Pub Date : 2025-04-01DOI: 10.1016/j.commtr.2025.100171
Qinru Hu , Beinuo Yang , Keyang Zhang , Jose Escribano Macias , Xiqun (Michael) Chen , Yanfeng Ouyang , Simon Hu
Taxi systems are transitioning into a complex integration of autonomous and human-driven vehicles powered by heterogeneous energy sources. Traditional operational strategies designed for homogeneous fleets fail to capture the unique dynamics and interactions present in mixed fleets. To address this gap, this study proposes a comprehensive modeling and simulation framework for the dynamic operation of mixed taxi fleets, including autonomous electric taxis (AETs), human-driven electric taxis, and human-driven gasoline taxis. The framework integrates centralized and decentralized control mechanisms to address the distinct characteristics of each taxi type. An integer linear programming model is developed to optimize taxi assignment and scheduling, with the objective of maximizing system profits by accounting for customer service revenues and energy and travel costs. An agent-based simulation platform is designed to model dynamic interactions among taxis, customers, and charging stations, offering continuous feedback on system performance. Real-world case studies reveal significant environmental, economic, and social benefits when incorporating operating costs into decision-making. Impact analyses demonstrate the competitiveness of AETs in passenger service due to lower operating costs and enhanced environmental efficiency, with reduced carbon emission intensity per kilometer and per request. This study provides valuable insights for taxi platforms and policymakers in formulating strategies that promote sustainable urban mobility during the ongoing transition period.
{"title":"Sustainable operational strategies for mixed fleets: Integrating autonomous and human-driven taxis with heterogeneous energy types","authors":"Qinru Hu , Beinuo Yang , Keyang Zhang , Jose Escribano Macias , Xiqun (Michael) Chen , Yanfeng Ouyang , Simon Hu","doi":"10.1016/j.commtr.2025.100171","DOIUrl":"10.1016/j.commtr.2025.100171","url":null,"abstract":"<div><div>Taxi systems are transitioning into a complex integration of autonomous and human-driven vehicles powered by heterogeneous energy sources. Traditional operational strategies designed for homogeneous fleets fail to capture the unique dynamics and interactions present in mixed fleets. To address this gap, this study proposes a comprehensive modeling and simulation framework for the dynamic operation of mixed taxi fleets, including autonomous electric taxis (AETs), human-driven electric taxis, and human-driven gasoline taxis. The framework integrates centralized and decentralized control mechanisms to address the distinct characteristics of each taxi type. An integer linear programming model is developed to optimize taxi assignment and scheduling, with the objective of maximizing system profits by accounting for customer service revenues and energy and travel costs. An agent-based simulation platform is designed to model dynamic interactions among taxis, customers, and charging stations, offering continuous feedback on system performance. Real-world case studies reveal significant environmental, economic, and social benefits when incorporating operating costs into decision-making. Impact analyses demonstrate the competitiveness of AETs in passenger service due to lower operating costs and enhanced environmental efficiency, with reduced carbon emission intensity per kilometer and per request. This study provides valuable insights for taxi platforms and policymakers in formulating strategies that promote sustainable urban mobility during the ongoing transition period.</div></div>","PeriodicalId":100292,"journal":{"name":"Communications in Transportation Research","volume":"5 ","pages":"Article 100171"},"PeriodicalIF":12.5,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143748612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-24DOI: 10.1016/j.commtr.2025.100172
Jiangbo Yu , Jinhua Zhao , Luis Miranda-Moreno , Matthew Korp
Surveys and interviews—structured, semi-structured, or unstructured—are widely used for collecting insights on emerging or hypothetical scenarios. Traditional human-led methods often face challenges related to cost, scalability, and consistency. For example, distributed questionnaires lack the ability to provide real-time guidance and request immediate clarifications. Recently, various domains have begun to explore the use of conversational agents (chatbots) powered by generative artificial intelligence (AI) technologies. However, considering decisions in transportation investments and policies often carry significant socioeconomic and environmental consequences, surveys and interviews face unique challenges in integrating AI agents. This issue underscors the need for a rigorous, explainable, and resource-efficient approach that enhances participant engagement and ensures privacy. This paper bridges this gap by introducing a modular approach accompanied by a parameterized process for designing and deploying AI agents for surveys and interviews, thereby supporting decision-makings in high-stakes contexts. We detail the system architecture, integrating engineered prompts, specialized knowledge bases, and customizable, goal-oriented conversational logic. We demonstrate the adaptability, generalizability, and efficacy of our modular approach through three empirical studies: (1) travel preference surveys, highlighting conditional logic and multimodal (voice, text, and image generation) capabilities; (2) public opinion elicitation on a newly constructed, novel infrastructure project, showcasing question customization and multilingual (English and French) capabilities; and (3) expert consultations about the impact of technologies on future transportation systems, highlighting real-time, clarification request capabilities for open-ended questions, resilience in handling erratic inputs, and efficient transcript postprocessing. The results suggest that the AI agent increases completion rates and response quality. Furthermore, the modular approach demonstrates controllability, flexibility, and robustness while addressing key ethical, privacy, security, and token consumption concerns. We believe this work lays the foundation for next-generation surveys and interviews in transportation research.
