Graphene has a long spin lifetime and hyperfine interactions, favoring its potential application as spintronics. Despite the recent discoveries of spin-containing graphene materials, graphene-based materials with room-temperature macroscopic ferromagnetism are extremely rare. In this article, room-temperature ferromagnetic amorphous graphene oxide (GO) is synthesized by introducing abundant oxygen-containing functional groups and C defects into single-layered graphene, followed by a self-assembly process under supercritical CO2 (SC CO2). Such amorphous GO exhibits the highest saturation magnetization (1.71 emu g−1) and remanent magnetization (0.251 emu g−1) compared to the rest of metal-free graphene-based materials at room temperature. Experimental and theoretical investigations attribute such strong ferromagnetism to the bridging of the adjacent graphene layers though the out-of-plane oxygen-containing groups, which leads to asymmetric lattices with large net magnetic moments.
石墨烯具有较长的自旋寿命和超细相互作用,有利于其作为自旋电子学的潜在应用。尽管最近发现了含自旋的石墨烯材料,但具有室温宏观铁磁性的石墨烯基材料却极为罕见。本文通过在单层石墨烯中引入丰富的含氧官能团和 C 缺陷,然后在超临界二氧化碳(SC CO2)条件下进行自组装,合成了室温铁磁性非晶氧化石墨烯(GO)。与其他不含金属的石墨烯基材料相比,这种无定形 GO 在室温下表现出最高的饱和磁化率(1.71 emu g-1)和剩磁率(0.251 emu g-1)。实验和理论研究将这种强铁磁性归因于相邻石墨烯层通过面外含氧基团桥接,从而形成具有大净磁矩的不对称晶格。
{"title":"Room-Temperature Macroscopic Ferromagnetism in Multilayered Graphene Oxide","authors":"Di Zhang, Bo Gao, Song Xu, Chunyao Niu, Qun Xu","doi":"10.1002/apxr.202300092","DOIUrl":"10.1002/apxr.202300092","url":null,"abstract":"<p>Graphene has a long spin lifetime and hyperfine interactions, favoring its potential application as spintronics. Despite the recent discoveries of spin-containing graphene materials, graphene-based materials with room-temperature macroscopic ferromagnetism are extremely rare. In this article, room-temperature ferromagnetic amorphous graphene oxide (GO) is synthesized by introducing abundant oxygen-containing functional groups and C defects into single-layered graphene, followed by a self-assembly process under supercritical CO<sub>2</sub> (SC CO<sub>2</sub>). Such amorphous GO exhibits the highest saturation magnetization (1.71 emu g<sup>−1</sup>) and remanent magnetization (0.251 emu g<sup>−1</sup>) compared to the rest of metal-free graphene-based materials at room temperature. Experimental and theoretical investigations attribute such strong ferromagnetism to the bridging of the adjacent graphene layers though the out-of-plane oxygen-containing groups, which leads to asymmetric lattices with large net magnetic moments.</p>","PeriodicalId":100035,"journal":{"name":"Advanced Physics Research","volume":"3 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/apxr.202300092","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140445079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In magnetic insulators, the sense of rotation of the magnetization is associated with novel phases of matter and exotic transport phenomena. Aimed to find new sources of chiral magnetism rooted in intrinsic fields and geometry, twisted square bilayers of magnetic dipoles with easy plane anisotropy are studied. For no twist, each lattice settles in the zig-zag magnetic state and orders antiferromagnetically to the other layer. The moire patterns that result from the mutual rotation of the two square lattices influence such zig-zag order, giving rise to several phases that depict non-collinear magnetic textures with chiral motifs that break both time and inversion symmetry. For certain moire angles, helical and toroidal magnetic orders arise. Changing the vertical distance between layers can further manipulate these novel phases. It is shown that the dipolar interlayer interaction induces an emergent twist-dependent chiral magnetic field orthogonal to the direction of the zig-zag chains, which is responsible for the internal torques conjugated to the toroidal orders.
