Pub Date : 2024-12-03DOI: 10.1007/s10876-024-02727-5
Vera P. Pakharukova, Vladimir V. Kriventsov, Arcady V. Ishchenko, Dmitry I. Potemkin, Pavel V. Snytnikov
Ceria-supported copper catalysts exhibit high catalytic performance in the preferential oxidation of CO in excess H2 (CO PROX). Highly dispersed copper oxide species have been experimentally identified as active centers. However, structural diagnostics of highly dispersed CuOx species and CuOx/CeO2 interface areas remains a challenge. Here, we report a comprehensive structural study of a supported CuO/CeO2 catalyst (5 wt% Cu) showing good activity in the CO PROX process. X-ray absorption spectroscopy (XAS) techniques and X-ray atomic pair distribution function (PDF) analysis were used as efficient methods for probing the atomic resolution structure. It was established that the catalyst contains Cu2+ species, mainly in the form of ultra-dispersed CuO-like particles and copper oxide clusters. Analysis of the local atomic arrangement revealed an interaction between copper ions and ceria surface. Oxygen-terminated {100} ceria facets can accommodate Cu2+ ions in square planar coordination. Moreover, some Cu ions are inserted into the CeO2 crystal structure, forming a substitutional solid solution.
Graphical Abstract
{"title":"Structural Studies of Copper Species in Supported CuO/CeO2 Catalyst by X-ray Absorption Spectroscopy Coupled with Pair Distribution Function Analysis","authors":"Vera P. Pakharukova, Vladimir V. Kriventsov, Arcady V. Ishchenko, Dmitry I. Potemkin, Pavel V. Snytnikov","doi":"10.1007/s10876-024-02727-5","DOIUrl":"10.1007/s10876-024-02727-5","url":null,"abstract":"<div><p>Ceria-supported copper catalysts exhibit high catalytic performance in the preferential oxidation of CO in excess H<sub>2</sub> (CO PROX). Highly dispersed copper oxide species have been experimentally identified as active centers. However, structural diagnostics of highly dispersed CuO<sub>x</sub> species and CuO<sub>x</sub>/CeO<sub>2</sub> interface areas remains a challenge. Here, we report a comprehensive structural study of a supported CuO/CeO<sub>2</sub> catalyst (5 wt% Cu) showing good activity in the CO PROX process. X-ray absorption spectroscopy (XAS) techniques and X-ray atomic pair distribution function (PDF) analysis were used as efficient methods for probing the atomic resolution structure. It was established that the catalyst contains Cu<sup>2+</sup> species, mainly in the form of ultra-dispersed CuO-like particles and copper oxide clusters. Analysis of the local atomic arrangement revealed an interaction between copper ions and ceria surface. Oxygen-terminated {100} ceria facets can accommodate Cu<sup>2+</sup> ions in square planar coordination. Moreover, some Cu ions are inserted into the CeO<sub>2</sub> crystal structure, forming a substitutional solid solution.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":618,"journal":{"name":"Journal of Cluster Science","volume":"36 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142761736","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-03DOI: 10.1186/s43094-024-00747-6
Aditi Bala, Sanchita Mandal
Background
This study is aimed to develop a simple, effective and economic method for the UV spectrophotometric analysis of amoxicillin trihydrate in the presence of acetaminophen. The Beer–Lambert law was obeyed in the concentration range of 2–10 µg/ml for amoxicillin trihydrate, acetaminophen and combinations, in all the different pH media: pH 1.2, 6.8, 7.4 and neutral (double-distilled water). For the simultaneous equation method, the absorbance maxima of amoxicillin trihydrate was found at 228 nm, and for acetaminophen, it was found at 243 nm, after scanning the solutions in respective buffers.
Result
The standard curve of amoxicillin trihydrate and acetaminophen was plotted, and the correlation coefficient (R2) value was found to be in the range of 0.991–0.994 and 0.993–0.999, respectively. These two drugs were combined in a ratio of 5:3 (amoxicillin trihydrate: acetaminophen), and its absorbance maxima was discovered at 232 nm (isoabsorptive point), where its correlation coefficient was calculated from the standard curve which is in range of 0.993–0.996. The above-mentioned method was found to comply all the validation parameters as per the ICH guidelines such as accuracy, precision, linearity, LOD, LOQ, reproducibility and recovery. This method is successfully applied to estimate the combination of these two drugs in their pharmaceutical dosage forms without and interaction of their excipients. This method is based on to check the stability of amoxicillin trihydrate in different pH media in the presence of acetaminophen.
