首页 > 最新文献

Cleaner Water最新文献

英文 中文
Identification of potential dam sites for severe water crisis management in semi-arid fluoride contaminated region, India 为印度半干旱氟污染地区严重水危机管理确定潜在坝址
Pub Date : 2024-02-28 DOI: 10.1016/j.clwat.2024.100011
Arijit Ghosh, Biswajit Bera

Pressure on freshwater resources is tremendously increasing due to large-scale global population explosion, socio-economic development, climate change and infrastructural development worldwide. The study area faces severe water crisis, groundwater fluoride contamination, and high drought frequency. Thus, the principal objectives are i) to assess the recent surface and subsurface water dynamics in this plateau fringe using satellite datasets on Google Earth Engine (GEE) and ii) to demarcate the suitable sites for dam construction to manage the severe water crisis and substitute drinking water sources. Satellite datasets such as Sentinel 2 and Gravity Recovery and Climate Experiment (GRACE) have been used to access the surface and groundwater dynamics. Numerous criteria or influencing factors including geology, geomorphology, lineament, elevation, slope, rainfall, land use/land cover, soil, stream density, normalized vegetation index (NDVI), and distance from the river have been considered to demarcate the suitable sites for new dam site suitability. In this study, four advanced machine learning models namely support vector machine (SVM), random forest (RF), logistic regression (LR) and gradient boosting (XGBoost) have been applied to recommend suitable sites for dam construction. Average surface water changes from 157.375 km2 (2012–2016) to 156.185 km2(2017–2022). Estimated water thickness (EWT) values vary from 28.58 cm to −27.07 cm (2002–2017). In case of soil moisture (SM), the lowest value (2.4 cm) was in June 2009, and the highest (21.51 cm) was in September 2003. After the deduction of SM from EWS, it specifies that maximum groundwater storage (9.48 cm) occurred in July 2004 whereas a minimum (-30.21 cm) in March 2016. Dam site suitability results denote that 10% of areas come under the very high suitable for surface and subsurface dam construction. The area under curve (AUC) values of SVM, RF, LR, and XGBoost are 0.94, 0.95, 0.91, and 0.92 respectively. Therefore, the RF model has comparatively higher values regarding model performance. The output of this research will be advantageous to define suitable places for new dam construction and sustainable water resource management in semi-arid environment.

由于全球人口大规模激增、社会经济发展、气候变化和基础设施建设,淡水资源的压力与日俱增。研究地区面临着严重的水危机、地下水氟污染和频繁的干旱。因此,研究的主要目标是 i) 利用谷歌地球引擎(GEE)上的卫星数据集评估该高原边缘地区近期的地表水和地下水动态;ii) 划定合适的水坝建设地点,以应对严重的水危机并替代饮用水源。哨兵 2 号和重力恢复与气候实验(GRACE)等卫星数据集被用来获取地表水和地下水的动态信息。考虑了许多标准或影响因素,包括地质、地貌、线型、海拔、坡度、降雨、土地利用/土地覆盖、土壤、溪流密度、归一化植被指数(NDVI)和与河流的距离,以划定新坝址的合适地点。本研究采用了四种先进的机器学习模型,即支持向量机 (SVM)、随机森林 (RF)、逻辑回归 (LR) 和梯度提升 (XGBoost),来推荐合适的坝址。平均地表水从 157.375 平方公里(2012-2016 年)变为 156.185 平方公里(2017-2022 年)。估计水厚度(EWT)值从 28.58 厘米变化到-27.07 厘米(2002-2017 年)。土壤水分(SM)的最低值(2.4 厘米)出现在 2009 年 6 月,最高值(21.51 厘米)出现在 2003 年 9 月。从 EWS 中扣除土壤水分后,可以看出地下水储量最大值(9.48 厘米)出现在 2004 年 7 月,而最小值(-30.21 厘米)出现在 2016 年 3 月。坝址适宜性结果表明,10% 的区域属于非常适合建造地表和地下大坝的区域。SVM、RF、LR 和 XGBoost 的曲线下面积(AUC)值分别为 0.94、0.95、0.91 和 0.92。因此,RF 模型的模型性能值相对较高。这项研究的成果将有助于在半干旱环境中确定新水坝建设和可持续水资源管理的合适地点。
{"title":"Identification of potential dam sites for severe water crisis management in semi-arid fluoride contaminated region, India","authors":"Arijit Ghosh,&nbsp;Biswajit Bera","doi":"10.1016/j.clwat.2024.100011","DOIUrl":"https://doi.org/10.1016/j.clwat.2024.100011","url":null,"abstract":"<div><p>Pressure on freshwater resources is tremendously increasing due to large-scale global population explosion, socio-economic development, climate change and infrastructural development worldwide. The study area faces severe water crisis, groundwater fluoride contamination, and high drought frequency. Thus, the principal objectives are i) to assess the recent surface and subsurface water dynamics in this plateau fringe using satellite datasets on Google Earth Engine (GEE) and ii) to demarcate the suitable sites for dam construction to manage the severe water crisis and substitute drinking water sources. Satellite datasets such as Sentinel 2 and Gravity Recovery and Climate Experiment (GRACE) have been used to access the surface and groundwater dynamics. Numerous criteria or influencing factors including geology, geomorphology, lineament, elevation, slope, rainfall, land use/land cover, soil, stream density, normalized vegetation index (NDVI), and distance from the river have been considered to demarcate the suitable sites for new dam site suitability. In this study, four advanced machine learning models namely support vector machine (SVM), random forest (RF), logistic regression (LR) and gradient boosting (XGBoost) have been applied to recommend suitable sites for dam construction. Average surface water changes from 157.375 km<sup>2</sup> (2012–2016) to 156.185 km<sup>2</sup>(2017–2022). Estimated water thickness (EWT) values vary from 28.58 cm to −27.07 cm (2002–2017). In case of soil moisture (SM), the lowest value (2.4 cm) was in June 2009, and the highest (21.51 cm) was in September 2003. After the deduction of SM from EWS, it specifies that maximum groundwater storage (9.48 cm) occurred in July 2004 whereas a minimum (-30.21 cm) in March 2016. Dam site suitability results denote that 10% of areas come under the very high suitable for surface and subsurface dam construction. The area under curve (AUC) values of SVM, RF, LR, and XGBoost are 0.94, 0.95, 0.91, and 0.92 respectively. Therefore, the RF model has comparatively higher values regarding model performance. The output of this research will be advantageous to define suitable places for new dam construction and sustainable water resource management in semi-arid environment.</p></div>","PeriodicalId":100257,"journal":{"name":"Cleaner Water","volume":"1 ","pages":"Article 100011"},"PeriodicalIF":0.0,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2950263224000097/pdfft?md5=928172b1106ad7bc943730069be2cb58&pid=1-s2.0-S2950263224000097-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140024176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Natural coagulants (Moringa oleifera and Benincasa hispida) based removal of microplastics 基于天然混凝剂(Moringa oleifera 和 Benincasa hispida)去除微塑料
Pub Date : 2024-02-24 DOI: 10.1016/j.clwat.2024.100010
Priya Agarwal , Satya Prakash , Gaurav Saini

