Sensitive and accurate detection and imaging of different microRNAs (miRNAs) in cancer cells hold great promise for early disease diagnosis. Herein, a DNA tetrahedral scaffold (DTS)-corbelled autonomous-motion (AM) molecular machine based fluorescent sensing platform was designed for simultaneous detection of two types of miRNAs (miRNA-21 and miRNA-155) in HeLa cells. Locking-strand-silenced DNAzymes (P:L duplex) were firstly grafted at the loop of target-analogue-embedded double-stem hairpin substrates (TDHS) of DTS, making the sensor in a "signal off" state due to the closely distance between modified fluorophores (FAM and Cy5) with the corresponding quenchers (BHQ1 and BHQ2). The detection of miRNA-21 and miRNA-155 was mainly based on the activation of locking-strand-silenced DNAzymes, cleaving hairpin DNA into single-strand DNA segments, accompanying with the release of modified fluorophores and the signal recovery (signal on). Upon the cyclical stimulation of miRNA targets in such AM molecular machine, sensitive detection of miRNA-21 and miRNA-155 was realized in this self-feedback circuit (SFC) with the detection limit down to 38.8 aM and 27.1 aM, respectively. Moreover, the analytical performance was greatly improved for miRNAs imaging in cancer cells with enhanced tumor cell recognition ability, excellent stability in virtue of DTS, indicating a potential analytical tool in early cancer diseases diagnosis.
{"title":"Simultaneous sensitive detection and imaging of dual microRNAs through DNA tetrahedral scaffold-corbelled autonomous-motion molecular machine.","authors":"Yun Zhang, Liang Gao, Zhe Shi, Qiong Wu, Xiangmin Miao","doi":"10.1016/j.talanta.2025.127556","DOIUrl":"10.1016/j.talanta.2025.127556","url":null,"abstract":"<p><p>Sensitive and accurate detection and imaging of different microRNAs (miRNAs) in cancer cells hold great promise for early disease diagnosis. Herein, a DNA tetrahedral scaffold (DTS)-corbelled autonomous-motion (AM) molecular machine based fluorescent sensing platform was designed for simultaneous detection of two types of miRNAs (miRNA-21 and miRNA-155) in HeLa cells. Locking-strand-silenced DNAzymes (P:L duplex) were firstly grafted at the loop of target-analogue-embedded double-stem hairpin substrates (TDHS) of DTS, making the sensor in a \"signal off\" state due to the closely distance between modified fluorophores (FAM and Cy5) with the corresponding quenchers (BHQ1 and BHQ2). The detection of miRNA-21 and miRNA-155 was mainly based on the activation of locking-strand-silenced DNAzymes, cleaving hairpin DNA into single-strand DNA segments, accompanying with the release of modified fluorophores and the signal recovery (signal on). Upon the cyclical stimulation of miRNA targets in such AM molecular machine, sensitive detection of miRNA-21 and miRNA-155 was realized in this self-feedback circuit (SFC) with the detection limit down to 38.8 aM and 27.1 aM, respectively. Moreover, the analytical performance was greatly improved for miRNAs imaging in cancer cells with enhanced tumor cell recognition ability, excellent stability in virtue of DTS, indicating a potential analytical tool in early cancer diseases diagnosis.</p>","PeriodicalId":435,"journal":{"name":"Talanta","volume":"286 ","pages":"127556"},"PeriodicalIF":5.6,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142977247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-05-01Epub Date: 2025-01-21DOI: 10.1016/j.jcis.2025.01.165
Caiwei Wang, Zicheng Li, Wenli Zhang, Bo Chen, Yuanyuan Ge, Zhili Li, Xuemin Cui
Porous carbons with large surface area (>3000 m2/g) and heteroatom dopants have shown great promise as electrode materials for zinc ion hybrid capacitors. Centralized mesopores are effective to accelerate kinetics, and edge nitrogen can efficiently enhance pseudocapacitive capability. It is a great challenge to engineer centralized mesopores and edge nitrogen in large-surface-area porous carbons. Herein, a strategy of melamine-boosted K2CO3 activation is proposed to prepare edge-nitrogen-doped hierarchical porous carbons (ENHPCs). KOCN generated by K2CO3 reacting cyano groups (-CN) couples with K2CO3 activation engineers large-surface-area porous carbon. KCN in-situ generated by KOCN etching carbon atoms plays a template role in constructing centralized mesopores. Edge-nitrogen skeleton is formed by g-C3N4 losing -CN, and then in-situ integrated into porous carbon skeleton. The efficiency of melamine-boosted K2CO3 activation reaches the highest at a melamine/lignin mass ratio of 0.5, where the optimized ENHPCs (ENHPC-0.5) have a large surface area of 3122 m2/g, a mesopore architecture (2.8 nm) with a mesoporosity of 60.5 % and a moderate edge-N content of 1.9 at.%. ENHPC-0.5 cathode displays a high capacitance of 350F/g at 0.1 A/g, an excellent rate capability of 129F/g at 20 A/g and a robust cycling life. This work provides a novel strategy to prepare heteroatom-doped high-surface-area porous carbons for zinc ion hybrid capacitors.