Conclusion
Hydrolysis of beta-lactam ring of amoxicillin trihydrate occurs in acidic pH (below 2) which causes the formation of amoxicilloic acid which may cause reduction in its microbial activity but neither shifting of wavelength nor appearance of extra peak occurred in UV spectroscopy. Although some changes of % area of amoxicillin trihydrate is observed in acidic media in HPLC method, there are no significant changes observed among the amoxicillin trihydrate solutions with acetaminophen prepared in different pH media, when using UV spectrophotometric method.
{"title":"Spectrophotometric and HPLC analysis of amoxicillin trihydrate in presence of acetaminophen in different pH media","authors":"Aditi Bala, Sanchita Mandal","doi":"10.1186/s43094-024-00747-6","DOIUrl":"10.1186/s43094-024-00747-6","url":null,"abstract":"<div><h3>Background</h3><p>This study is aimed to develop a simple, effective and economic method for the UV spectrophotometric analysis of amoxicillin trihydrate in the presence of acetaminophen. The Beer–Lambert law was obeyed in the concentration range of 2–10 µg/ml for amoxicillin trihydrate, acetaminophen and combinations, in all the different pH media: pH 1.2, 6.8, 7.4 and neutral (double-distilled water). For the simultaneous equation method, the absorbance maxima of amoxicillin trihydrate was found at 228 nm, and for acetaminophen, it was found at 243 nm, after scanning the solutions in respective buffers.</p><h3>Result</h3><p>The standard curve of amoxicillin trihydrate and acetaminophen was plotted, and the correlation coefficient (R<sup>2</sup>) value was found to be in the range of 0.991–0.994 and 0.993–0.999, respectively. These two drugs were combined in a ratio of 5:3 (amoxicillin trihydrate: acetaminophen), and its absorbance maxima was discovered at 232 nm (isoabsorptive point), where its correlation coefficient was calculated from the standard curve which is in range of 0.993–0.996. The above-mentioned method was found to comply all the validation parameters as per the ICH guidelines such as accuracy, precision, linearity, LOD, LOQ, reproducibility and recovery. This method is successfully applied to estimate the combination of these two drugs in their pharmaceutical dosage forms without and interaction of their excipients. This method is based on to check the stability of amoxicillin trihydrate in different pH media in the presence of acetaminophen.</p><h3>Conclusion</h3><p>Hydrolysis of beta-lactam ring of amoxicillin trihydrate occurs in acidic pH (below 2) which causes the formation of amoxicilloic acid which may cause reduction in its microbial activity but neither shifting of wavelength nor appearance of extra peak occurred in UV spectroscopy. Although some changes of % area of amoxicillin trihydrate is observed in acidic media in HPLC method, there are no significant changes observed among the amoxicillin trihydrate solutions with acetaminophen prepared in different pH media, when using UV spectrophotometric method.</p></div>","PeriodicalId":577,"journal":{"name":"Future Journal of Pharmaceutical Sciences","volume":"10 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://fjps.springeropen.com/counter/pdf/10.1186/s43094-024-00747-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142761745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-03DOI: 10.1140/epjp/s13360-024-05866-w
Abdelraheem M. Aly
Non-Newtonian NEPCMs are utilized in a variety of fields, counting solar energy storage, electronics cooling, polymer processing, and industrial thermal management. Their advanced heat transfer capabilities and efficient energy storage properties make them particularly valuable for these applications. This study explores how magnetic fields affect mass and heat transfer in a non-Newtonian NEPCM within an A-shaped cavity. The investigation employs the ISPH technique and ANN model. Within the A-shaped cavity, a triangular region is kept at (left({T}_{c}, {C}_{c}right)). The top/center walls of the A-shaped cavity are maintained at (left({T}_{h}, {C}_{h}right)). The ANN model serves as a valuable complement to ISPH simulations, accurately predicting average Nusselt ((overline{Nu })) and Sherwood ((overline{Sh })) numbers. Results indicate a substantial increase in the Π strength by (138.46%) when the power-law index ((n)) rises from (1.025 text{to } 1.12). The current configuration of an A-shaped cavity with specific boundary conditions significantly influences the effectiveness of the relevant parameters.
