Stabilization of pavement base material using asphalt emulsion has been widely used to improve pavement performance. This technology produces a high-quality base course material with decreased energy consumption, carbon footprint, and raw material usage. Cement has been used as a common additive to improve these mixes strength and moisture resistance. However, some drawbacks are also associated with cement, such as negative environmental impacts, high costs, and low-temperature deficiencies. Asphaltenes is a by-product of oil-sand bitumen with little commercial value in current practice. To investigate the impact of asphaltenes on improving the rheological properties of asphalt binder, a series of binder characteristics tests using a dynamic shear rheometer, breaking time and microscopic evaluation is conducted on modified asphalt emulsion with asphaltenes. Asphaltenes is then added to asphalt emulsion-stabilized granular material, to be compared with mixtures prepared with cement. Two asphaltenes and cement-modified mixes are prepared and compared to unmodified mixtures. All mixes are tested for permanent deformation and moisture sensitivity using a Hamburg wheel tracker and flow number test, while the low-temperature properties are evaluated using indirect tensile strength tests. Dynamic modulus is also evaluated to analyze the viscoelastic behavior of the mixes. The results of this study reveal a considerable increase in the rutting resistance of asphalt mixes by adding 1% of both additives (by total weight of mix), and asphaltenes-modification shows less adverse impacts at intermediate and low temperatures than cement-modification.