Zn symmetric cells assembled with Au@GF separator demonstrate evidently prolonged cycle life over 1600 h at the current density of 5 mA cm<sup>-2</sup> and the capacity of 1 mAh cm<sup>-2</sup>, while symmetric cells with GF fail in less than 40 h. Even at the condition of 15 mA cm<sup>-2</sup>/3 mAh cm<sup>-2</sup>, lifespan of Zn||Zn cells with Au@GF is extended to 750 h, which is more than 3 times compared with that of GF. The modified separator with highly conductive coating is capable of a longtime stable Zn plating/stripping. Moreover, an enhanced cycling performance is also detected in a series of full cells with different cathode materials. This work provides an easy and efficient approach to homogenize Zn<sup>2+</sup> deposition.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"683 Pt 1","pages":"892-900"},"PeriodicalIF":9.4,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142875686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-01Epub Date: 2025-01-23DOI: 10.1016/j.ijbiomac.2025.140264
Yongcheng Chen, Huan Liu, Lang Zhang, Huifang Zeng, LiHe Jiang, Qinghong Qin, Dequan Li, Guanming Lu
The aim of this study was to investigate the inhibitory effect of glutamate molecular structure and protein on breast cancer cell metastasis and the potential inhibitory mechanism of cell-derived exosomes via MAPK signaling pathway. Breast cancer cell lines with high metastatic potential were selected by in vitro cell culture technique. The effects of specific inhibitors of glutamic acid on the proliferation and metastasis of breast cancer cells were studied. Changes in protein expression profiles were analyzed by proteomics techniques to identify key proteins associated with breast cancer metastasis. Breast cancer cells were treated with inhibitors of the MAPK signaling pathway to evaluate their effect on cell metastasis and compare with exosome treatment. The results showed that the specific inhibitors of glutamate molecular structure could significantly inhibit the proliferation and metastasis of breast cancer cells. Proteomic analysis revealed several down-regulated proteins that are closely related to breast cancer metastasis.
{"title":"Glutamate molecular structure and protein affect the inhibition of breast cancer cell metastasis: Cell-derived exosomes inhibitory effects through the MAPK signaling pathway.","authors":"Yongcheng Chen, Huan Liu, Lang Zhang, Huifang Zeng, LiHe Jiang, Qinghong Qin, Dequan Li, Guanming Lu","doi":"10.1016/j.ijbiomac.2025.140264","DOIUrl":"10.1016/j.ijbiomac.2025.140264","url":null,"abstract":"<p><p>The aim of this study was to investigate the inhibitory effect of glutamate molecular structure and protein on breast cancer cell metastasis and the potential inhibitory mechanism of cell-derived exosomes via MAPK signaling pathway. Breast cancer cell lines with high metastatic potential were selected by in vitro cell culture technique. The effects of specific inhibitors of glutamic acid on the proliferation and metastasis of breast cancer cells were studied. Changes in protein expression profiles were analyzed by proteomics techniques to identify key proteins associated with breast cancer metastasis. Breast cancer cells were treated with inhibitors of the MAPK signaling pathway to evaluate their effect on cell metastasis and compare with exosome treatment. The results showed that the specific inhibitors of glutamate molecular structure could significantly inhibit the proliferation and metastasis of breast cancer cells. Proteomic analysis revealed several down-regulated proteins that are closely related to breast cancer metastasis.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"140264"},"PeriodicalIF":7.7,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143035530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
As one of the most commonly used chemotherapeutic agents in clinical practice, cisplatin is unable to selectively accumulate in tumor tissue due to its lack of targeting ability, leading to increased systemic toxicities. Additionally, the effectiveness of monotherapy is greatly limited. Therefore, the development of new cisplatin-based drug delivery systems is essential to improve the effectiveness of tumor treatment. In this study, an iron-based metal-organic framework (MOF) was synthesized to encapsulate cisplatin, and then coated with hyaluronic acid (HA) to create a MOF-based nanoplatform called MPt@HA NPs. This novel nanoplatform achieved the combination of chemodynamic therapy (CDT) with targeted chemotherapy for the treatment of lung cancer. The results showed that MPt@HA NPs have stronger cytotoxicity compared to conventional doses of cisplatin due to the generation of reactive oxygen species (ROS) through the Fenton reaction and DNA damage caused by cisplatin. Therefore, MPt@HA NPs effectively inhibit the tumor growth and prolong the median survival of tumor-bearing mice. Therefore, the MOF-based nanoplatform MPt@HA NPs may present a new option for multi-modal therapy of solid tumors.