The presence of small-sized (<5 mm) plastic particles, called microplastics (MPs), in the environment, including aquatic bodies, air, soil, and bodies of living beings, is a cause of significant concern to the entire world. These MPs can contaminate drinking water sources, move up the food chain, and release toxic substances that could pose a threat to human health. Therefore, there is an urgent need to develop methods for removing MPs from the environment to protect present and future generations. The coagulation-flocculation sedimentation (CFS) process (using synthetic chemicals) has emerged as a fundamental method for treating MPs in water because of its economy, high efficiency, and ease of use. However, the xenobiotic nature of such compounds, coupled with their adverse health effects, calls for the development of sustainable solutions. This is the first study to report the effectiveness of plant-based natural coagulants in removing MPs from water and their comparison against synthetic coagulants. Two natural coagulants, Benincasa hispida (BH) and Moringa oleifera (MO), were investigated and have shown comparable MP removal efficiencies to commonly used synthetic coagulant: alum. The CFS approach resulted in 83.73 ± 1.41% (100 mg L–1 dosage) and 86.99 ± 1.41% (150 mg L–1 dosage) MP removal efficiencies for BH and MO, respectively, while alum resulted in 86.58 ± 1.22% removal (50 mg L–1 dosage). Further, FTIR analysis has revealed that these MPs are composed of high-density polyethylene (HDPE), and SEM imaging has shown their shapes as spherical, rod-like and irregular. The results of the present study show that plant-based natural materials can be used for MP removal, thus yielding a sustainable and cost-effective process.

包括水体、空气、土壤和生物体在内的环境中存在着被称为微塑料(MPs)的小尺寸(5 毫米)塑料颗粒,这引起了全世界的极大关注。这些微塑料可能会污染饮用水源,进入食物链,并释放出有毒物质,对人类健康构成威胁。因此,迫切需要开发出从环境中清除 MPs 的方法,以保护当代人和子孙后代。混凝-絮凝沉淀(CFS)工艺(使用合成化学品)因其经济、高效和易于使用而成为处理水中 MPs 的基本方法。然而,这类化合物的异生物特性及其对健康的不利影响要求开发可持续的解决方案。本研究首次报道了植物性天然混凝剂去除水中 MPs 的有效性,并将其与合成混凝剂进行了比较。研究调查了两种天然混凝剂--Benincasa hispida (BH) 和 Moringa oleifera (MO),它们对 MP 的去除率与常用的合成混凝剂明矾相当。采用 CFS 方法,BH 和 MO 的 MP 去除率分别为 83.73 ± 1.41%(100 毫克/升-1 用量)和 86.99 ± 1.41%(150 毫克/升-1 用量),而明矾的去除率为 86.58 ± 1.22%(50 毫克/升-1 用量)。此外,傅立叶变换红外分析表明,这些 MP 由高密度聚乙烯(HDPE)组成,扫描电镜成像显示其形状为球形、棒状和不规则形。本研究的结果表明,以植物为基础的天然材料可用于去除 MP,从而产生一种可持续的、具有成本效益的工艺。
{"title":"Natural coagulants (Moringa oleifera and Benincasa hispida) based removal of microplastics","authors":"Priya Agarwal ,&nbsp;Satya Prakash ,&nbsp;Gaurav Saini","doi":"10.1016/j.clwat.2024.100010","DOIUrl":"https://doi.org/10.1016/j.clwat.2024.100010","url":null,"abstract":"<div><p>The presence of small-sized (&lt;5 mm) plastic particles, called microplastics (MPs), in the environment, including aquatic bodies, air, soil, and bodies of living beings, is a cause of significant concern to the entire world. These MPs can contaminate drinking water sources, move up the food chain, and release toxic substances that could pose a threat to human health. Therefore, there is an urgent need to develop methods for removing MPs from the environment to protect present and future generations. The coagulation-flocculation sedimentation (CFS) process (using synthetic chemicals) has emerged as a fundamental method for treating MPs in water because of its economy, high efficiency, and ease of use. However, the xenobiotic nature of such compounds, coupled with their adverse health effects, calls for the development of sustainable solutions. This is the first study to report the effectiveness of plant-based natural coagulants in removing MPs from water and their comparison against synthetic coagulants. Two natural coagulants, <em>Benincasa hispida</em> (BH) and <em>Moringa oleifera</em> (MO), were investigated and have shown comparable MP removal efficiencies to commonly used synthetic coagulant: alum. The CFS approach resulted in 83.73 ± 1.41% (100 mg L<sup>–1</sup> dosage) and 86.99 ± 1.41% (150 mg L<sup>–1</sup> dosage) MP removal efficiencies for BH and MO, respectively, while alum resulted in 86.58 ± 1.22% removal (50 mg L<sup>–1</sup> dosage). Further, FTIR analysis has revealed that these MPs are composed of high-density polyethylene (HDPE), and SEM imaging has shown their shapes as spherical, rod-like and irregular. The results of the present study show that plant-based natural materials can be used for MP removal, thus yielding a sustainable and cost-effective process.</p></div>","PeriodicalId":100257,"journal":{"name":"Cleaner Water","volume":"1 ","pages":"Article 100010"},"PeriodicalIF":0.0,"publicationDate":"2024-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2950263224000085/pdfft?md5=b6c4ffc1d4e2331a250e43ac78c1f2e4&pid=1-s2.0-S2950263224000085-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139992539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Crescentia cujete fruit shell as green and efficient coagulant for water purification 将 Crescentia cujete 果壳作为用于水净化的绿色高效混凝剂
Pub Date : 2024-02-19 DOI: 10.1016/j.clwat.2024.100009
Augustine Boakye , Francis Attiogbe , Ismaila Emahi

Conventional drinking water treatment facilities employ coagulants, typically alum and ferric sulfate to remove turbidity and improve the clarity of the water. While alum for example, is naturally occurring and has no known health hazards when used in the right amount for water treatment, there is growing concern about the sustainability and environmental impacts of these inorganic coagulants. To explore a cost-effective, sustainable, and eco-friendly alternative, we investigated the shell of calabash fruit (Crescentia cujete) as a plant-based natural and eco-friendly coagulant. Although the plant has been extensively studied for its medicinal purposes this is the first report of its potential use as a coagulant in water treatment. Using Jar Test experiments and statistical analysis, we found that the coagulant obtained from Crescentia cujete was able to reduce the turbidity of the water by 84.3% at an optimal dosage of only 1.0 g/L. Zeta potential and particle size diameter were determined using Zetasizer Nano ZS (Malvern Instruments Ltd., UK) and found to be −3.42 mV and 2.55 × 104 d.nm respectively. The plant sample was further characterized via FT-IR analyses and was found to be largely composed of hemicellulosic materials, which likely contributed to the effectiveness of the coagulant.

