Pub Date : 2024-02-13DOI: 10.1109/OJIA.2024.3365576
Muhammad Usama;Muhammad Naveed Aman
Cybersecurity is important in the realization of various smart grid technologies. Several studies have been conducted to discuss different types of cyberattacks and provide their countermeasures. The false command injection attack (FCIA) is considered one of the most critical attacks that have been studied. Various techniques have been proposed in the literature to detect FCIAs on different components of smart grids. The predominant focus of current surveys lies on FCIAs and detection techniques for such attacks. This article presents a survey of existing works on FCIAs and classifies FCIAs in smart grids according to the targeted component. The impacts of FCIAs on smart grids are also discussed. Subsequently, this article provides an extensive review of detection studies, categorizing them based on the type of detection technique employed.
{"title":"Command Injection Attacks in Smart Grids: A Survey","authors":"Muhammad Usama;Muhammad Naveed Aman","doi":"10.1109/OJIA.2024.3365576","DOIUrl":"10.1109/OJIA.2024.3365576","url":null,"abstract":"Cybersecurity is important in the realization of various smart grid technologies. Several studies have been conducted to discuss different types of cyberattacks and provide their countermeasures. The false command injection attack (FCIA) is considered one of the most critical attacks that have been studied. Various techniques have been proposed in the literature to detect FCIAs on different components of smart grids. The predominant focus of current surveys lies on FCIAs and detection techniques for such attacks. This article presents a survey of existing works on FCIAs and classifies FCIAs in smart grids according to the targeted component. The impacts of FCIAs on smart grids are also discussed. Subsequently, this article provides an extensive review of detection studies, categorizing them based on the type of detection technique employed.","PeriodicalId":100629,"journal":{"name":"IEEE Open Journal of Industry Applications","volume":"5 ","pages":"75-85"},"PeriodicalIF":0.0,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10433776","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139945611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-22DOI: 10.1109/OJIA.2024.3353309
Xingxuan Huang;Dingrui Li;Min Lin;Leon M. Tolbert;Fred Wang;William Giewont
This article presents a desat protection scheme with the ultrafast response for high-voltage (>3.3 kV) SiC MOSFETs. Its working principle is the same as the conventional desat protection designed for high-voltage SiC MOSFETs, yet its blanking time is implemented by fully considering the influence of high negative dvds/dt