{"title":"Hyaluronic acid modified metal-organic frameworks loading cisplatin achieve combined chemodynamic therapy and chemotherapy for lung cancer.","authors":"Qian Wen, Jianmei Li, Hongjun Deng, Biqiong Wang, Jingrong Huang, Jie Dai, Yun Lu, Fancai Zeng, Yue Chen, Ling Zhao, Shaozhi Fu","doi":"10.1016/j.ijbiomac.2025.140238","DOIUrl":"10.1016/j.ijbiomac.2025.140238","url":null,"abstract":"<p><p>As one of the most commonly used chemotherapeutic agents in clinical practice, cisplatin is unable to selectively accumulate in tumor tissue due to its lack of targeting ability, leading to increased systemic toxicities. Additionally, the effectiveness of monotherapy is greatly limited. Therefore, the development of new cisplatin-based drug delivery systems is essential to improve the effectiveness of tumor treatment. In this study, an iron-based metal-organic framework (MOF) was synthesized to encapsulate cisplatin, and then coated with hyaluronic acid (HA) to create a MOF-based nanoplatform called MPt@HA NPs. This novel nanoplatform achieved the combination of chemodynamic therapy (CDT) with targeted chemotherapy for the treatment of lung cancer. The results showed that MPt@HA NPs have stronger cytotoxicity compared to conventional doses of cisplatin due to the generation of reactive oxygen species (ROS) through the Fenton reaction and DNA damage caused by cisplatin. Therefore, MPt@HA NPs effectively inhibit the tumor growth and prolong the median survival of tumor-bearing mice. Therefore, the MOF-based nanoplatform MPt@HA NPs may present a new option for multi-modal therapy of solid tumors.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"140238"},"PeriodicalIF":7.7,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143035560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Crown rot caused by Fusarium proliferatum is a severe postharvest disease of banana fruit. The N6-methyladenosine (m6A) modification is the most common type of RNA modification and regulates gene expression in eukaryotes. Here, we analyzed transcriptome-wide changes in m6A methylation to investigate post-transcriptional regulation mechanisms of growth and fumonisin biosynthesis of F. proliferatum after fluopyram (Flu) treatment. The results demonstrated that Flu treatment inhibited F. proliferatum growth but induced fumonisins (FB1 and FB2) production both in vitro and in vivo. A transcriptome-wide m6A methylation profile showed that m6A hypomethylation was induced by Flu and enriched in start codons and the 3' untranslated region. FpAlkbh8 and FpYthdc1 may contribute to the decrease in m6A modifications after Flu treatment. The expression levels of m6A-containing mRNAs were higher than those of non-m6A-containing mRNAs. Furthermore, Flu decreased the acetyl-CoA content and regulated glycolysis and tricarboxylic acid cycle through m6A modifications, diverting the acetyl-CoA flux into fumonisin biosynthesis. Importantly, Flu-mediated regulation of energy and reactive oxygen species metabolism, cell wall and membrane, and transcription factors was associated with m6A modifications. Collectively, this study provides potential novel targets for improving fungicide efficiency to control fungal disease and highlights the potential of environmental risks of fungicides.