传统的饮用水处理设施使用混凝剂(通常是明矾和硫酸铁)来去除浊度和提高水的透明度。虽然明矾是天然存在的,在水处理中适量使用不会对健康造成危害,但人们越来越关注这些无机混凝剂的可持续性和对环境的影响。为了探索一种具有成本效益、可持续发展和生态友好的替代品,我们研究了以植物为基础的天然生态友好型混凝剂--花萼果(Crescentia cujete)的外壳。尽管人们已经对这种植物的药用价值进行了广泛研究,但将其用作水处理混凝剂的可能性还是首次报道。通过 Jar Test 实验和统计分析,我们发现从 Crescentia cujete 中提取的混凝剂在最佳用量仅为 1.0 克/升时,能够将水的浊度降低 84.3%。使用 Zetasizer Nano ZS(英国马尔文仪器有限公司)测定了 Zeta 电位和粒径,发现它们分别为 -3.42 mV 和 2.55 × 104 d.nm。通过傅立叶变换红外分析进一步确定了植物样品的特征,发现其主要由半纤维素材料组成,这可能是混凝剂有效的原因之一。
{"title":"Crescentia cujete fruit shell as green and efficient coagulant for water purification","authors":"Augustine Boakye ,&nbsp;Francis Attiogbe ,&nbsp;Ismaila Emahi","doi":"10.1016/j.clwat.2024.100009","DOIUrl":"https://doi.org/10.1016/j.clwat.2024.100009","url":null,"abstract":"<div><p>Conventional drinking water treatment facilities employ coagulants, typically alum and ferric sulfate to remove turbidity and improve the clarity of the water. While alum for example, is naturally occurring and has no known health hazards when used in the right amount for water treatment, there is growing concern about the sustainability and environmental impacts of these inorganic coagulants. To explore a cost-effective, sustainable, and eco-friendly alternative, we investigated the shell of calabash fruit (<em>Crescentia cujete</em>) as a plant-based natural and eco-friendly coagulant. Although the plant has been extensively studied for its medicinal purposes this is the first report of its potential use as a coagulant in water treatment. Using Jar Test experiments and statistical analysis, we found that the coagulant obtained from <em>Crescentia cujete</em> was able to reduce the turbidity of the water by 84.3% at an optimal dosage of only 1.0 g/L. Zeta potential and particle size diameter were determined using Zetasizer Nano ZS (Malvern Instruments Ltd., UK) and found to be −3.42 mV and 2.55 × 10<sup>4</sup> d.nm respectively. The plant sample was further characterized via FT-IR analyses and was found to be largely composed of hemicellulosic materials, which likely contributed to the effectiveness of the coagulant.</p></div>","PeriodicalId":100257,"journal":{"name":"Cleaner Water","volume":"1 ","pages":"Article 100009"},"PeriodicalIF":0.0,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2950263224000073/pdfft?md5=b301d649e1deca5f01935f49cea9bbda&pid=1-s2.0-S2950263224000073-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139935896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sustainability assessment of groundwater in south-eastern parts of the western region of Ghana for water supply 加纳西部地区东南部地下水供水可持续性评估
Pub Date : 2024-02-13 DOI: 10.1016/j.clwat.2024.100007
Ernest Biney , Bernard Akwasi Mintah , Ernest Ankomah , Albert Elikplim Agbenorhevi , Daniel Buston Yankey , Ernestina Annan

The study assessed the physicochemical and biological properties of selected groundwater sources in the Southeastern part of the Western Region, to assess the impact on water quality and health risk. The Piper Trilinear plot was used to categorize the water samples into water types based on the dominant anion and cation concentrations. Statistical analysis (One way ANOVA and two sample t-test) was used to determine the sources of variation in the data at 95% confidence interval. The Water Quality Index (WQI) and Hazard Quotient (HQ) were used to estimate the water quality and health risk respectively. TDS and turbidity were above the acceptable WHO guidelines in 16.7% of the samples with a mildly acidic pH in 83.3% of the water samples. Also, 91.7% of the water samples were contaminated with total coliform (TC) and 25% with e-coli. Generally, the groundwater samples were dominated by Ca2+ and HCO3- ion water types. The variations between parameters were found not significant for all the parameters (p>0.05). Water samples in the North are of good quality with a mean WQI of 96, but of poor quality in the South with a mean WQI of 144.6. HQ values for all the samples were less than 0.1, suggesting less harmful impacts of the heavy metal concentrations on human health. Overall, the results showed the presence of heavy metals in the groundwater sources sampled, however in quantities with low health risks either through oral or dermal channels. Groundwater within the communities is good for domestic purposes but needs treatment for drinking. To improve upon the study, it is recommended that further studies consider a higher number of samples and include other accessible groundwater stations where possible.