{"title":"In-situ engineering of centralized mesopores and edge nitrogen for porous carbons toward zinc ion hybrid capacitors.","authors":"Caiwei Wang, Zicheng Li, Wenli Zhang, Bo Chen, Yuanyuan Ge, Zhili Li, Xuemin Cui","doi":"10.1016/j.jcis.2025.01.165","DOIUrl":"10.1016/j.jcis.2025.01.165","url":null,"abstract":"<p><p>Porous carbons with large surface area (>3000 m<sup>2</sup>/g) and heteroatom dopants have shown great promise as electrode materials for zinc ion hybrid capacitors. Centralized mesopores are effective to accelerate kinetics, and edge nitrogen can efficiently enhance pseudocapacitive capability. It is a great challenge to engineer centralized mesopores and edge nitrogen in large-surface-area porous carbons. Herein, a strategy of melamine-boosted K<sub>2</sub>CO<sub>3</sub> activation is proposed to prepare edge-nitrogen-doped hierarchical porous carbons (ENHPCs). KOCN generated by K<sub>2</sub>CO<sub>3</sub> reacting cyano groups (-CN) couples with K<sub>2</sub>CO<sub>3</sub> activation engineers large-surface-area porous carbon. KCN in-situ generated by KOCN etching carbon atoms plays a template role in constructing centralized mesopores. Edge-nitrogen skeleton is formed by g-C<sub>3</sub>N<sub>4</sub> losing -CN, and then in-situ integrated into porous carbon skeleton. The efficiency of melamine-boosted K<sub>2</sub>CO<sub>3</sub> activation reaches the highest at a melamine/lignin mass ratio of 0.5, where the optimized ENHPCs (ENHPC-0.5) have a large surface area of 3122 m<sup>2</sup>/g, a mesopore architecture (2.8 nm) with a mesoporosity of 60.5 % and a moderate edge-N content of 1.9 at.%. ENHPC-0.5 cathode displays a high capacitance of 350F/g at 0.1 A/g, an excellent rate capability of 129F/g at 20 A/g and a robust cycling life. This work provides a novel strategy to prepare heteroatom-doped high-surface-area porous carbons for zinc ion hybrid capacitors.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"685 ","pages":"674-684"},"PeriodicalIF":9.4,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143035720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-05-01Epub Date: 2025-01-23DOI: 10.1016/j.jcis.2025.01.197
Yang Li, Zhong-Wen Pu, Zhi-Zhou Yang, Yi-Da Wang, Yu-Tang Shen, Jing-Bo Wu, Lingliang Long, Yin-Ning Zhou, Wei-Cheng Yan
Modern microelectronics industries urgently require dielectric materials with low thermal expansion coefficients, low dielectric constants, and minimal dielectric loss. However, the design principles of materials with low dielectric constants and low thermal expansion are contradictory. In this study, a new diamine monomer containing a dibenzocyclooctadiene unit (DBCOD-NH2) was designed and synthesized, which was subsequently polymerized with high fluorine content 4,4'-hexafluoroisopr-opylidene diphthalic anhydride and 4,4'-diamino-2,2'-bis(trifleoromethyl)biphenyl to obtain a series of fluorinated polyimides (PIs). Due to the unique conformational transition of the eight-membered carbon ring, the resulting PI can reach a low averaging thermal expansion coefficient (CTE) of only 12.27 ppm/K over 5-150 ℃ with a size change rate of only 0.16 %. Surprisingly, the synergistic effect of DBCOD-NH2 with the other two monomers enhances the dielectric performance of the PIs. At an electric field frequency of 10 MHz, the dielectric constant (Dk) and the dielectric loss (Df) can be reduced to as low as 2.61 and 0.00194, respectively. The strategy used herein largely tackles the challenge of balancing low Dk with low CTE. Furthermore, these PI films also exhibit good thermal stability (with 5 wt% weight loss temperatures ranging from 453 to 537 ℃ in N2, and glass transition temperatures of 305-337 ℃) and robust mechanical properties (with a tensile modulus of 1.88-2.29 GPa and an elongation at break of 6.36-8.11 %). The combination of low thermal expansion and excellent dielectric properties renders these PIs highly promising for applications in the microelectronics and telecommunications industries.