{"title":"Modular AI agents for transportation surveys and interviews: Advancing engagement, transparency, and cost efficiency","authors":"Jiangbo Yu , Jinhua Zhao , Luis Miranda-Moreno , Matthew Korp","doi":"10.1016/j.commtr.2025.100172","DOIUrl":"10.1016/j.commtr.2025.100172","url":null,"abstract":"<div><div>Surveys and interviews—structured, semi-structured, or unstructured—are widely used for collecting insights on emerging or hypothetical scenarios. Traditional human-led methods often face challenges related to cost, scalability, and consistency. For example, distributed questionnaires lack the ability to provide real-time guidance and request immediate clarifications. Recently, various domains have begun to explore the use of conversational agents (chatbots) powered by generative artificial intelligence (AI) technologies. However, considering decisions in transportation investments and policies often carry significant socioeconomic and environmental consequences, surveys and interviews face unique challenges in integrating AI agents. This issue underscors the need for a rigorous, explainable, and resource-efficient approach that enhances participant engagement and ensures privacy. This paper bridges this gap by introducing a modular approach accompanied by a parameterized process for designing and deploying AI agents for surveys and interviews, thereby supporting decision-makings in high-stakes contexts. We detail the system architecture, integrating engineered prompts, specialized knowledge bases, and customizable, goal-oriented conversational logic. We demonstrate the adaptability, generalizability, and efficacy of our modular approach through three empirical studies: (1) travel preference surveys, highlighting conditional logic and multimodal (voice, text, and image generation) capabilities; (2) public opinion elicitation on a newly constructed, novel infrastructure project, showcasing question customization and multilingual (English and French) capabilities; and (3) expert consultations about the impact of technologies on future transportation systems, highlighting real-time, clarification request capabilities for open-ended questions, resilience in handling erratic inputs, and efficient transcript postprocessing. The results suggest that the AI agent increases completion rates and response quality. Furthermore, the modular approach demonstrates controllability, flexibility, and robustness while addressing key ethical, privacy, security, and token consumption concerns. We believe this work lays the foundation for next-generation surveys and interviews in transportation research.</div></div>","PeriodicalId":100292,"journal":{"name":"Communications in Transportation Research","volume":"5 ","pages":"Article 100172"},"PeriodicalIF":12.5,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143683927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-12DOI: 10.1016/j.commtr.2025.100165
Chris HC. Nguyen , James M. Shihua , Rhea P. Liem
Designing an optimal departure trajectory for an airport can minimize fuel emissions within the surrounding airspace and noise perceived by nearby populations, which brings positive sociological and economic implications in addition to environmental benefits. Yet, designing a trajectory that considers realistic operational constraints could be complex and, consequently, computationally expensive. Traditional trajectory optimization methods often simplify the problem to manage computational costs, which leads to compromised accuracy. To overcome this challenge, we propose a reinforcement learning (RL) approach that can satisfy multidisciplinary constraints by leveraging accurately modeled flight dynamics, high-fidelity population data, and topological data. This is achieved by establishing a comprehensive, physically-consistent simulated environment for the learning algorithm, while keeping the computational cost low. Instead of directly designing the trajectory itself, we train an RL agent to control the aircraft, whose trajectory is then considered as optimal. We model the RL problem as a continuous Markov decision process and employ the soft actor-critic architecture. By changing the relative importance of fuel consumption and noise in the optimization objective, we can obtain different optimum trajectories that are well-suited to the specific region of interest. Not surprisingly, a trade-off between fuel consumption and noise impact is observed in our results. This developed framework provides a more accurate and sophisticated approach for departure trajectory optimization, whose results are beneficial for future airspace design and can support sustainable aviation efforts.