这项研究评估了西部地区东南部选定地下水源的物理化学和生物特性,以评估其对水质和健康风险的影响。根据主要阴离子和阳离子的浓度,采用 Piper Trilinear plot 将水样分为不同类型。统计分析(单向方差分析和双样本 t 检验)用于确定 95% 置信区间内数据的变化来源。水质指数(WQI)和危害商数(HQ)分别用于估算水质和健康风险。16.7% 的水样的总悬浮微粒(TDS)和浑浊度高于世界卫生组织的可接受标准,83.3% 的水样 pH 值呈弱酸性。此外,91.7%的水样受到总大肠菌群(TC)污染,25%受到大肠杆菌污染。一般来说,地下水样本以 Ca2+ 和 HCO3- 离子水类型为主。所有参数之间的差异均不显著(p>0.05)。北部水样的水质较好,平均水质指数为 96,而南部水样的水质较差,平均水质指数为 144.6。所有样本的 HQ 值均小于 0.1,表明重金属浓度对人体健康的影响较小。总体而言,结果表明在采样的地下水源中存在重金属,但无论是通过口腔还是皮肤途径,其含量对健康的风险都很低。社区内的地下水适合家庭使用,但需要处理后才能饮用。为了改进这项研究,建议进一步的研究考虑更多的样本数量,并在可能的情况下纳入其他可到达的地下水站。
{"title":"Sustainability assessment of groundwater in south-eastern parts of the western region of Ghana for water supply","authors":"Ernest Biney ,&nbsp;Bernard Akwasi Mintah ,&nbsp;Ernest Ankomah ,&nbsp;Albert Elikplim Agbenorhevi ,&nbsp;Daniel Buston Yankey ,&nbsp;Ernestina Annan","doi":"10.1016/j.clwat.2024.100007","DOIUrl":"https://doi.org/10.1016/j.clwat.2024.100007","url":null,"abstract":"<div><p>The study assessed the physicochemical and biological properties of selected groundwater sources in the Southeastern part of the Western Region, to assess the impact on water quality and health risk. The Piper Trilinear plot was used to categorize the water samples into water types based on the dominant anion and cation concentrations. Statistical analysis (One way ANOVA and two sample t-test) was used to determine the sources of variation in the data at 95% confidence interval. The Water Quality Index (WQI) and Hazard Quotient (HQ) were used to estimate the water quality and health risk respectively. TDS and turbidity were above the acceptable WHO guidelines in 16.7% of the samples with a mildly acidic pH in 83.3% of the water samples. Also, 91.7% of the water samples were contaminated with total coliform (TC) and 25% with e-coli. Generally, the groundwater samples were dominated by Ca<sup>2+</sup> and HCO<sup>3-</sup> ion water types. The variations between parameters were found not significant for all the parameters (p&gt;0.05). Water samples in the North are of good quality with a mean WQI of 96, but of poor quality in the South with a mean WQI of 144.6. HQ values for all the samples were less than 0.1, suggesting less harmful impacts of the heavy metal concentrations on human health. Overall, the results showed the presence of heavy metals in the groundwater sources sampled, however in quantities with low health risks either through oral or dermal channels. Groundwater within the communities is good for domestic purposes but needs treatment for drinking. To improve upon the study, it is recommended that further studies consider a higher number of samples and include other accessible groundwater stations where possible.</p></div>","PeriodicalId":100257,"journal":{"name":"Cleaner Water","volume":"1 ","pages":"Article 100007"},"PeriodicalIF":0.0,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S295026322400005X/pdfft?md5=a5ea532873bec198f68f338329c156d1&pid=1-s2.0-S295026322400005X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139738770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unveiling drivers and barriers in advancing agricultural wastewater reuse in Southern Italy: A SWOT analysis informed by stakeholder insights 揭示推动意大利南部农业废水再利用的动力和障碍:根据利益相关者的见解进行 SWOT 分析
Pub Date : 2024-02-13 DOI: 10.1016/j.clwat.2024.100008
Kledja Canaj , Andi Mehmeti

In the Apulia region (Southern Italy), the issue of water scarcity is escalating, making wastewater reclamation and reuse crucial options for promoting sustainable development. Despite substantial financial investments, the practical adoption of wastewater reuse for agricultural irrigation remains constrained. Using a quantitative SWOT framework, we analyzed market, social, and product-related factors impacting water reuse. A questionnaire with 23 out of 30 expert stakeholders, including researchers, public administration officials, utility members, farmers, and engineers, was used to evaluate the significance of each aspect identified in the SWOT analysis. The key drivers of a wastewater-reuse-based economy include improved water availability during drought, a commitment to the circular economy, and existing successful agricultural reuse projects. Conversely, identified obstacles encompass the lack of storage basins for storing wastewater between seasons to synchronize production with crop water needs, inadequate political dedication to oversee groundwater withdrawals, difficulties in controlling investments, and bureaucratic demands arising from stringent regulation. Underpinned by the recently enacted EU Water Reuse Regulation, the reuse of wastewater is crucial for addressing water scarcity, mitigating aquifer over-exploitation, and achieving objectives related to the circular economy. However, moving forward, an updated governance framework integrating continuous monitoring, active stakeholder engagement, and investments in intermediate storage facilities is imperative for effective and sustainable wastewater reuse. This research provides novel empirical evidence and expands upon existing studies on barriers and opportunities related to reclaimed water in a Mediterranean context and regions facing similar challenges. The findings can serve as a valuable reference for future research in this field.

在阿普利亚地区(意大利南部),缺水问题日益严重,废水回收和再利用成为促进可持续发展的重要选择。尽管投入了大量资金,但将废水回用于农业灌溉的实际应用仍然受到限制。我们采用 SWOT 定量框架,分析了影响水回用的市场、社会和产品相关因素。我们对 30 位专家利益相关者中的 23 位进行了问卷调查,其中包括研究人员、公共管理官员、公用事业部门成员、农民和工程师,以评估 SWOT 分析中确定的每个方面的重要性。以废水回用为基础的经济的主要驱动力包括改善干旱期间的水供应、对循环经济的承诺以及现有成功的农业回用项目。与此相反,已发现的障碍包括:缺乏用于在季节间储存废水的储存池,无法使生产与作物用水需求同步;监督地下水抽取的政治决心不足;难以控制投资;以及严格监管带来的官僚主义要求。在最近颁布的《欧盟水回用条例》的支持下,废水回用对于解决水资源短缺、缓解含水层过度开采以及实现循环经济相关目标至关重要。然而,要实现有效和可持续的废水回用,必须更新治理框架,将持续监测、利益相关者的积极参与以及对中间存储设施的投资整合在一起。这项研究提供了新颖的实证证据,并对现有研究进行了扩展,这些研究涉及在地中海背景下以及面临类似挑战的地区与再生水相关的障碍和机遇。研究结果可作为该领域未来研究的宝贵参考。
{"title":"Unveiling drivers and barriers in advancing agricultural wastewater reuse in Southern Italy: A SWOT analysis informed by stakeholder insights","authors":"Kledja Canaj ,&nbsp;Andi Mehmeti","doi":"10.1016/j.clwat.2024.100008","DOIUrl":"10.1016/j.clwat.2024.100008","url":null,"abstract":"<div><p>In the Apulia region (Southern Italy), the issue of water scarcity is escalating, making wastewater reclamation and reuse crucial options for promoting sustainable development. Despite substantial financial investments, the practical adoption of wastewater reuse for agricultural irrigation remains constrained. Using a quantitative SWOT framework, we analyzed market, social, and product-related factors impacting water reuse. A questionnaire with 23 out of 30 expert stakeholders, including researchers, public administration officials, utility members, farmers, and engineers, was used to evaluate the significance of each aspect identified in the SWOT analysis. The key drivers of a wastewater-reuse-based economy include improved water availability during drought, a commitment to the circular economy, and existing successful agricultural reuse projects. Conversely, identified obstacles encompass the lack of storage basins for storing wastewater between seasons to synchronize production with crop water needs, inadequate political dedication to oversee groundwater withdrawals, difficulties in controlling investments, and bureaucratic demands arising from stringent regulation. Underpinned by the recently enacted EU Water Reuse Regulation, the reuse of wastewater is crucial for addressing water scarcity, mitigating aquifer over-exploitation, and achieving objectives related to the circular economy. However, moving forward, an updated governance framework integrating continuous monitoring, active stakeholder engagement, and investments in intermediate storage facilities is imperative for effective and sustainable wastewater reuse. This research provides novel empirical evidence and expands upon existing studies on barriers and opportunities related to reclaimed water in a Mediterranean context and regions facing similar challenges. The findings can serve as a valuable reference for future research in this field.</p></div>","PeriodicalId":100257,"journal":{"name":"Cleaner Water","volume":"1 ","pages":"Article 100008"},"PeriodicalIF":0.0,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2950263224000061/pdfft?md5=b6ee2de44c4b1a5179b8f122ad0588b6&pid=1-s2.0-S2950263224000061-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139873109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of low-cost natural adsorbent for the abatement of pollution from tannery effluent – A green technology 开发低成本天然吸附剂以减少制革废水污染--一项绿色技术
Pub Date : 2024-02-12 DOI: 10.1016/j.clwat.2024.100005
Sabina Akter, Umme Habiba Bodrun Naher, Razia Sultana