{"title":"Design and synthesis of fluorinated polyimides with low thermal expansion and enhanced dielectric properties.","authors":"Yang Li, Zhong-Wen Pu, Zhi-Zhou Yang, Yi-Da Wang, Yu-Tang Shen, Jing-Bo Wu, Lingliang Long, Yin-Ning Zhou, Wei-Cheng Yan","doi":"10.1016/j.jcis.2025.01.197","DOIUrl":"10.1016/j.jcis.2025.01.197","url":null,"abstract":"<p><p>Modern microelectronics industries urgently require dielectric materials with low thermal expansion coefficients, low dielectric constants, and minimal dielectric loss. However, the design principles of materials with low dielectric constants and low thermal expansion are contradictory. In this study, a new diamine monomer containing a dibenzocyclooctadiene unit (DBCOD-NH<sub>2</sub>) was designed and synthesized, which was subsequently polymerized with high fluorine content 4,4'-hexafluoroisopr-opylidene diphthalic anhydride and 4,4'-diamino-2,2'-bis(trifleoromethyl)biphenyl to obtain a series of fluorinated polyimides (PIs). Due to the unique conformational transition of the eight-membered carbon ring, the resulting PI can reach a low averaging thermal expansion coefficient (CTE) of only 12.27 ppm/K over 5-150 ℃ with a size change rate of only 0.16 %. Surprisingly, the synergistic effect of DBCOD-NH<sub>2</sub> with the other two monomers enhances the dielectric performance of the PIs. At an electric field frequency of 10 MHz, the dielectric constant (D<sub>k</sub>) and the dielectric loss (D<sub>f</sub>) can be reduced to as low as 2.61 and 0.00194, respectively. The strategy used herein largely tackles the challenge of balancing low D<sub>k</sub> with low CTE. Furthermore, these PI films also exhibit good thermal stability (with 5 wt% weight loss temperatures ranging from 453 to 537 ℃ in N<sub>2</sub>, and glass transition temperatures of 305-337 ℃) and robust mechanical properties (with a tensile modulus of 1.88-2.29 GPa and an elongation at break of 6.36-8.11 %). The combination of low thermal expansion and excellent dielectric properties renders these PIs highly promising for applications in the microelectronics and telecommunications industries.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"685 ","pages":"938-947"},"PeriodicalIF":9.4,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143057666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The simultaneous generation of hydrogen (H2) and the oxidative transformation of organic molecules through photocatalytic processes represents a highly promising dual-purpose strategy. This approach obviates the necessity for sacrificial agents while augmenting catalytic efficiency, thereby facilitating the integrated production of high-value chemicals and renewable energy carriers. Polymeric carbon nitride (PCN) has emerged as a leading candidate among coupled photocatalysts. Nevertheless, PCN's efficacy is constrained by the inefficient separation of charges and the functional limitations of its active sites. Herein, the incorporation of P-N3 groups into PCN introduces active sites with pronounced charge asymmetry, resulting in strong local charge polarization. This asymmetric charge distribution, mediated by the P-N3 groups, significantly enhances exciton dissociation. Remarkably, the P-N3-modified narrow-dimensional fragmented carbon nitride (P-CNNS) achieves an 85 % conversion rate for 4-MBA with nearly 100 % selectivity, and a hydrogen evolution rate of 27.9 mmol g-1 (with Pt as a co-catalyst), representing 6.2 times higher than that of bulk carbon nitride (BCN). The charge-polarized sites facilitate the transfer of electrons, which is a pivotal process in the activation of 4-methoxybenzyl alcohol (4-MBA). Additionally, these sites serve as adsorption sites, facilitating the oxidation of 4-MBA into anisaldehyde (AA). This work underscores the potential of non-metallic site catalysts for a wide range of coupled photocatalytic applications.