{"title":"Magnetic field effects on non-Newtonian NEPCM in A-shaped cavity: an integrated study using ANN and ISPH method","authors":"Abdelraheem M. Aly","doi":"10.1140/epjp/s13360-024-05866-w","DOIUrl":"10.1140/epjp/s13360-024-05866-w","url":null,"abstract":"<div><p>Non-Newtonian NEPCMs are utilized in a variety of fields, counting solar energy storage, electronics cooling, polymer processing, and industrial thermal management. Their advanced heat transfer capabilities and efficient energy storage properties make them particularly valuable for these applications. This study explores how magnetic fields affect mass and heat transfer in a non-Newtonian NEPCM within an A-shaped cavity. The investigation employs the ISPH technique and ANN model. Within the A-shaped cavity, a triangular region is kept at <span>(left({T}_{c}, {C}_{c}right))</span>. The top/center walls of the A-shaped cavity are maintained at <span>(left({T}_{h}, {C}_{h}right))</span>. The ANN model serves as a valuable complement to ISPH simulations, accurately predicting average Nusselt (<span>(overline{Nu })</span>) and Sherwood (<span>(overline{Sh })</span>) numbers. Results indicate a substantial increase in the Π strength by <span>(138.46%)</span> when the power-law index (<span>(n)</span>) rises from <span>(1.025 text{to } 1.12)</span>. The current configuration of an A-shaped cavity with specific boundary conditions significantly influences the effectiveness of the relevant parameters.</p></div>","PeriodicalId":792,"journal":{"name":"The European Physical Journal Plus","volume":"139 12","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142761921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-03DOI: 10.1140/epjp/s13360-024-05838-0
Muhammad Farhan, Zhi Ling, Saif Ullah, Mohammed Alsubhi, Mohammed Asiri, Muhamamd Bilal Riaz
The physics-informed neural network is a powerful tool for modeling complex biological systems. Computing with this network provide significant benefits for solving differential equations that describe biological processes, as well as for tackling inverse problems, where models are derived from data sets. In this study, we explore the potential application of physics-informed neural network approach embedded within the measles double-dose vaccination model to analyze its temporal dynamics. In particular, this study examines a compartmental model with double-dose vaccination to study the impact of vaccine controls on the measles transmission. Initially, a rigorous analysis of the proposed model including stability about the equilibria in terms of the basic reproduction number is presented. Both local and global stability are achieved depending on whether ({mathcal {R}}_0) is less than or greater than 1 using nonlinear Lyapunov functions. The findings demonstrate that a physics-informed neural network based approach can effectively handle complex dynamics and their potential to enhance our understanding of the disease dynamics treatment using vaccination. Furthermore, this research highlights the versatility and robustness of machine learning approaches to analyze and predict epidemiological dynamics in conjunction with transmission modeling.