{"title":"Fuel- and noise-minimal departure trajectory using deep reinforcement learning with aircraft dynamics and topography constraints","authors":"Chris HC. Nguyen , James M. Shihua , Rhea P. Liem","doi":"10.1016/j.commtr.2025.100165","DOIUrl":"10.1016/j.commtr.2025.100165","url":null,"abstract":"<div><div>Designing an optimal departure trajectory for an airport can minimize fuel emissions within the surrounding airspace and noise perceived by nearby populations, which brings positive sociological and economic implications in addition to environmental benefits. Yet, designing a trajectory that considers realistic operational constraints could be complex and, consequently, computationally expensive. Traditional trajectory optimization methods often simplify the problem to manage computational costs, which leads to compromised accuracy. To overcome this challenge, we propose a reinforcement learning (RL) approach that can satisfy multidisciplinary constraints by leveraging accurately modeled flight dynamics, high-fidelity population data, and topological data. This is achieved by establishing a comprehensive, physically-consistent simulated environment for the learning algorithm, while keeping the computational cost low. Instead of directly designing the trajectory itself, we train an RL agent to control the aircraft, whose trajectory is then considered as optimal. We model the RL problem as a continuous Markov decision process and employ the soft actor-critic architecture. By changing the relative importance of fuel consumption and noise in the optimization objective, we can obtain different optimum trajectories that are well-suited to the specific region of interest. Not surprisingly, a trade-off between fuel consumption and noise impact is observed in our results. This developed framework provides a more accurate and sophisticated approach for departure trajectory optimization, whose results are beneficial for future airspace design and can support sustainable aviation efforts.</div></div>","PeriodicalId":100292,"journal":{"name":"Communications in Transportation Research","volume":"5 ","pages":"Article 100165"},"PeriodicalIF":12.5,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143600833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The desired time headway is often used to incorporate human behavior in car-following (CF) models by treating it as a measure of driver capability in car-following interactions, which is latent and cannot be directly observed. However, the desired time headway is often assumed to be a constant value for a driver across all speed levels. This assumption can be unrealistic and unreliable. Studies indicate that the mean time headway during steady-state car-following interactions quantifies the desired time headway, but inconsistent conditions for steady-state interactions in the literature make such assessments challenging. This study aims to reassess the desired time headway as a metric of driver capability in car-following interactions. Specifically, it identifies steady-state car-following conditions for reliable desired time headway estimates via the NGSIM I80 dataset. The results show that using a sustenance window of 3.5 s with an acceleration threshold of ±0.75 m/s2 and a relative speed of ±1.52 m/s reduces transient and sporadic time headway observations, which in turn improves the reliability of the desired time headway. The obtained conditions are applied to the car-following trajectories in a driving simulator experiment, designed to focus on the steady-state at two speed levels (85 and 40 km/h) in traditional environment (TE) and connected environment (CE). The results indicate that the desired time headway is significantly longer in high-speed car-following (85 km/h) than in low-speed car-following (40 km/h) in the TE and CE and that driving aids help maintain more consistent desired time headways. A comparison of the TE and CE in low-speed car-following shows that most drivers prioritize safety by increasing the desired time headway in the CE. However, in high-speed car-following, the mean desired time headway is not significantly different between the TE and the CE on an aggregate level. Furthermore, the study presents a generalized linear mixed model (GLMM) describing the desired time headway selection in different conditions, identifying age, gender, and crash involvement as significant variables other than the driving conditions.