{"title":"Transcriptome-wide N<sup>6</sup>-methyladenosinem modifications analysis of growth and fumonisins production in Fusarium proliferatum causing banana crown rot.","authors":"Lihong Xie, Linyan Feng, Yanling Ren, Qiuxiao Yang, Hongxia Qu, Taotao Li, Yueming Jiang","doi":"10.1016/j.ijbiomac.2025.140385","DOIUrl":"10.1016/j.ijbiomac.2025.140385","url":null,"abstract":"<p><p>Crown rot caused by Fusarium proliferatum is a severe postharvest disease of banana fruit. The N<sup>6</sup>-methyladenosine (m<sup>6</sup>A) modification is the most common type of RNA modification and regulates gene expression in eukaryotes. Here, we analyzed transcriptome-wide changes in m<sup>6</sup>A methylation to investigate post-transcriptional regulation mechanisms of growth and fumonisin biosynthesis of F. proliferatum after fluopyram (Flu) treatment. The results demonstrated that Flu treatment inhibited F. proliferatum growth but induced fumonisins (FB1 and FB2) production both in vitro and in vivo. A transcriptome-wide m<sup>6</sup>A methylation profile showed that m<sup>6</sup>A hypomethylation was induced by Flu and enriched in start codons and the 3' untranslated region. FpAlkbh8 and FpYthdc1 may contribute to the decrease in m<sup>6</sup>A modifications after Flu treatment. The expression levels of m<sup>6</sup>A-containing mRNAs were higher than those of non-m<sup>6</sup>A-containing mRNAs. Furthermore, Flu decreased the acetyl-CoA content and regulated glycolysis and tricarboxylic acid cycle through m<sup>6</sup>A modifications, diverting the acetyl-CoA flux into fumonisin biosynthesis. Importantly, Flu-mediated regulation of energy and reactive oxygen species metabolism, cell wall and membrane, and transcription factors was associated with m<sup>6</sup>A modifications. Collectively, this study provides potential novel targets for improving fungicide efficiency to control fungal disease and highlights the potential of environmental risks of fungicides.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":"300 ","pages":"140385"},"PeriodicalIF":7.7,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143062870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-01Epub Date: 2025-01-29DOI: 10.1016/j.ijbiomac.2025.140418
Siliang Wang, Kelly Van Van, Miaomiao Zheng, Wen-Lian Chen, Yu-Shui Ma
In esophageal squamous cell carcinoma (ESCC), the tumor microenvironment (TME) is characterized by a significant accumulation of cancer-associated fibroblasts (CAFs), which play a pivotal role in the host response against tumor cells. While fibroblasts are known to be crucial in the metabolic reprogramming of the TME, the specific metabolic alterations induced by these cells remain largely undefined. Utilizing single-cell RNA sequencing, we have identified a distinct subpopulation of antigen-presenting CAF (apCAF) within ESCC tumors. Our findings reveal that apCAF contribute to adverse patient outcomes by remodeling the tumor metabolic environment. Notably, apCAF modulate the glycosaminoglycan biosynthesis-heparan sulfate/heparin metabolism pathway in T cells, B cells, and macrophages. Disruption of this pathway may facilitate immune evasion by the tumor. These insights underscore the critical role of CAFs in shaping the metabolic landscape of the TME and lay the groundwork for developing therapeutic strategies aimed at enhancing anti-tumor immunity.