{"title":"A novel physics-informed neural network approach to assess the impact of double-dose vaccination on measles transmission","authors":"Muhammad Farhan, Zhi Ling, Saif Ullah, Mohammed Alsubhi, Mohammed Asiri, Muhamamd Bilal Riaz","doi":"10.1140/epjp/s13360-024-05838-0","DOIUrl":"10.1140/epjp/s13360-024-05838-0","url":null,"abstract":"<div><p>The physics-informed neural network is a powerful tool for modeling complex biological systems. Computing with this network provide significant benefits for solving differential equations that describe biological processes, as well as for tackling inverse problems, where models are derived from data sets. In this study, we explore the potential application of physics-informed neural network approach embedded within the measles double-dose vaccination model to analyze its temporal dynamics. In particular, this study examines a compartmental model with double-dose vaccination to study the impact of vaccine controls on the measles transmission. Initially, a rigorous analysis of the proposed model including stability about the equilibria in terms of the basic reproduction number is presented. Both local and global stability are achieved depending on whether <span>({mathcal {R}}_0)</span> is less than or greater than 1 using nonlinear Lyapunov functions. The findings demonstrate that a physics-informed neural network based approach can effectively handle complex dynamics and their potential to enhance our understanding of the disease dynamics treatment using vaccination. Furthermore, this research highlights the versatility and robustness of machine learning approaches to analyze and predict epidemiological dynamics in conjunction with transmission modeling.</p></div>","PeriodicalId":792,"journal":{"name":"The European Physical Journal Plus","volume":"139 12","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142761933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-03DOI: 10.1007/s11207-024-02404-w
Ruslan Karakotov, Alexey Kuznetsov, Sergey Anfinogentov, Valery M. Nakariakov
Analysis of more than 300 M-class solar flares observed with the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory in the 131 Å channel, revealed 16 events of sloshing oscillations in hot solar coronal loops. Time–distance maps made along the loops demonstrated EUV emission intensity blobs bouncing between the footpoints, i.e., showing characteristic zigzagging patterns, of the size shorter than 25% of the loop length. The oscillation periods are found to range from about 150 s to 1325 s. The average phase speed, estimated as the ratio of the oscillation period and the loop length, is about 500 km s−1. Parameters of the oscillations are consistent with the interpretation in terms of multi-harmonic slow magnetoacoustic oscillations.
{"title":"Sloshing Oscillations in Hot Coronal Loops Associated with M-Class Flares","authors":"Ruslan Karakotov, Alexey Kuznetsov, Sergey Anfinogentov, Valery M. Nakariakov","doi":"10.1007/s11207-024-02404-w","DOIUrl":"10.1007/s11207-024-02404-w","url":null,"abstract":"<div><p>Analysis of more than 300 M-class solar flares observed with the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory in the 131 Å channel, revealed 16 events of sloshing oscillations in hot solar coronal loops. Time–distance maps made along the loops demonstrated EUV emission intensity blobs bouncing between the footpoints, i.e., showing characteristic zigzagging patterns, of the size shorter than 25% of the loop length. The oscillation periods are found to range from about 150 s to 1325 s. The average phase speed, estimated as the ratio of the oscillation period and the loop length, is about 500 km s<sup>−1</sup>. Parameters of the oscillations are consistent with the interpretation in terms of multi-harmonic slow magnetoacoustic oscillations.</p></div>","PeriodicalId":777,"journal":{"name":"Solar Physics","volume":"299 12","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142761971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Scale-separated AdS compactifications of string theory can be constructed at the two-derivative supergravity level in the presence of smeared orientifold planes. The unsmearing corrections are known to leading order in the large volume, weak coupling limit. However, first-order perturbative approximations of non-linear problems can often produce spurious solutions, which are only weeded out by additional consistency conditions imposed at higher orders. In this work, we revisit the unsmearing procedure and present consistency conditions obtained from the second order warp factor and dilaton equations. This requires proper treatment of the near-source singularities. The resulting conditions appear as integral constraints on various non-linear combinations of the first order corrections, which we argue can generally be satisfied by appropriate choice of integration constants of the leading-order solutions. This provides a non-trivial consistency check for the perturbative unsmearing procedure and supports the existence of scale-separated AdS vacua in string theory.