{"title":"Asymmetric P-N<sub>3</sub> bonds in polymeric carbon nitride: Polarizing localized charge for efficient photocatalytic hydrogen evolution and selective alcohol oxidation.","authors":"Siying Lin, Huiyuan Meng, Qi Li, Xudong Xiao, Huiquan Gu, Ying Xie, Baojiang Jiang","doi":"10.1016/j.jcis.2025.01.213","DOIUrl":"10.1016/j.jcis.2025.01.213","url":null,"abstract":"<p><p>The simultaneous generation of hydrogen (H<sub>2</sub>) and the oxidative transformation of organic molecules through photocatalytic processes represents a highly promising dual-purpose strategy. This approach obviates the necessity for sacrificial agents while augmenting catalytic efficiency, thereby facilitating the integrated production of high-value chemicals and renewable energy carriers. Polymeric carbon nitride (PCN) has emerged as a leading candidate among coupled photocatalysts. Nevertheless, PCN's efficacy is constrained by the inefficient separation of charges and the functional limitations of its active sites. Herein, the incorporation of P-N<sub>3</sub> groups into PCN introduces active sites with pronounced charge asymmetry, resulting in strong local charge polarization. This asymmetric charge distribution, mediated by the P-N<sub>3</sub> groups, significantly enhances exciton dissociation. Remarkably, the P-N<sub>3</sub>-modified narrow-dimensional fragmented carbon nitride (P-CNNS) achieves an 85 % conversion rate for 4-MBA with nearly 100 % selectivity, and a hydrogen evolution rate of 27.9 mmol g<sup>-1</sup> (with Pt as a co-catalyst), representing 6.2 times higher than that of bulk carbon nitride (BCN). The charge-polarized sites facilitate the transfer of electrons, which is a pivotal process in the activation of 4-methoxybenzyl alcohol (4-MBA). Additionally, these sites serve as adsorption sites, facilitating the oxidation of 4-MBA into anisaldehyde (AA). This work underscores the potential of non-metallic site catalysts for a wide range of coupled photocatalytic applications.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"685 ","pages":"1154-1163"},"PeriodicalIF":9.4,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143073096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-05-01Epub Date: 2025-01-02DOI: 10.1016/j.talanta.2024.127497
Dorota Buczyńska, Emilia Stelmach, Maria Jankowska, Anna Ruszczyńska, Piotr Piątek, Krzysztof Maksymiuk, Agata Michalska
An idea of using ion-exchanger salt containing optically active cations to prepare ion-selective membranes is proposed. Although the presence of an ion-exchanger in the composition of neutral ionophore based sensors is necessary, the choice of available salts for cation-selective sensors preparation, is usually limited to sodium or potassium compounds. In this work we propose application of an alternative salt, using a cation optically active both in absorption and emission mode as a mobile one. Thus, coloured ion-selective membranes can be obtained. This in turn opens new possibilities of monitoring the state of the receptor layer as well as allows direct analytical application of ion-selective membranes in simple optical mode with all benefits related to eliminating the necessity of using reference electrodes. As a model system Nile blue derivative of tetrakis[3,5-bis(trifluoromethyl)phenyl]borate ion-exchanger was prepared and used to obtain potassium or calcium selective sensors. Selective exchange of ions between the membrane and solution, leading to an increase in optical signal of the solution, can be used to quantify the presence of analyte ions. Thus the sensor pretreatment process is becoming a source of analytical information. The applicability of this approach was verified in determining the presence of potassium ions in the vast majority of interfering ions, e.g. present as impurities in the reagent grade calcium chloride. The resulting potassium ions contents was well comparable with values obtained in course of ICP-MS approach.