{"title":"Reassessing desired time headway as a measure of car-following capability: Definition, quantification, and associated factors","authors":"Shubham Parashar , Zuduo Zheng , Andry Rakotonirainy , Md Mazharul Haque","doi":"10.1016/j.commtr.2025.100169","DOIUrl":"10.1016/j.commtr.2025.100169","url":null,"abstract":"<div><div>The desired time headway is often used to incorporate human behavior in car-following (CF) models by treating it as a measure of driver capability in car-following interactions, which is latent and cannot be directly observed. However, the desired time headway is often assumed to be a constant value for a driver across all speed levels. This assumption can be unrealistic and unreliable. Studies indicate that the mean time headway during steady-state car-following interactions quantifies the desired time headway, but inconsistent conditions for steady-state interactions in the literature make such assessments challenging. This study aims to reassess the desired time headway as a metric of driver capability in car-following interactions. Specifically, it identifies steady-state car-following conditions for reliable desired time headway estimates via the NGSIM I80 dataset. The results show that using a sustenance window of 3.5 s with an acceleration threshold of ±0.75 m/s<sup>2</sup> and a relative speed of ±1.52 m/s reduces transient and sporadic time headway observations, which in turn improves the reliability of the desired time headway. The obtained conditions are applied to the car-following trajectories in a driving simulator experiment, designed to focus on the steady-state at two speed levels (85 and 40 km/h) in traditional environment (TE) and connected environment (CE). The results indicate that the desired time headway is significantly longer in high-speed car-following (85 km/h) than in low-speed car-following (40 km/h) in the TE and CE and that driving aids help maintain more consistent desired time headways. A comparison of the TE and CE in low-speed car-following shows that most drivers prioritize safety by increasing the desired time headway in the CE. However, in high-speed car-following, the mean desired time headway is not significantly different between the TE and the CE on an aggregate level. Furthermore, the study presents a generalized linear mixed model (GLMM) describing the desired time headway selection in different conditions, identifying age, gender, and crash involvement as significant variables other than the driving conditions.</div></div>","PeriodicalId":100292,"journal":{"name":"Communications in Transportation Research","volume":"5 ","pages":"Article 100169"},"PeriodicalIF":12.5,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143609140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-12DOI: 10.1016/j.commtr.2025.100168
Zhuowei Wang , Yiyang Peng , Hongxing Yang , Anthony Chen
{"title":"Driving under the sun: Future of solar buses in Hong Kong, China","authors":"Zhuowei Wang , Yiyang Peng , Hongxing Yang , Anthony Chen","doi":"10.1016/j.commtr.2025.100168","DOIUrl":"10.1016/j.commtr.2025.100168","url":null,"abstract":"","PeriodicalId":100292,"journal":{"name":"Communications in Transportation Research","volume":"5 ","pages":"Article 100168"},"PeriodicalIF":12.5,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143600832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-11DOI: 10.1016/j.commtr.2025.100167
Zijing He , Ying Yang , Yan Mu , Xiaobo Qu
The sustainable transportation strategy emphasizes the enormous potential of driverless buses and enables their gradual integration into society over the coming decade. Therefore, it is crucial to cultivate public acceptance of driverless buses. This study is based on the extended unified theory of acceptance and use of technology (UTAUT2) and empathy theory. The structural equation modeling (SEM) method was used to analyze valid survey responses from 852 participants residing in China. Both the UTAUT2 factors and the anthropomorphic perception components independently predicted the public acceptance of driverless buses. This study indicates that future campaigns promoting driverless buses should highlight not only their functional value but also their perceived socioemotional value. Considering users’ psychological characteristics (such as empathy and communal traits) can help improve the travel experience, accelerate the transition to emerging innovative technologies, and achieve the potential benefits of intelligent and sustainable transportation.