Tanneries are known to be one of the most polluting industries due to the generation of harmful contaminants at various stages, from the beam house to finishing. Each day, significant quantities of tannery wastewater containing contaminants like chromium salts are released into open areas, farmlands, rivers and other corpses of water. This practice poses a severe threat to the environment health, leading to extensive soil and water pollution. In this study, a biological material (scales of fish Catla catla) is employed as an adsorbent for biosorption of contaminants from tannery effluent. Every day a considerable amount of fish scales is generated and thrown away from the local fish market, which burdens the environment and causes environmental pollution. The primary emphasis of this study is to reduce wastewater pollution and the environmental burden of fish waste disposal. Two adsorbents were prepared by treating the dried fish scales with NaOH and Orthophosphoric acid to enhance the adsorbent properties by creating pores and roughness of the surface. Then, it was characterized using FTIR, SEM, and TGA analyses. After characterization, adsorbents were subjected to the adsorption of a standard chromium solution to detect the ideal adsorbent dose, contact time, and pH conditions of adsorption. The study's findings showed that during adsorption, the maximum uptake capacity of acid-treated adsorbent is found at pH 4 with an adsorbent dose of 20 g/L for a 60-minute contact time. That base-treated adsorbent is obtained at pH 2.50 with an adsorbent amount of 20 g/L for 4 hours of contact time. Then, the adsorbents were used to treat tannery effluents, and it was discovered that they successfully removed pollutants like chromic oxide, total suspended solids (TSD), total dissolved solids (TDS), BOD, COD, and others. The results indicated that the acid-treated adsorbent achieved optimal removal percentages for chromic oxide, BOD5, COD, TDS, and TSS at 72.82%, 42.85%, 56.12%, 13.37%, and 35%, respectively. Thus, the study concluded that acid and base-washed fish scale adsorbents are affordable and straightforward to use adsorbents for removing pollutants from tannery effluent.

众所周知,制革厂是污染最严重的行业之一,因为从制革车间到精加工的各个阶段都会产生有害污染物。每天,大量含有铬盐等污染物的制革废水被排放到空地、农田、河流和其他水体中。这种做法对环境健康构成严重威胁,导致大面积的土壤和水污染。在这项研究中,采用了一种生物材料(Catla catla 鱼鳞)作为吸附剂,对制革废水中的污染物进行生物吸附。当地鱼市每天都会产生和丢弃大量鱼鳞,给环境造成负担和环境污染。本研究的主要重点是减少废水污染和鱼类废物处理对环境造成的负担。通过用 NaOH 和正磷酸处理干鱼鳞制备了两种吸附剂,以通过产生孔隙和表面粗糙度来增强吸附剂的性能。然后,利用傅立叶变换红外光谱、扫描电镜和热重分析对其进行表征。表征完成后,对吸附剂进行了标准铬溶液的吸附试验,以检测理想的吸附剂剂量、接触时间和吸附的 pH 值条件。研究结果表明,在吸附过程中,酸处理过的吸附剂在 pH 值为 4、吸附剂剂量为 20 克/升、接触时间为 60 分钟时吸附能力最大。碱处理过的吸附剂在 pH 值为 2.50、吸附剂用量为 20 克/升、接触时间为 4 小时时吸附能力最大。然后,将这些吸附剂用于处理制革废水,结果发现它们成功地去除了氧化铬、总悬浮固体(TSD)、总溶解固体(TDS)、生化需氧量(BOD)、化学需氧量(COD)等污染物。结果表明,酸处理吸附剂对氧化铬、BOD5、COD、TDS 和 TSS 的最佳去除率分别为 72.82%、42.85%、56.12%、13.37% 和 35%。因此,该研究得出结论,酸洗和碱洗鱼鳞吸附剂是一种经济实惠、可直接用于去除制革废水中污染物的吸附剂。
{"title":"Development of low-cost natural adsorbent for the abatement of pollution from tannery effluent – A green technology","authors":"Sabina Akter,&nbsp;Umme Habiba Bodrun Naher,&nbsp;Razia Sultana","doi":"10.1016/j.clwat.2024.100005","DOIUrl":"https://doi.org/10.1016/j.clwat.2024.100005","url":null,"abstract":"<div><p>Tanneries are known to be one of the most polluting industries due to the generation of harmful contaminants at various stages, from the beam house to finishing. Each day, significant quantities of tannery wastewater containing contaminants like chromium salts are released into open areas, farmlands, rivers and other corpses of water. This practice poses a severe threat to the environment health, leading to extensive soil and water pollution. In this study, a biological material (scales of fish <em>Catla catla) i</em>s employed as an adsorbent for biosorption of contaminants from tannery effluent. Every day a considerable amount of fish scales is generated and thrown away from the local fish market, which burdens the environment and causes environmental pollution. The primary emphasis of this study is to reduce wastewater pollution and the environmental burden of fish waste disposal. Two adsorbents were prepared by treating the dried fish scales with NaOH and Orthophosphoric acid to enhance the adsorbent properties by creating pores and roughness of the surface. Then, it was characterized using FTIR, SEM, and TGA analyses. After characterization, adsorbents were subjected to the adsorption of a standard chromium solution to detect the ideal adsorbent dose, contact time, and pH conditions of adsorption. The study's findings showed that during adsorption, the maximum uptake capacity of acid-treated adsorbent is found at pH 4 with an adsorbent dose of 20 g/L for a 60-minute contact time. That base-treated adsorbent is obtained at pH 2.50 with an adsorbent amount of 20 g/L for 4 hours of contact time. Then, the adsorbents were used to treat tannery effluents, and it was discovered that they successfully removed pollutants like chromic oxide, total suspended solids (TSD), total dissolved solids (TDS), BOD, COD, and others. The results indicated that the acid-treated adsorbent achieved optimal removal percentages for chromic oxide, BOD<sub>5</sub>, COD, TDS, and TSS at 72.82%, 42.85%, 56.12%, 13.37%, and 35%, respectively. Thus, the study concluded that acid and base-washed fish scale adsorbents are affordable and straightforward to use adsorbents for removing pollutants from tannery effluent.</p></div>","PeriodicalId":100257,"journal":{"name":"Cleaner Water","volume":"1 ","pages":"Article 100005"},"PeriodicalIF":0.0,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2950263224000036/pdfft?md5=387d9bd281062b2d3cf08cfa347f7794&pid=1-s2.0-S2950263224000036-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139744400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Protecting groundwater in intensive agricultural areas through irrigation with treated wastewater: focus on nitrate, salt, and Escherichia coli 用处理过的废水灌溉密集农业区的地下水:关注硝酸盐、盐和大肠杆菌
Pub Date : 2024-02-08 DOI: 10.1016/j.clwat.2024.100006
Barbara Casale , Angela Libutti , Carlo Salerno , Giovanni Berardi , Pompilio Vergine