{"title":"High antigen-presenting CAF levels correlate with reduced glycosaminoglycan biosynthesis-heparan sulfate/heparin metabolism in immune cells and poor prognosis in esophageal squamous cell carcinoma: Insights from bulk and single-cell transcriptome profiling.","authors":"Siliang Wang, Kelly Van Van, Miaomiao Zheng, Wen-Lian Chen, Yu-Shui Ma","doi":"10.1016/j.ijbiomac.2025.140418","DOIUrl":"10.1016/j.ijbiomac.2025.140418","url":null,"abstract":"<p><p>In esophageal squamous cell carcinoma (ESCC), the tumor microenvironment (TME) is characterized by a significant accumulation of cancer-associated fibroblasts (CAFs), which play a pivotal role in the host response against tumor cells. While fibroblasts are known to be crucial in the metabolic reprogramming of the TME, the specific metabolic alterations induced by these cells remain largely undefined. Utilizing single-cell RNA sequencing, we have identified a distinct subpopulation of antigen-presenting CAF (apCAF) within ESCC tumors. Our findings reveal that apCAF contribute to adverse patient outcomes by remodeling the tumor metabolic environment. Notably, apCAF modulate the glycosaminoglycan biosynthesis-heparan sulfate/heparin metabolism pathway in T cells, B cells, and macrophages. Disruption of this pathway may facilitate immune evasion by the tumor. These insights underscore the critical role of CAFs in shaping the metabolic landscape of the TME and lay the groundwork for developing therapeutic strategies aimed at enhancing anti-tumor immunity.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"140418"},"PeriodicalIF":7.7,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143073088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: The role of inflammation in the development of type 2 diabetes mellitus (T2DM) related skin complications necessitates further investigation. This study aims to explore the correlation between inflammation and cutaneous alterations in T2DM, enhancing comprehension of underlying mechanism involved.
Methods: Utilizing bioinformatics, the GSE38396 and GSE92724 datasets were employed to identify differentially expressed genes (DEGs) and potential hub genes in T2DM-related skin inflammation. Subsequently, gene functional enrichment analysis was employed for functional annotation. Finally, we validated the regulatory impact of hub gene on inflammation during high glucose incubation using the in vitro model.
Results: A comprehensive analysis identified 742 DEGs, including 9 hub genes and 4 potential biomarkers. Compared to the CON group, the expression of M2 macrophages was significantly upregulated in the T2DM group, while resting dendritic cells and eosinophils showed notable decreases, indicating a significant correlation with CEBPA. Furthermore, functional enrichment analysis revealed significant enrichment of DEGs in pathways linked to immunity and diabetes pathogenesis. Interestingly, overexpression of CEBPA demonstrated anti-inflammatory effects under hyperglycemic conditions, while silencing CEBPA expression appeared to worsen inflammation.
Conclusion: CEBPA emerges as a potential hub gene for skin inflammation in T2DM, shedding light on the underlying mechanisms of this condition.
{"title":"CEBPA as a potential hub gene for cutaneous inflammation in type 2 diabetes mellitus.","authors":"Mingzheng Han, Jingchun Wang, Yijin Wu, Jianzhao Liao, Jianying Guo, Zhaoxin Tang","doi":"10.1016/j.ijbiomac.2025.140080","DOIUrl":"10.1016/j.ijbiomac.2025.140080","url":null,"abstract":"<p><strong>Background: </strong>The role of inflammation in the development of type 2 diabetes mellitus (T2DM) related skin complications necessitates further investigation. This study aims to explore the correlation between inflammation and cutaneous alterations in T2DM, enhancing comprehension of underlying mechanism involved.</p><p><strong>Methods: </strong>Utilizing bioinformatics, the GSE38396 and GSE92724 datasets were employed to identify differentially expressed genes (DEGs) and potential hub genes in T2DM-related skin inflammation. Subsequently, gene functional enrichment analysis was employed for functional annotation. Finally, we validated the regulatory impact of hub gene on inflammation during high glucose incubation using the in vitro model.