{"title":"Public acceptance of driverless buses: An extended UTAUT2 model with anthropomorphic perception and empathy","authors":"Zijing He , Ying Yang , Yan Mu , Xiaobo Qu","doi":"10.1016/j.commtr.2025.100167","DOIUrl":"10.1016/j.commtr.2025.100167","url":null,"abstract":"<div><div>The sustainable transportation strategy emphasizes the enormous potential of driverless buses and enables their gradual integration into society over the coming decade. Therefore, it is crucial to cultivate public acceptance of driverless buses. This study is based on the extended unified theory of acceptance and use of technology (UTAUT2) and empathy theory. The structural equation modeling (SEM) method was used to analyze valid survey responses from 852 participants residing in China. Both the UTAUT2 factors and the anthropomorphic perception components independently predicted the public acceptance of driverless buses. This study indicates that future campaigns promoting driverless buses should highlight not only their functional value but also their perceived socioemotional value. Considering users’ psychological characteristics (such as empathy and communal traits) can help improve the travel experience, accelerate the transition to emerging innovative technologies, and achieve the potential benefits of intelligent and sustainable transportation.</div></div>","PeriodicalId":100292,"journal":{"name":"Communications in Transportation Research","volume":"5 ","pages":"Article 100167"},"PeriodicalIF":12.5,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143592787","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-27DOI: 10.1016/j.commtr.2025.100164
Davies Rowan , Haitao He , Fang Hui , Ali Yasir , Quddus Mohammed
Microscopic traffic flow models and simulations are crucial for capturing vehicle interactions and analyzing traffic. They can provide critical insights for transport planning, management, and operation through scenario testing and optimization. With the growing availability of high-resolution data and rapid advancements in machine learning (ML) techniques, ML-based microscopic traffic flow models are emerging as promising alternatives to traditional physical models, offering improved accuracy and greater flexibility. Although many models have been developed, comprehensive studies that critically assess the strengths and weaknesses of these models and the overall ML-based approach are lacking. To fill this gap, this study presents a systematic review of ML-based microscopic traffic flow models and simulations, covering both car-following and lane-changing behaviors. This review identifies key areas for future research, including the development of methods to improve model transferability across different operational design domains, the need to capture both driver-specific and location-specific heterogeneity via benchmark datasets, and the incorporation of advanced ML techniques such as meta-learning, federated learning, and causal learning. Additionally, enhancing model interpretability, accounting for mesoscopic and macroscopic traffic impacts, incorporating physical constraints in model training, and developing ML models designed for autonomous vehicles are crucial for the practical adoption of ML-based microscopic models in traffic simulations.
{"title":"A systematic review of machine learning-based microscopic traffic flow models and simulations","authors":"Davies Rowan , Haitao He , Fang Hui , Ali Yasir , Quddus Mohammed","doi":"10.1016/j.commtr.2025.100164","DOIUrl":"10.1016/j.commtr.2025.100164","url":null,"abstract":"<div><div>Microscopic traffic flow models and simulations are crucial for capturing vehicle interactions and analyzing traffic. They can provide critical insights for transport planning, management, and operation through scenario testing and optimization. With the growing availability of high-resolution data and rapid advancements in machine learning (ML) techniques, ML-based microscopic traffic flow models are emerging as promising alternatives to traditional physical models, offering improved accuracy and greater flexibility. Although many models have been developed, comprehensive studies that critically assess the strengths and weaknesses of these models and the overall ML-based approach are lacking. To fill this gap, this study presents a systematic review of ML-based microscopic traffic flow models and simulations, covering both car-following and lane-changing behaviors. This review identifies key areas for future research, including the development of methods to improve model transferability across different operational design domains, the need to capture both driver-specific and location-specific heterogeneity via benchmark datasets, and the incorporation of advanced ML techniques such as meta-learning, federated learning, and causal learning. Additionally, enhancing model interpretability, accounting for mesoscopic and macroscopic traffic impacts, incorporating physical constraints in model training, and developing ML models designed for autonomous vehicles are crucial for the practical adoption of ML-based microscopic models in traffic simulations.</div></div>","PeriodicalId":100292,"journal":{"name":"Communications in Transportation Research","volume":"5 ","pages":"Article 100164"},"PeriodicalIF":12.5,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143510710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-13DOI: 10.1016/j.commtr.2025.100163
Xiaohui Zhang, Jie Sun, Jian Sun
The stochastic fundamental diagram (SFD), which describes the stochasticity of the macroscopic relations of traffic flow, plays a crucial role in understanding the uncertainty of traffic flow evolution and developing robust traffic control strategies. Although many efforts have been made to reproduce the SFD via various methods, few studies have focused on the analytical modeling of the SFD, particularly linking the macroscopic relations with microscopic behaviors. This study fills this gap by proposing a general micro-macroscopic modeling approach, which uses probabilistic leader–follower behavior to derive the macroscopic relations of a platoon and is referred to as the leader–follower conditional distribution-based stochastic traffic modeling (LFCD-STM) framework. Specifically, we first define a conditional probability distribution of speed for the leader‒follower pair according to Brownian dynamics, which is proven to be a general representation of the longitudinal interaction and compatible with classical car-following models. As a result, we can describe the joint distribution of vehicle speeds of the platoon through Markov chain modeling and further derive the macroscopic relations (e.g., the mean flow‒density relation and its variance) under equilibrium conditions. On the basis of this general micro-macroscopic framework, we utilize the maximum entropy approach to theoretically derive the SFD model, in which we provide a specific conditional distribution for longitudinal interaction and thus solve the analytical functions of the mean and variance of FD. The performance of the maximum entropy-based SFD model is thoroughly validated with the NGSIM I-80, US-101 and HighD datasets. The high consistency between the theoretical results and empirical results demonstrates the soundness of the LFCD-STM framework and the maximum entropy-based SFD model. Finally, the proposed SFD model has practical implications for promoting smoother driving behaviors to suppress stochasticity and improve traffic flow.