A set of 4 soil column duplicates was irrigated with treated wastewater to study the possible leaching of nitrate, salt, and Escherichia coli to groundwater. The reclaimed water was a municipal secondary effluent, stored for 5 days to attenuate microbial contamination. It had nitrate concentration of 36.1±4.9 mgN/L, electrical conductivity of 1.6±0.1 mS/cm, and E. coli content between 36 and 918 MPN/100 mL (median value of 194 MPN/100 mL). Soil column tests were carried out over a period of 80 days, considering both the cultivation of a typical Mediterranean crop (pepper) and the edge case of non-cultivated soil. Nitrate and salt were up-taken by crops for around 90% and 50%, respectively, while they leached through non-cultivated soil according to linear relationships, with nitrate moving faster than salts. Due to its natural decay, E. coli never reached 66 cm depth. Crop irrigation with reclaimed water can be managed so as not to cause significant leaching of E. coli and nitrate, even though it may result in a small leaching of salt. Replacing groundwater with reclaimed water as an irrigation source should be considered as a possible action to protect aquifers, and especially those suffering from saline contamination, from the effects of overexploitation and overfertilization practices.

用处理过的废水灌溉一组 4 个土壤柱副本,以研究硝酸盐、盐和大肠杆菌可能沥滤到地下水的情况。再生水是市政二级污水,储存 5 天以减少微生物污染。其硝酸盐浓度为 36.1±4.9 mgN/L,电导率为 1.6±0.1 mS/cm,大肠杆菌含量介于 36 至 918 MPN/100 mL 之间(中位值为 194 MPN/100 mL)。土壤柱测试历时 80 天,既考虑了典型地中海作物(辣椒)的种植情况,也考虑了非种植土壤的边缘情况。作物对硝酸盐和盐的吸收率分别约为 90% 和 50%,而硝酸盐和盐在非耕地土壤中的浸出率呈线性关系,硝酸盐的浸出速度快于盐。由于大肠杆菌会自然腐烂,因此它从未到达 66 厘米深的土壤中。使用再生水灌溉农作物时,尽管可能会导致少量盐分沥出,但可以通过管理避免大肠杆菌和硝酸盐的大量沥出。应该考虑用再生水替代地下水作为灌溉水源,以保护含水层,特别是受到盐碱污染的含水层,免受过度开采和过度施肥做法的影响。
{"title":"Protecting groundwater in intensive agricultural areas through irrigation with treated wastewater: focus on nitrate, salt, and Escherichia coli","authors":"Barbara Casale ,&nbsp;Angela Libutti ,&nbsp;Carlo Salerno ,&nbsp;Giovanni Berardi ,&nbsp;Pompilio Vergine","doi":"10.1016/j.clwat.2024.100006","DOIUrl":"https://doi.org/10.1016/j.clwat.2024.100006","url":null,"abstract":"<div><p>A set of 4 soil column duplicates was irrigated with treated wastewater to study the possible leaching of nitrate, salt, and <em>Escherichia coli</em> to groundwater. The reclaimed water was a municipal secondary effluent, stored for 5 days to attenuate microbial contamination. It had nitrate concentration of 36.1±4.9 mgN/L, electrical conductivity of 1.6±0.1 mS/cm, and <em>E. coli</em> content between 36 and 918 MPN/100 mL (median value of 194 MPN/100 mL). Soil column tests were carried out over a period of 80 days, considering both the cultivation of a typical Mediterranean crop (pepper) and the edge case of non-cultivated soil. Nitrate and salt were up-taken by crops for around 90% and 50%, respectively, while they leached through non-cultivated soil according to linear relationships, with nitrate moving faster than salts. Due to its natural decay, <em>E. coli</em> never reached 66 cm depth. Crop irrigation with reclaimed water can be managed so as not to cause significant leaching of <em>E. coli</em> and nitrate, even though it may result in a small leaching of salt. Replacing groundwater with reclaimed water as an irrigation source should be considered as a possible action to protect aquifers, and especially those suffering from saline contamination, from the effects of overexploitation and overfertilization practices.</p></div>","PeriodicalId":100257,"journal":{"name":"Cleaner Water","volume":"1 ","pages":"Article 100006"},"PeriodicalIF":0.0,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2950263224000048/pdfft?md5=672b061030eab2f68bc051420bbbd120&pid=1-s2.0-S2950263224000048-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139732656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unveiling drivers and barriers in advancing agricultural wastewater reuse in Southern Italy: A SWOT analysis informed by Stakeholder insights 揭示推动意大利南部农业废水再利用的动力和障碍:根据利益相关者的见解进行 SWOT 分析
Pub Date : 2024-02-01 DOI: 10.1016/j.clwat.2024.100008
Kledja Canaj, A. Mehmeti
{"title":"Unveiling drivers and barriers in advancing agricultural wastewater reuse in Southern Italy: A SWOT analysis informed by Stakeholder insights","authors":"Kledja Canaj, A. Mehmeti","doi":"10.1016/j.clwat.2024.100008","DOIUrl":"https://doi.org/10.1016/j.clwat.2024.100008","url":null,"abstract":"","PeriodicalId":100257,"journal":{"name":"Cleaner Water","volume":"48 17","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139813288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis, characterization and application of Zeolite/Bi2O3 nanocomposite in removal of Rhodamine B dye from wastewater 沸石/Bi2O3 纳米复合材料在去除废水中罗丹明 B 染料中的合成、表征和应用
Pub Date : 2024-01-26 DOI: 10.1016/j.clwat.2024.100004
George William Atwoki Nyakairu , Pachris Muamba Kapanga , Muhammad Ntale , Séraphin Ntumba Lusamba , Raphael Muamba Tshimanga , Abdelhadi Ammari , Zaccheus Shehu