{"title":"Adding colour to ion-selective membranes.","authors":"Dorota Buczyńska, Emilia Stelmach, Maria Jankowska, Anna Ruszczyńska, Piotr Piątek, Krzysztof Maksymiuk, Agata Michalska","doi":"10.1016/j.talanta.2024.127497","DOIUrl":"10.1016/j.talanta.2024.127497","url":null,"abstract":"<p><p>An idea of using ion-exchanger salt containing optically active cations to prepare ion-selective membranes is proposed. Although the presence of an ion-exchanger in the composition of neutral ionophore based sensors is necessary, the choice of available salts for cation-selective sensors preparation, is usually limited to sodium or potassium compounds. In this work we propose application of an alternative salt, using a cation optically active both in absorption and emission mode as a mobile one. Thus, coloured ion-selective membranes can be obtained. This in turn opens new possibilities of monitoring the state of the receptor layer as well as allows direct analytical application of ion-selective membranes in simple optical mode with all benefits related to eliminating the necessity of using reference electrodes. As a model system Nile blue derivative of tetrakis[3,5-bis(trifluoromethyl)phenyl]borate ion-exchanger was prepared and used to obtain potassium or calcium selective sensors. Selective exchange of ions between the membrane and solution, leading to an increase in optical signal of the solution, can be used to quantify the presence of analyte ions. Thus the sensor pretreatment process is becoming a source of analytical information. The applicability of this approach was verified in determining the presence of potassium ions in the vast majority of interfering ions, e.g. present as impurities in the reagent grade calcium chloride. The resulting potassium ions contents was well comparable with values obtained in course of ICP-MS approach.</p>","PeriodicalId":435,"journal":{"name":"Talanta","volume":"286 ","pages":"127497"},"PeriodicalIF":5.6,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142969100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Enzyme immobilization techniques are crucial for enhancing enzyme stability and catalytic efficiency. Traditional methods such as physical adsorption and simple covalent binding often fail to maintain enzyme activity and stability. In this study, an innovative multi-level immobilization strategy was proposed to achieve efficient targeted immobilization of nuclease P1 (NP1) by fine-tuning the surface microenvironment. Molecular simulation results revealed that the distinctive electrostatic distribution and the specific placement of basic amino acids, such as lysine, on the NP1 surface caused dopamine to preferentially adsorb on areas away from NP1's active site. This selective adsorption facilitated the directed immobilization of NP1, while the positively charged environment generated by the co-deposited surface further enhanced NP1's adsorption capacity. This multilevel modification was found to significantly optimize the physicochemical environment of the immobilized surface through surface characterization and enzymatic testing. This strategy greatly improves enzyme activity (3590.0 U/mg), stability, and reusability (70 % after 10 cycles). In particular, NP1 on this surface exhibited an optimal Michaelis constant (Km) of 34.0 mM and a maximum reaction rate of 5.5 mM min-1, demonstrating the remarkable effect of the modification strategy in enhancing the enzyme catalytic performance. The present study provides an efficient and stable immobilization platform for enzyme catalytic applications by precisely modulating the surface microenvironment and the oriented immobilization strategy, which has an important potential for practical applications. This stable and reusable NP1 platform allows for efficient DNA/RNA cleavage, facilitating its application in industrial biocatalysis, biomedical enzyme-based processes, and biosensors.