{"title":"On the stochastic fundamental diagram: A general micro-macroscopic traffic flow modeling framework","authors":"Xiaohui Zhang, Jie Sun, Jian Sun","doi":"10.1016/j.commtr.2025.100163","DOIUrl":"10.1016/j.commtr.2025.100163","url":null,"abstract":"<div><div>The stochastic fundamental diagram (SFD), which describes the stochasticity of the macroscopic relations of traffic flow, plays a crucial role in understanding the uncertainty of traffic flow evolution and developing robust traffic control strategies. Although many efforts have been made to reproduce the SFD via various methods, few studies have focused on the analytical modeling of the SFD, particularly linking the macroscopic relations with microscopic behaviors. This study fills this gap by proposing a general micro-macroscopic modeling approach, which uses probabilistic leader–follower behavior to derive the macroscopic relations of a platoon and is referred to as the leader–follower conditional distribution-based stochastic traffic modeling (LFCD-STM) framework. Specifically, we first define a conditional probability distribution of speed for the leader‒follower pair according to Brownian dynamics, which is proven to be a general representation of the longitudinal interaction and compatible with classical car-following models. As a result, we can describe the joint distribution of vehicle speeds of the platoon through Markov chain modeling and further derive the macroscopic relations (e.g., the mean flow‒density relation and its variance) under equilibrium conditions. On the basis of this general micro-macroscopic framework, we utilize the maximum entropy approach to theoretically derive the SFD model, in which we provide a specific conditional distribution for longitudinal interaction and thus solve the analytical functions of the mean and variance of FD. The performance of the maximum entropy-based SFD model is thoroughly validated with the NGSIM I-80, US-101 and HighD datasets. The high consistency between the theoretical results and empirical results demonstrates the soundness of the LFCD-STM framework and the maximum entropy-based SFD model. Finally, the proposed SFD model has practical implications for promoting smoother driving behaviors to suppress stochasticity and improve traffic flow.</div></div>","PeriodicalId":100292,"journal":{"name":"Communications in Transportation Research","volume":"5 ","pages":"Article 100163"},"PeriodicalIF":12.5,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143394682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-13DOI: 10.1016/j.commtr.2025.100162
Dongdong He , Ying Yang , Andrea Morichetta , Jianjun Wu
Electric vehicles (EVs) are a promising solution to reduce greenhouse gas emissions and foster sustainable urban transportation. However, the widespread adoption of EVs is hindered by range anxiety and the fear of running outnqt of battery before reaching a charging station. To address this challenge, we propose a novel drone-to-vehicle (D2V) charging system, which leverages drones as mobile charging units to provide on-the-go recharging services for EVs. This study explores the operational and technical aspects of the D2V system, including drone charging docks, order-dispatching strategies, and dynamic drone reallocation mechanisms. A key contribution is to introduce a concept of the adaptive route meetup location selection (ARMLS), which optimizes drone dispatch and pricing models based on real-time parameters such as distance, battery levels, and traffic conditions. Our analysis highlights the potential of D2V systems to alleviate range anxiety, enhance road network efficiency through dynamic traffic redistribution, and reduce carbon emissions by integrating renewable energy sources. The study suggests that implementing D2V services can significantly improve the reliability of EVs in critical situations while fostering broader EV adoption. Future work will focus on reinforcement learning-based optimization algorithms to further improve drone operations and address scalability challenges. The proposed D2V system represents a crucial step toward a sustainable and efficient urban mobility future.