Many factories use a variety of colours to enhance product aesthetics, leading to untreated wastewater being discharged into natural water bodies. This wastewater not only poses a threat to aquatic life but also endangers human health, causing issues like skin diseases, as some dyes are carcinogenic. Rhodamine B dye (RhB) is commonly used in industries such as textiles, paper, etc. This study focuses on synthesizing, characterizing, and applying Zeolite/Bi2O3 nanocomposites to efficiently remove RhB dye. Nanocomposites were synthesized using the sol-gel method and characterized using techniques including FTIR, SEM-EDS, XRD, DLS, point of zero charge determination, and surface resonance analysis. The removal process in an aqueous solution achieved its maximum efficiency of 100% under the following optimal conditions: initial concentration of RhB dye (0.5 mg/L), time (10 min), adsorbent dose (0.55 g), pH (4), and temperature (298 K). Real wastewater testing confirmed the nanocomposite's efficiency, removing a significant 98.12% of RhB dye. Reusability tests showed stability, with removal efficiencies of 100%, 97.08%, and 88.9% over three cycles. Isotherm analysis adhered to the Freundlich Isotherm Model (R2 = 0.9953), signifying favourable adsorption behaviour. Kinetic analysis supported the pseudo-second-order model, indicating a chemisorption mechanism. Thermodynamic analysis suggested spontaneous (negative ΔG°) and endothermic (positive ΔH°) adsorption, with reduced randomness (negative ΔS°) at the solid-liquid interface. In conclusion, wastewater dye removal, especially Rhodamine B, is vital for environmental and public health protection. The Zeolite/Bi2O3 nanocomposite emerges as an efficient, sustainable, and eco-friendly adsorbent for Rhodamine B dye removal in both synthetic solutions and real wastewater.

许多工厂使用各种颜色来提高产品的美观度,导致未经处理的废水排入自然水体。这些废水不仅对水生生物构成威胁,还危及人类健康,导致皮肤病等问题,因为有些染料具有致癌性。罗丹明 B 染料(RhB)常用于纺织、造纸等行业。本研究的重点是合成、表征和应用沸石/Bi2O3 纳米复合材料来有效去除 RhB 染料。纳米复合材料采用溶胶-凝胶法合成,并使用傅立叶变换红外光谱、扫描电镜-电子显微镜、XRD、DLS、零点电荷测定和表面共振分析等技术进行表征。在以下最佳条件下,水溶液中的去除效率达到了 100%:RhB 染料初始浓度(0.5 mg/L)、时间(10 分钟)、吸附剂剂量(0.55 g)、pH 值(4)和温度(298 K)。实际废水测试证实了纳米复合材料的效率,RhB 染料的去除率高达 98.12%。可重复使用性测试表明了其稳定性,三个周期的去除率分别为 100%、97.08% 和 88.9%。等温线分析符合 Freundlich 等温线模型(R2 = 0.9953),表明吸附行为良好。动力学分析支持伪二阶模型,表明这是一种化学吸附机制。热力学分析表明,固液界面上存在自发吸附(负 ΔG°)和内热吸附(正 ΔH°),随机性降低(负 ΔS°)。总之,去除废水中的染料,尤其是罗丹明 B,对保护环境和公众健康至关重要。沸石/Bi2O3 纳米复合材料是一种高效、可持续且环保的吸附剂,可用于去除合成溶液和实际废水中的罗丹明 B 染料。
{"title":"Synthesis, characterization and application of Zeolite/Bi2O3 nanocomposite in removal of Rhodamine B dye from wastewater","authors":"George William Atwoki Nyakairu ,&nbsp;Pachris Muamba Kapanga ,&nbsp;Muhammad Ntale ,&nbsp;Séraphin Ntumba Lusamba ,&nbsp;Raphael Muamba Tshimanga ,&nbsp;Abdelhadi Ammari ,&nbsp;Zaccheus Shehu","doi":"10.1016/j.clwat.2024.100004","DOIUrl":"https://doi.org/10.1016/j.clwat.2024.100004","url":null,"abstract":"<div><p>Many factories use a variety of colours to enhance product aesthetics, leading to untreated wastewater being discharged into natural water bodies. This wastewater not only poses a threat to aquatic life but also endangers human health, causing issues like skin diseases, as some dyes are carcinogenic. Rhodamine B dye (RhB) is commonly used in industries such as textiles, paper, etc. This study focuses on synthesizing, characterizing, and applying Zeolite/Bi<sub>2</sub>O<sub>3</sub> nanocomposites to efficiently remove RhB dye. Nanocomposites were synthesized using the sol-gel method and characterized using techniques including FTIR, SEM-EDS, XRD, DLS, point of zero charge determination, and surface resonance analysis. The removal process in an aqueous solution achieved its maximum efficiency of 100% under the following optimal conditions: initial concentration of RhB dye (0.5 mg/L), time (10 min), adsorbent dose (0.55 g), pH (4), and temperature (298 K). Real wastewater testing confirmed the nanocomposite's efficiency, removing a significant 98.12% of RhB dye. Reusability tests showed stability, with removal efficiencies of 100%, 97.08%, and 88.9% over three cycles. Isotherm analysis adhered to the Freundlich Isotherm Model (R<sup>2</sup> = 0.9953), signifying favourable adsorption behaviour. Kinetic analysis supported the pseudo-second-order model, indicating a chemisorption mechanism. Thermodynamic analysis suggested spontaneous (negative ΔG°) and endothermic (positive ΔH°) adsorption, with reduced randomness (negative ΔS°) at the solid-liquid interface. In conclusion, wastewater dye removal, especially Rhodamine B, is vital for environmental and public health protection. The Zeolite/Bi<sub>2</sub>O<sub>3</sub> nanocomposite emerges as an efficient, sustainable, and eco-friendly adsorbent for Rhodamine B dye removal in both synthetic solutions and real wastewater.</p></div>","PeriodicalId":100257,"journal":{"name":"Cleaner Water","volume":"1 ","pages":"Article 100004"},"PeriodicalIF":0.0,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2950263224000024/pdfft?md5=cd5349dc367c6d271ab04199b6421172&pid=1-s2.0-S2950263224000024-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139675746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Groundwater level prediction using an improved SVR model integrated with hybrid particle swarm optimization and firefly algorithm 使用与混合粒子群优化和萤火虫算法相结合的改进型 SVR 模型预测地下水位
Pub Date : 2024-01-17 DOI: 10.1016/j.clwat.2024.100003
Sandeep Samantaray , Abinash Sahoo , Falguni Baliarsingh