</p><p><strong>Results: </strong>A comprehensive analysis identified 742 DEGs, including 9 hub genes and 4 potential biomarkers. Compared to the CON group, the expression of M2 macrophages was significantly upregulated in the T2DM group, while resting dendritic cells and eosinophils showed notable decreases, indicating a significant correlation with CEBPA. Furthermore, functional enrichment analysis revealed significant enrichment of DEGs in pathways linked to immunity and diabetes pathogenesis. Interestingly, overexpression of CEBPA demonstrated anti-inflammatory effects under hyperglycemic conditions, while silencing CEBPA expression appeared to worsen inflammation.</p><p><strong>Conclusion: </strong>CEBPA emerges as a potential hub gene for skin inflammation in T2DM, shedding light on the underlying mechanisms of this condition.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"140080"},"PeriodicalIF":7.7,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142996742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Obesity and metabolic disorders are rising global health concerns, emphasizing the need for effective dietary interventions. High-viscosity dietary fibers such as bacterial cellulose (BC) and guar gum (GG) have unique properties that may complement each other in modulating gut microbiota and metabolic health. This study investigates their effects in high-fat diet-fed mice. BC and GG increase Bacteroides, which degrade polysaccharides and produce short-chain fatty acids (SCFAs), supporting metabolic health. BC enhances bile acid excretion and enriches Faecalibaculum, Duncaniella, and Paramuribaculum, promoting gut barrier integrity and reducing inflammation, potentially improving bile acid turnover and lipid metabolism. GG more effectively increases butyrate production by enhancing butyrate-producing bacteria, such as Clostridium XIVa and Kineothrix, and promotes Bifidobacterium, strengthening anti-inflammatory effects and gut barrier function. Both fibers upregulate bile acid biosynthesis, but BC's non-fermentable nature leads to higher bile acid excretion, while GG's fermentation causes lower excretion and broader liver metabolic changes. Both fibers reduce body weight, fat accumulation, and cholesterol levels, highlighting their potential in managing obesity and metabolic disorders. The complementary effects of BC and GG underscore the importance of fiber diversity for targeted dietary strategies to improve metabolic health.
{"title":"High-viscosity dietary fibers modulate gut microbiota and liver metabolism to prevent obesity in high-fat diet-fed mice.","authors":"Takao Nagano, Yasuki Higashimura, Masataka Nakano, Takumi Nishiuchi, Aaron Pambu Lelo","doi":"10.1016/j.ijbiomac.2025.139962","DOIUrl":"10.1016/j.ijbiomac.2025.139962","url":null,"abstract":"<p><p>Obesity and metabolic disorders are rising global health concerns, emphasizing the need for effective dietary interventions. High-viscosity dietary fibers such as bacterial cellulose (BC) and guar gum (GG) have unique properties that may complement each other in modulating gut microbiota and metabolic health. This study investigates their effects in high-fat diet-fed mice. BC and GG increase Bacteroides, which degrade polysaccharides and produce short-chain fatty acids (SCFAs), supporting metabolic health. BC enhances bile acid excretion and enriches Faecalibaculum, Duncaniella, and Paramuribaculum, promoting gut barrier integrity and reducing inflammation, potentially improving bile acid turnover and lipid metabolism. GG more effectively increases butyrate production by enhancing butyrate-producing bacteria, such as Clostridium XIVa and Kineothrix, and promotes Bifidobacterium, strengthening anti-inflammatory effects and gut barrier function. Both fibers upregulate bile acid biosynthesis, but BC's non-fermentable nature leads to higher bile acid excretion, while GG's fermentation causes lower excretion and broader liver metabolic changes. Both fibers reduce body weight, fat accumulation, and cholesterol levels, highlighting their potential in managing obesity and metabolic disorders. The complementary effects of BC and GG underscore the importance of fiber diversity for targeted dietary strategies to improve metabolic health.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":"298 ","pages":"139962"},"PeriodicalIF":7.7,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142997562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-01Epub Date: 2024-11-08DOI: 10.1016/j.carbpol.2024.122957