{"title":"Drone to recharge electric vehicles: Operations, benefits, and challenges","authors":"Dongdong He , Ying Yang , Andrea Morichetta , Jianjun Wu","doi":"10.1016/j.commtr.2025.100162","DOIUrl":"10.1016/j.commtr.2025.100162","url":null,"abstract":"<div><div>Electric vehicles (EVs) are a promising solution to reduce greenhouse gas emissions and foster sustainable urban transportation. However, the widespread adoption of EVs is hindered by range anxiety and the fear of running outnqt of battery before reaching a charging station. To address this challenge, we propose a novel drone-to-vehicle (D2V) charging system, which leverages drones as mobile charging units to provide on-the-go recharging services for EVs. This study explores the operational and technical aspects of the D2V system, including drone charging docks, order-dispatching strategies, and dynamic drone reallocation mechanisms. A key contribution is to introduce a concept of the adaptive route meetup location selection (ARMLS), which optimizes drone dispatch and pricing models based on real-time parameters such as distance, battery levels, and traffic conditions. Our analysis highlights the potential of D2V systems to alleviate range anxiety, enhance road network efficiency through dynamic traffic redistribution, and reduce carbon emissions by integrating renewable energy sources. The study suggests that implementing D2V services can significantly improve the reliability of EVs in critical situations while fostering broader EV adoption. Future work will focus on reinforcement learning-based optimization algorithms to further improve drone operations and address scalability challenges. The proposed D2V system represents a crucial step toward a sustainable and efficient urban mobility future.</div></div>","PeriodicalId":100292,"journal":{"name":"Communications in Transportation Research","volume":"5 ","pages":"Article 100162"},"PeriodicalIF":12.5,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143402606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-28DOI: 10.1016/j.commtr.2025.100161
Qiyuan Liu , Jiawei Zhang , Jingwei Ge , Cheng Chang , Zhiheng Li , Shen Li , Li Li
With increasing public concern about autonomous vehicles, there is a growing demand for developing explainable autonomous driving planning technology. Traditional risk field methods use handcrafted potential field models to explain driving risks in a scenario. When explaining highly interactive scenarios, such prior knowledge-based methods still lack flexibility, leading to insufficient interpretability. In this study, we first propose the concept of a risk map that can be seen as a discrete, ego vehicle's view form of the risk field. We then design an explainable trajectory planning framework that integrates risk maps with the candidate trajectory tree generated by trajectory prediction models. We further filter safe candidate trajectories from the tree on the basis of their cumulative risks in the risk maps and then select the optimal trajectory to execute by balancing other driving objectives. The validation results in various real-world scenarios demonstrate that our method can generate understandable risk maps and explain the risk differences between trajectories. Open-loop experiments show our model's advantages in terms of safety and efficiency for the trajectory planning task. An analysis of runtime demonstrated its potential for real-world applications.
{"title":"Integrating spatial-temporal risk maps with candidate trajectory trees for explainable autonomous driving planning","authors":"Qiyuan Liu , Jiawei Zhang , Jingwei Ge , Cheng Chang , Zhiheng Li , Shen Li , Li Li","doi":"10.1016/j.commtr.2025.100161","DOIUrl":"10.1016/j.commtr.2025.100161","url":null,"abstract":"<div><div>With increasing public concern about autonomous vehicles, there is a growing demand for developing explainable autonomous driving planning technology. Traditional risk field methods use handcrafted potential field models to explain driving risks in a scenario. When explaining highly interactive scenarios, such prior knowledge-based methods still lack flexibility, leading to insufficient interpretability. In this study, we first propose the concept of a risk map that can be seen as a discrete, ego vehicle's view form of the risk field. We then design an explainable trajectory planning framework that integrates risk maps with the candidate trajectory tree generated by trajectory prediction models. We further filter safe candidate trajectories from the tree on the basis of their cumulative risks in the risk maps and then select the optimal trajectory to execute by balancing other driving objectives. The validation results in various real-world scenarios demonstrate that our method can generate understandable risk maps and explain the risk differences between trajectories. Open-loop experiments show our model's advantages in terms of safety and efficiency for the trajectory planning task. An analysis of runtime demonstrated its potential for real-world applications.</div></div>","PeriodicalId":100292,"journal":{"name":"Communications in Transportation Research","volume":"5 ","pages":"Article 100161"},"PeriodicalIF":12.5,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143161572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}