The demand for water resources has increased due to rapid increase of metropolitan areas brought on by growth in population and industrialisation. In addition, the groundwater recharge is being afftected by shifting land use pattern caused by urban development. Using precise and trustworthy estimates of groundwater level is vital for the sustainable groundwater resources management in the face of changing climatic circumstances. In this context, machine learning (ML) methods offer a new and promising approach for accurately forecasting long-term changes in the groundwater level (GWL) without computational effort of developing a comprehensive flow model. In order to simulate GWL, five data-driven (DD) models, including the hybridization of support vector regression (SVR) with two optimisation algorithms i.e., firefly algorithm and particle swarm optimisation (FFAPSO), SVR-FFA, SVR-PSO, SVR and Multilayer perception (MLP), have been examined in the present study. Spatial clustering was utilised to choose four observation wells within Cuttack district in order to study and assess the water levels. Six scenarios were created by incorporating numerous variables, such as GWL in the previous months, evapotranspiration, temperature, precipitation, and river discharge. The goal was to identify the variables that were most efficient in predicting GWL. The SVR-FFAPSO model performs best in GWL forecasting for Khuntuni station, according to the quantitative analysis with correlation coefficient (R) = 0.9978, Nash–Sutcliffe efficiency (NSE) = 0.9933, mean absolute error (MAE) = 0.00025 (m), root mean squared error (RMSE) = 0.00775 (m) during the training phase. It is advised that groundwater monitoring network and data collecting system are strengthen in India for ensuring effective modelling of long-term management of groundwater resources.

由于人口增长和工业化带来的大都市区的迅速扩大,对水资源的需求也随之增加。此外,城市发展导致的土地利用模式转变也影响了地下水的补给。面对不断变化的气候环境,使用精确、可靠的地下水位估算值对于可持续的地下水资源管理至关重要。在这种情况下,机器学习(ML)方法为准确预测地下水位(GWL)的长期变化提供了一种新的、有前途的方法,而无需开发综合流量模型的计算工作。为了模拟 GWL,本研究考察了五种数据驱动(DD)模型,包括支持向量回归(SVR)与两种优化算法(即萤火虫算法和粒子群优化(FFAPSO)、SVR-FFA、SVR-PSO、SVR 和多层感知(MLP))的混合。为了研究和评估水位,利用空间聚类在 Cuttack 地区选择了四口观测井。通过将前几个月的 GWL、蒸散量、温度、降水量和河流排水量等众多变量结合在一起,创建了六种情景。目的是找出在预测 GWL 方面最有效的变量。根据定量分析,在训练阶段,SVR-FFAPSO 模型在昆图尼站的 GWL 预测中表现最佳,相关系数 (R) = 0.9978,Nash-Sutcliffe 效率 (NSE) = 0.9933,平均绝对误差 (MAE) = 0.00025(米),均方根误差 (RMSE) = 0.00775(米)。建议印度加强地下水监测网络和数据收集系统,以确保地下水资源长期管理的有效建模。
{"title":"Groundwater level prediction using an improved SVR model integrated with hybrid particle swarm optimization and firefly algorithm","authors":"Sandeep Samantaray ,&nbsp;Abinash Sahoo ,&nbsp;Falguni Baliarsingh","doi":"10.1016/j.clwat.2024.100003","DOIUrl":"10.1016/j.clwat.2024.100003","url":null,"abstract":"<div><p>The demand for water resources has increased due to rapid increase of metropolitan areas brought on by growth in population and industrialisation. In addition, the groundwater recharge is being afftected by shifting land use pattern caused by urban development. Using precise and trustworthy estimates of groundwater level is vital for the sustainable groundwater resources management in the face of changing climatic circumstances. In this context, machine learning (ML) methods offer a new and promising approach for accurately forecasting long-term changes in the groundwater level (GWL) without computational effort of developing a comprehensive flow model. In order to simulate GWL, five data-driven (DD) models, including the hybridization of support vector regression (SVR) with two optimisation algorithms i.e., firefly algorithm and particle swarm optimisation (FFAPSO), SVR-FFA, SVR-PSO, SVR and Multilayer perception (MLP), have been examined in the present study. Spatial clustering was utilised to choose four observation wells within Cuttack district in order to study and assess the water levels. Six scenarios were created by incorporating numerous variables, such as GWL in the previous months, evapotranspiration, temperature, precipitation, and river discharge. The goal was to identify the variables that were most efficient in predicting GWL. The SVR-FFAPSO model performs best in GWL forecasting for Khuntuni station, according to the quantitative analysis with correlation coefficient (R) = 0.9978, Nash–Sutcliffe efficiency (NSE) = 0.9933, mean absolute error (MAE) = 0.00025 (m), root mean squared error (RMSE) = 0.00775 (m) during the training phase. It is advised that groundwater monitoring network and data collecting system are strengthen in India for ensuring effective modelling of long-term management of groundwater resources.</p></div>","PeriodicalId":100257,"journal":{"name":"Cleaner Water","volume":"1 ","pages":"Article 100003"},"PeriodicalIF":0.0,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2950263224000012/pdfft?md5=0e8200700497f82da315e896c8b37808&pid=1-s2.0-S2950263224000012-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139540158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cleaner Water
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1