酶固定化技术是提高酶稳定性和催化效率的关键技术。传统的物理吸附和简单的共价结合等方法往往不能维持酶的活性和稳定性。本研究提出了一种创新的多级固定化策略,通过微调表面微环境实现核酸酶P1 (NP1)的高效靶向固定化。分子模拟结果表明,NP1表面独特的静电分布和赖氨酸等碱性氨基酸的特定位置导致多巴胺优先吸附在远离NP1活性位点的区域。这种选择性吸附有利于NP1的定向固定化,而共沉积表面产生的正电荷环境进一步增强了NP1的吸附能力。通过表面表征和酶促测试发现,这种多级修饰明显优化了固定化表面的物理化学环境。该策略大大提高了酶活性(3590.0 U/mg),稳定性和可重复使用性(10个循环后70%)。其中,NP1在该表面的最佳Michaelis常数(Km)为34.0 mM,最大反应速率为5.5 mM min-1,表明该修饰策略在提高酶的催化性能方面效果显著。本研究通过精确调节表面微环境和定向固定策略,为酶催化应用提供了一个高效稳定的固定平台,具有重要的实际应用潜力。这种稳定且可重复使用的NP1平台允许高效的DNA/RNA切割,促进其在工业生物催化,生物医学酶基础工艺和生物传感器中的应用。
{"title":"Exploiting unique NP1 interface: Oriented immobilization via electrostatic and affinity interactions in a tailored PDA/PEI microenvironment enhanced by concanavalin A.","authors":"Jinming Zhang, Jihang Zhang, Jiale Chen, Xiao Zhang, Jinglan Wu, Pengpeng Yang, Fengxia Zou, Hanjie Ying, Wei Zhuang","doi":"10.1016/j.talanta.2025.127528","DOIUrl":"10.1016/j.talanta.2025.127528","url":null,"abstract":"<p><p>Enzyme immobilization techniques are crucial for enhancing enzyme stability and catalytic efficiency. Traditional methods such as physical adsorption and simple covalent binding often fail to maintain enzyme activity and stability. In this study, an innovative multi-level immobilization strategy was proposed to achieve efficient targeted immobilization of nuclease P1 (NP1) by fine-tuning the surface microenvironment. Molecular simulation results revealed that the distinctive electrostatic distribution and the specific placement of basic amino acids, such as lysine, on the NP1 surface caused dopamine to preferentially adsorb on areas away from NP1's active site. This selective adsorption facilitated the directed immobilization of NP1, while the positively charged environment generated by the co-deposited surface further enhanced NP1's adsorption capacity. This multilevel modification was found to significantly optimize the physicochemical environment of the immobilized surface through surface characterization and enzymatic testing. This strategy greatly improves enzyme activity (3590.0 U/mg), stability, and reusability (70 % after 10 cycles). In particular, NP1 on this surface exhibited an optimal Michaelis constant (K<sub>m</sub>) of 34.0 mM and a maximum reaction rate of 5.5 mM min<sup>-1</sup>, demonstrating the remarkable effect of the modification strategy in enhancing the enzyme catalytic performance. The present study provides an efficient and stable immobilization platform for enzyme catalytic applications by precisely modulating the surface microenvironment and the oriented immobilization strategy, which has an important potential for practical applications. This stable and reusable NP1 platform allows for efficient DNA/RNA cleavage, facilitating its application in industrial biocatalysis, biomedical enzyme-based processes, and biosensors.</p>","PeriodicalId":435,"journal":{"name":"Talanta","volume":"286 ","pages":"127528"},"PeriodicalIF":5.6,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142969107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-05-01Epub Date: 2025-01-09DOI: 10.1016/j.talanta.2025.127553
Ningshuang Gao, Xinyue Chang, Yueyue Wang, Ning Li, Wenting Guo, Zhiwen Zhao, Shuangshuang Liu, Genping Meng, Hua Zhang, Baodui Wang