{"title":"Consistency conditions for O-plane unsmearing from second-order perturbation theory","authors":"Maxim Emelin","doi":"10.1007/JHEP12(2024)025","DOIUrl":"10.1007/JHEP12(2024)025","url":null,"abstract":"<p>Scale-separated AdS compactifications of string theory can be constructed at the two-derivative supergravity level in the presence of smeared orientifold planes. The unsmearing corrections are known to leading order in the large volume, weak coupling limit. However, first-order perturbative approximations of non-linear problems can often produce spurious solutions, which are only weeded out by additional consistency conditions imposed at higher orders. In this work, we revisit the unsmearing procedure and present consistency conditions obtained from the second order warp factor and dilaton equations. This requires proper treatment of the near-source singularities. The resulting conditions appear as integral constraints on various non-linear combinations of the first order corrections, which we argue can generally be satisfied by appropriate choice of integration constants of the leading-order solutions. This provides a non-trivial consistency check for the perturbative unsmearing procedure and supports the existence of scale-separated AdS vacua in string theory.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2024 12","pages":""},"PeriodicalIF":5.4,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP12(2024)025.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142761690","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Erratum to: Heavy quark jet fragmentation","authors":"Lin Dai, Chul Kima, Adam K. Leibovich","doi":"10.1007/JHEP12(2024)003","DOIUrl":"10.1007/JHEP12(2024)003","url":null,"abstract":"","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2024 12","pages":""},"PeriodicalIF":5.4,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP12(2024)003.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142761739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-03DOI: 10.1007/s10876-024-02722-w
Jorge Luis Torres-López, Stephania Lázaro-Mass, Susana De la Rosa-García, Mayra A. Alvarez-Lemus, Abraham Gómez-Rivera, Rosendo López-González, Carlos Ernesto Lobato-García, Getsemani Morales-Mendoza, Sergio Gómez-Cornelio
The increasing antibiotic resistance necessitates sustainable methods for synthesizing antibacterial nanoparticles. This study focuses on the bio-assisted synthesis of silver/silver chloride nanoparticles (Ag/AgCl-NPs) using aqueous extracts of Acalypha arvensis, Hampea rovirosae, and Inga jinicuil. Polyphenols and flavonoids were quantified, and functional groups were analyzed via Fourier-transform infrared to assess their influence on the properties of Ag/AgCl-NPs. The effects of thermal treatment at 60 and 500 °C on the NPs’ size, morphology, and antibacterial efficacy were assessed. UV–Vis spectroscopy indicated absorption peaks between 430 and 449 nm, while X-ray diffraction analysis confirmed the presence of metallic Ag and a cubic AgCl structure, with crystallite sizes ranging from 11–51 and 28–60 nm, respectively. Dynamic light scattering showed hydrodynamic sizes of up to 127.2 ± 0.9 nm at 60 °C and up to 348.9 ± 10.7 nm at 500 °C. Field emission scanning electron microscopy micrographs exhibited a quasi-spherical morphology with significant agglomeration; showing particle sizes between 55 ± 11 and 81 ± 28 nm at 60 °C, and up to 135 ± 65 nm at 500 °C. X-ray photoelectron spectroscopy confirmed the metallic silver (Ag⁰), organic molecules, and absorbed chlorides on the NP surface. Pearson correlation analysis indicated a strong positive correlation between polyphenol content and NPs yield (r = 0.922), while it indicated a strong negative correlation with flavonoid content (r = −0.996). Additionally, a negative correlation was found between hydrodynamic size and antibacterial activity against Staphylococcus aureus (r = −0.854). The Ag/AgCl-NPs, after drying at 60 and 500 °C, were tested against Escherichia coli and S. aureus with minimum bactericidal concentrations below 19 µg/mL against E. coli. Minimum inhibitory concentration (MIC) for Ag/AgCl-NPs synthesized with A. arvensis and H. rovirosae extracts were above 312 µg/mL for S. aureus, while those synthesized with I. jinicuil showed MIC as low as 156 µg/mL. These results highlight the potential of medicinal plant extracts in the synthesis of Ag/AgCl with enhanced antibacterial properties.