{"title":"Chiral Magnetic Phases in Moire Bilayers of Magnetic Dipoles","authors":"Ignacio Tapia, Xavier Cazor, Paula Mellado","doi":"10.1002/apxr.202300135","DOIUrl":"https://doi.org/10.1002/apxr.202300135","url":null,"abstract":"<p>In magnetic insulators, the sense of rotation of the magnetization is associated with novel phases of matter and exotic transport phenomena. Aimed to find new sources of chiral magnetism rooted in intrinsic fields and geometry, twisted square bilayers of magnetic dipoles with easy plane anisotropy are studied. For no twist, each lattice settles in the zig-zag magnetic state and orders antiferromagnetically to the other layer. The moire patterns that result from the mutual rotation of the two square lattices influence such zig-zag order, giving rise to several phases that depict non-collinear magnetic textures with chiral motifs that break both time and inversion symmetry. For certain moire angles, helical and toroidal magnetic orders arise. Changing the vertical distance between layers can further manipulate these novel phases. It is shown that the dipolar interlayer interaction induces an emergent twist-dependent chiral magnetic field orthogonal to the direction of the zig-zag chains, which is responsible for the internal torques conjugated to the toroidal orders.</p>","PeriodicalId":100035,"journal":{"name":"Advanced Physics Research","volume":"3 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/apxr.202300135","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140902704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lorenzo Poggini, Andrea Luigi Sorrentino, Davide Ranieri, Alberto Calloni, Fabio Santanni, Niccolò Giaconi, Giuseppe Cucinotta, Edwige Otero, Danilo Longo, Brunetto Cortigiani, Andrea Caneschi, Gianlorenzo Bussetti, Roberta Sessoli, Matteo Mannini, Giulia Serrano
Vanadyl(IV) 5,10,15,20-tetraphenylporphyrin (VOTPP) is an S = 1/2 molecular system with remarkable spin qubit properties. Its structure offers a higher chemical tunability with respect to archetypal molecular qubits, such as vanadyl(IV)Phthalocyanines (VOPc), and a less rigid organic scaffold where peripheral phenyl rings can promote electron decoupling from the substrate. The properties of a VOTPP monolayer on the Ag(100) surface by photoemission spectroscopies and synchrotron radiation are studied. The results indicate that the electronic and spin features of the massive phase are retained in the monolayer. Moreover, X-ray photoelectron spectroscopy revealed the existence of two distinct species characterized by varying strengths of molecule-surface interactions. Like VOPc, these species can be assigned to molecules with the vanadyl group oriented upward or toward the surface. However, in contrast to VOPc, only subtle screening effects are observed in the oxygen-down configuration, suggesting a more pronounced decoupling effect inherent in the VOTPP structure. This opens broader perspectives for investigations focusing on spin characteristics at the single-molecule level.
{"title":"Electronic and Magnetic Properties of a Monolayer of VOTPP Molecules Sublimated on Ag(100)","authors":"Lorenzo Poggini, Andrea Luigi Sorrentino, Davide Ranieri, Alberto Calloni, Fabio Santanni, Niccolò Giaconi, Giuseppe Cucinotta, Edwige Otero, Danilo Longo, Brunetto Cortigiani, Andrea Caneschi, Gianlorenzo Bussetti, Roberta Sessoli, Matteo Mannini, Giulia Serrano","doi":"10.1002/apxr.202300121","DOIUrl":"10.1002/apxr.202300121","url":null,"abstract":"<p>Vanadyl(IV) 5,10,15,20-tetraphenylporphyrin (VOTPP) is an <i>S</i> = 1/2 molecular system with remarkable spin qubit properties. Its structure offers a higher chemical tunability with respect to archetypal molecular qubits, such as vanadyl(IV)Phthalocyanines (VOPc), and a less rigid organic scaffold where peripheral phenyl rings can promote electron decoupling from the substrate. The properties of a VOTPP monolayer on the Ag(100) surface by photoemission spectroscopies and synchrotron radiation are studied. The results indicate that the electronic and spin features of the massive phase are retained in the monolayer. Moreover, X-ray photoelectron spectroscopy revealed the existence of two distinct species characterized by varying strengths of molecule-surface interactions. Like VOPc, these species can be assigned to molecules with the vanadyl group oriented upward or toward the surface. However, in contrast to VOPc, only subtle screening effects are observed in the oxygen-down configuration, suggesting a more pronounced decoupling effect inherent in the VOTPP structure. This opens broader perspectives for investigations focusing on spin characteristics at the single-molecule level.</p>","PeriodicalId":100035,"journal":{"name":"Advanced Physics Research","volume":"3 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/apxr.202300121","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139781690","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tobias Bernd Gäbler, Patrick Hendra, Nitish Jain, Markus Gräfe
Entangled Two-Photon Absorption
The front cover illustrates the fluorescence excitation of quantum dot molecules by absorption of entangled photon pairs. The so-called entangled two-photon absorption is highly affected by the generation of these photon pairs. In article number 2300037, Tobias Bernd Gäbler and co-workers describe the important properties of an ultra-bright photon pair source based on nonlinear waveguides and its usage to approach fluorescence excitation. (Image designed by Christian Süß).