Mercury (II) ions (Hg2+) are a significant source of heavy metal contamination in groundwater, posing a serious threat to human health and the environment. Therefore, there is an urgent need for the development of a new detection technique with high sensitivity for monitoring Hg2+ in contaminated groundwater. Here, we developed a signal amplifying MOF-based probe (NXS@ZIF-8) for on-site and ultrasensitive dual-channel portable detection of Hg2+ in groundwater. The successful grafting of the fluorescent probe (NXS) onto ZIF-8 effectively enhanced the enrichment of the NXS probe, thereby amplifying the detection signal for Hg2+. Upon exposure to Hg2+, NXS@ZIF-8 quickly emits fluorescent signals, which can be easily detected using portable laser-induced fluorescence spectrometers (LIFs) with a low detection limit of 0.30 ppb. Importantly, the platform enables on-site detection of Hg2+ in groundwater samples and direct on-site and in-situ detection of Hg2+ in contaminated groundwater, achieving acceptable results. Furthermore, NXS@ZIF-8 was fabricated as a paper-based sensor and integrated into a portable smartphone device for visual detection of Hg2+ in contaminated groundwater. This work presents an approach for on-site, in-situ and highly sensitive portable detection of heavy metals in contaminated groundwater, eliminating the need for access to specialized laboratory equipment.
{"title":"A signal amplifying MOF-based probe:on-site and ultrasensitive dual-channel portable detection of Hg<sup>2+</sup> in groundwater through a fluorimetrically and RGB-based sensing assay.","authors":"Ningshuang Gao, Xinyue Chang, Yueyue Wang, Ning Li, Wenting Guo, Zhiwen Zhao, Shuangshuang Liu, Genping Meng, Hua Zhang, Baodui Wang","doi":"10.1016/j.talanta.2025.127553","DOIUrl":"10.1016/j.talanta.2025.127553","url":null,"abstract":"<p><p>Mercury (II) ions (Hg<sup>2+</sup>) are a significant source of heavy metal contamination in groundwater, posing a serious threat to human health and the environment. Therefore, there is an urgent need for the development of a new detection technique with high sensitivity for monitoring Hg<sup>2+</sup> in contaminated groundwater. Here, we developed a signal amplifying MOF-based probe (NXS@ZIF-8) for on-site and ultrasensitive dual-channel portable detection of Hg<sup>2+</sup> in groundwater. The successful grafting of the fluorescent probe (NXS) onto ZIF-8 effectively enhanced the enrichment of the NXS probe, thereby amplifying the detection signal for Hg<sup>2+</sup>. Upon exposure to Hg<sup>2+</sup>, NXS@ZIF-8 quickly emits fluorescent signals, which can be easily detected using portable laser-induced fluorescence spectrometers (LIFs) with a low detection limit of 0.30 ppb. Importantly, the platform enables on-site detection of Hg<sup>2+</sup> in groundwater samples and direct on-site and in-situ detection of Hg<sup>2+</sup> in contaminated groundwater, achieving acceptable results. Furthermore, NXS@ZIF-8 was fabricated as a paper-based sensor and integrated into a portable smartphone device for visual detection of Hg<sup>2+</sup> in contaminated groundwater. This work presents an approach for on-site, in-situ and highly sensitive portable detection of heavy metals in contaminated groundwater, eliminating the need for access to specialized laboratory equipment.</p>","PeriodicalId":435,"journal":{"name":"Talanta","volume":"286 ","pages":"127553"},"PeriodicalIF":5.6,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142969087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-05-01Epub Date: 2025-01-16DOI: 10.1016/j.jcis.2025.01.125
Xiaoyu Ma, Yan Zhang, Awu Zhou, Yutong Jia, Zhenghe Xie, Lifeng Ding, Jian-Rong Li