{"title":"Medicinal Plants Extract for the Bio-Assisted Synthesis of Ag/AgCl Nanoparticles with Antibacterial Activity","authors":"Jorge Luis Torres-López, Stephania Lázaro-Mass, Susana De la Rosa-García, Mayra A. Alvarez-Lemus, Abraham Gómez-Rivera, Rosendo López-González, Carlos Ernesto Lobato-García, Getsemani Morales-Mendoza, Sergio Gómez-Cornelio","doi":"10.1007/s10876-024-02722-w","DOIUrl":"10.1007/s10876-024-02722-w","url":null,"abstract":"<div><p>The increasing antibiotic resistance necessitates sustainable methods for synthesizing antibacterial nanoparticles. This study focuses on the bio-assisted synthesis of silver/silver chloride nanoparticles (Ag/AgCl-NPs) using aqueous extracts of <i>Acalypha arvensis</i>, <i>Hampea rovirosae</i>, and <i>Inga jinicuil</i>. Polyphenols and flavonoids were quantified, and functional groups were analyzed via Fourier-transform infrared to assess their influence on the properties of Ag/AgCl-NPs. The effects of thermal treatment at 60 and 500 °C on the NPs’ size, morphology, and antibacterial efficacy were assessed. UV–Vis spectroscopy indicated absorption peaks between 430 and 449 nm, while X-ray diffraction analysis confirmed the presence of metallic Ag and a cubic AgCl structure, with crystallite sizes ranging from 11–51 and 28–60 nm, respectively. Dynamic light scattering showed hydrodynamic sizes of up to 127.2 ± 0.9 nm at 60 °C and up to 348.9 ± 10.7 nm at 500 °C. Field emission scanning electron microscopy micrographs exhibited a quasi-spherical morphology with significant agglomeration; showing particle sizes between 55 ± 11 and 81 ± 28 nm at 60 °C, and up to 135 ± 65 nm at 500 °C. X-ray photoelectron spectroscopy confirmed the metallic silver (Ag⁰), organic molecules, and absorbed chlorides on the NP surface. Pearson correlation analysis indicated a strong positive correlation between polyphenol content and NPs yield (r = 0.922), while it indicated a strong negative correlation with flavonoid content (r = −0.996). Additionally, a negative correlation was found between hydrodynamic size and antibacterial activity against <i>Staphylococcus aureus</i> (r = −0.854). The Ag/AgCl-NPs, after drying at 60 and 500 °C, were tested against <i>Escherichia coli</i> and <i>S. aureus</i> with minimum bactericidal concentrations below 19 µg/mL against <i>E. coli</i>. Minimum inhibitory concentration (MIC) for Ag/AgCl-NPs synthesized with <i>A. arvensis</i> and <i>H. rovirosae</i> extracts were above 312 µg/mL for <i>S. aureus</i>, while those synthesized with <i>I. jinicuil</i> showed MIC as low as 156 µg/mL. These results highlight the potential of medicinal plant extracts in the synthesis of Ag/AgCl with enhanced antibacterial properties.</p></div>","PeriodicalId":618,"journal":{"name":"Journal of Cluster Science","volume":"36 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142761695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-03DOI: 10.1186/s40538-024-00705-7
Min-Ho Jo, Jung-Hyun Ju, Sun-Yeon Heo, Ki Jun Jeong, Baek-Rock Oh
Background
Among 2,3-butanediol (2,3-BDO) stereoisomers, (R,R)-2,3-BDO is particularly noteworthy for its application in the agricultural industry. It is an eco-friendly plant immune system stimulant, promoting plant growth and enhancing resistance to biotic and abiotic stresses.
Results
This study aimed to address the limitations of a previous study, which produced (R,R)-2,3-BDO with only 98% purity despite Kp-dhaD overexpression. First, BLi-gldA demonstrated significantly higher activity and selectivity in converting racemic acetoin to (R,R)-2,3-BDO compared to others among 2,3-BDO dehydrogenases (Kp-dhaD and Kp-gldA from Klebsiella pneumoniae, and BLi-gldA from Bacillus licheniformis). The K. pneumoniae GEM167 ΔadhEΔldhAΔbudC-BLi-gldA/pETM6 strain produced the highest (R,R)-2,3-BDO amount, with 99% purity (73.51 ± 1.69 g/L at 48 h), by isopropyl β-D-1-thiogalactopyranoside addition at the early exponential growth phase (6 h) compared to other cell growth phases. The availability of crude glycerol was investigated, and crude glycerol promoted cell growth resulting in efficient (R,R)-2,3-BDO in the early stage of culture [90.32 ± 1.12 g/L (R,R)-2,3-BDO with 99.0% purity after 60 h]. The productivity and yield remained comparable for crude glycerol (1.51 g/L/h, 0.41 g/g) and pure glycerol (1.53 g/L/h, 0.43 g/g).
Conclusions
This study successfully produced 99% enantiopure (R,R)-2,3-BDO from crude glycerol for the first time using the K. pneumoniae GEM167 ΔadhEΔldhAΔbudC-BLi-gldA/pETM6 strain. (R,R)-2,3-BDO production from crude glycerol, a biodiesel process byproduct, is expected to contribute to a sustainable and circular biomass supply chain and biodiesel production system by positively influencing the stable cultivation of biodiesel crops even under unpredictable climate conditions.