{"title":"Expression of concern: \"Synthesis and evaluation of chondroitin sulfate based hydrogels of loxoprofen with adjustable properties as controlled release carriers\" [Carbohydrate Polymers volume 181, 1 February 2018, pages 1169-1179].","authors":"","doi":"10.1016/j.carbpol.2024.122957","DOIUrl":"https://doi.org/10.1016/j.carbpol.2024.122957","url":null,"abstract":"","PeriodicalId":261,"journal":{"name":"Carbohydrate Polymers","volume":"353 ","pages":"122957"},"PeriodicalIF":10.7,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143363298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-01Epub Date: 2024-12-14DOI: 10.1016/j.talanta.2024.127377
Jian Zhang, Xiaojie Tang, Honglan Qi, Zhao Li, Xiaowei He
Butylcholinesterase (BChE) is a key enzyme in living system, closely related to liver and neurological diseases. It is very challenge to develop near-infrared (NIR) fluorescence probe methods for highly selective and sensitive detection of BChE in vivo. Based on the differences in active sites and spatial pockets between acetylcholinesterase (AChE) and BChE, a new NIR BChE-responsive fluorescence probe Probe-BChE (λex/λem = 600 nm/676 nm) was designed and synthesized by introducing dimethyl carbamate group as recognizing moiety to a NIR fluorophore hemicyanine skeleton. It was found that Probe-BChE specifically binds with BChE, rather than AChE, since BChE has a big cavity and strong intermolecular forces with Probe-BChE, which was supported by the molecular docking scores. The fluorescence method for the determination of BChE was developed with a detection limit of 0.14 U/mL BChE and high selectivity as well as short reaction time (∼3 s). The fluorescence imaging method using Probe-BChE efficiently image the levels of endogenous BChE in brains and main organs (heart, liver, spleen, lung and kidney) of Alzheimer's disease (AD) mice. The results reveal that the levels of endogenous BChE in old AD mice is higher than that in young AD mice, and endogenous BChE is enriched in the liver of AD mice. This work demonstrates that Probe-BChE is a promising fluorescence probe for imaging of endogenous BChE in AD mice. The design of NIR fluorescence probes for endogenous BChE in this work will promote to design NIR fluorescence probes for endogenous cholinesterase.
{"title":"A new near-infrared fluorescence probe for highly selective and sensitive detection and imaging of Butyrylcholinesterase in Alzheimer's disease mice.","authors":"Jian Zhang, Xiaojie Tang, Honglan Qi, Zhao Li, Xiaowei He","doi":"10.1016/j.talanta.2024.127377","DOIUrl":"10.1016/j.talanta.2024.127377","url":null,"abstract":"<p><p>Butylcholinesterase (BChE) is a key enzyme in living system, closely related to liver and neurological diseases. It is very challenge to develop near-infrared (NIR) fluorescence probe methods for highly selective and sensitive detection of BChE in vivo. Based on the differences in active sites and spatial pockets between acetylcholinesterase (AChE) and BChE, a new NIR BChE-responsive fluorescence probe Probe-BChE (λ<sub>ex</sub>/λ<sub>em</sub> = 600 nm/676 nm) was designed and synthesized by introducing dimethyl carbamate group as recognizing moiety to a NIR fluorophore hemicyanine skeleton. It was found that Probe-BChE specifically binds with BChE, rather than AChE, since BChE has a big cavity and strong intermolecular forces with Probe-BChE, which was supported by the molecular docking scores. The fluorescence method for the determination of BChE was developed with a detection limit of 0.14 U/mL BChE and high selectivity as well as short reaction time (∼3 s). The fluorescence imaging method using Probe-BChE efficiently image the levels of endogenous BChE in brains and main organs (heart, liver, spleen, lung and kidney) of Alzheimer's disease (AD) mice. The results reveal that the levels of endogenous BChE in old AD mice is higher than that in young AD mice, and endogenous BChE is enriched in the liver of AD mice. This work demonstrates that Probe-BChE is a promising fluorescence probe for imaging of endogenous BChE in AD mice. The design of NIR fluorescence probes for endogenous BChE in this work will promote to design NIR fluorescence probes for endogenous cholinesterase.</p>","PeriodicalId":435,"journal":{"name":"Talanta","volume":"285 ","pages":"127377"},"PeriodicalIF":5.6,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142870948","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}