Rational regulation of interface structure in photocatalysts is a promising strategy to improve the photocatalytic performance of carbon dioxide (CO2) reduction. However, it remains a challenge to modulate the interface structure of multi-component heterojunctions. Herein, a strategy integrating heterojunction with facet engineering is developed to modulate the interface structure of metal-organic frameworks (MOF)-based heterojunctions. A series of core-shell UiO-66 (Zr-MOF)-loaded MIL-125 (Ti-MOF) heterojunctions with exposed specific facets were prepared to enhance the separation efficiency of photogenerated electrons-holes in CO2 photoreduction. Impressively, MIL-125to@UiO-66 with exposed {1 1 1} facet exhibits an excellent CO production rate (56.4 μmol g-1 h-1) and selectivity (99 %) under visible light irradiation without any photosensitizers/sacrificial agents, being 1.4 and 11.3 times higher than individual MIL-125to and UiO-66, respectively. The type-II heterojunction significantly enhances the separation of photogenerated electrons-holes in physical space. The photogenerated electrons migrate from Zr in UiO-66 to Ti in MIL-125to, promoting a spatial synergy between CO2 reduction on MIL-125to and H2O oxidation on UiO-66. Compared with MIL-125rd@UiO-66 with exposed {1 1 0} facet and MIL-125ds@UiO-66 with exposed {0 0 1} facet, MIL-125to@UiO-66 with exposed {1 1 1} facet improves the exposure of surface-active Ti sites, thereby enhancing the adsorption/activation of CO2 to generate the *COOH intermediate. This work provides an effective strategy for designing MOF-based heterojunction photocatalysts to improve photocatalytic performance.
{"title":"Modulation of interface structure on titanium-based metal-organic frameworks heterojunctions for boosting photocatalytic carbon dioxide reduction.","authors":"Xiaoyu Ma, Yan Zhang, Awu Zhou, Yutong Jia, Zhenghe Xie, Lifeng Ding, Jian-Rong Li","doi":"10.1016/j.jcis.2025.01.125","DOIUrl":"10.1016/j.jcis.2025.01.125","url":null,"abstract":"<p><p>Rational regulation of interface structure in photocatalysts is a promising strategy to improve the photocatalytic performance of carbon dioxide (CO<sub>2</sub>) reduction. However, it remains a challenge to modulate the interface structure of multi-component heterojunctions. Herein, a strategy integrating heterojunction with facet engineering is developed to modulate the interface structure of metal-organic frameworks (MOF)-based heterojunctions. A series of core-shell UiO-66 (Zr-MOF)-loaded MIL-125 (Ti-MOF) heterojunctions with exposed specific facets were prepared to enhance the separation efficiency of photogenerated electrons-holes in CO<sub>2</sub> photoreduction. Impressively, MIL-125<sub>to</sub>@UiO-66 with exposed {1 1 1} facet exhibits an excellent CO production rate (56.4 μmol g<sup>-1</sup> h<sup>-1</sup>) and selectivity (99 %) under visible light irradiation without any photosensitizers/sacrificial agents, being 1.4 and 11.3 times higher than individual MIL-125<sub>to</sub> and UiO-66, respectively. The type-II heterojunction significantly enhances the separation of photogenerated electrons-holes in physical space. The photogenerated electrons migrate from Zr in UiO-66 to Ti in MIL-125<sub>to</sub>, promoting a spatial synergy between CO<sub>2</sub> reduction on MIL-125<sub>to</sub> and H<sub>2</sub>O oxidation on UiO-66. Compared with MIL-125<sub>rd</sub>@UiO-66 with exposed {1 1 0} facet and MIL-125<sub>ds</sub>@UiO-66 with exposed {0 0 1} facet, MIL-125<sub>to</sub>@UiO-66 with exposed {1 1 1} facet improves the exposure of surface-active Ti sites, thereby enhancing the adsorption/activation of CO<sub>2</sub> to generate the *COOH intermediate. This work provides an effective strategy for designing MOF-based heterojunction photocatalysts to improve photocatalytic performance.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"685 ","pages":"696-705"},"PeriodicalIF":9.4,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143035689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}