Pub Date : 2023-04-13DOI: 10.1109/OJIA.2023.3266882
Daniel Dos Santos Mota;Joseph Kiran Banda;Ayotunde Adekunle Adeyemo;Elisabetta Tedeschi
Power hardware-in-the-loop (PHIL) is an experimental technique that uses power amplifiers and real-time simulators for studying the dynamics of power electronic converters and electrical grids. Power hardware-in-the-loop (PHIL) tests provide the means for functional validation of advanced control algorithms without the burden of building high-power prototypes during early technology readiness levels. However, replicating the behavior of high-power systems with laboratory scaled-down converters (SDCs) can be complex. Inaccurate scaling of the SDCs coupled with an exclusive focus on instantaneous voltages and currents at the fundamental frequency can lead to PHIL results that are only partially relatable to the high-power systems under study. Test beds that fail to represent switching frequency harmonics cannot be used for studying harmonic penetration or loss characterization of large-scale converters. To tackle this issue, this article proposes a harmonic-invariant scaling method that exploits the volt-ampere rating of preexisting laboratory SDCs for more accurately replicating harmonic phenomena in a PHIL test bench. First, a theoretical analysis of the proposed method is presented and, subsequently, the method is validated with MATLAB simulations and experimental tests.
{"title":"Harmonic-Invariant Scaling Method for Power Electronic Converters in Power Hardware-in-the-Loop Test Beds","authors":"Daniel Dos Santos Mota;Joseph Kiran Banda;Ayotunde Adekunle Adeyemo;Elisabetta Tedeschi","doi":"10.1109/OJIA.2023.3266882","DOIUrl":"https://doi.org/10.1109/OJIA.2023.3266882","url":null,"abstract":"Power hardware-in-the-loop (PHIL) is an experimental technique that uses power amplifiers and real-time simulators for studying the dynamics of power electronic converters and electrical grids. Power hardware-in-the-loop (PHIL) tests provide the means for functional validation of advanced control algorithms without the burden of building high-power prototypes during early technology readiness levels. However, replicating the behavior of high-power systems with laboratory scaled-down converters (SDCs) can be complex. Inaccurate scaling of the SDCs coupled with an exclusive focus on instantaneous voltages and currents at the fundamental frequency can lead to PHIL results that are only partially relatable to the high-power systems under study. Test beds that fail to represent switching frequency harmonics cannot be used for studying harmonic penetration or loss characterization of large-scale converters. To tackle this issue, this article proposes a harmonic-invariant scaling method that exploits the volt-ampere rating of preexisting laboratory SDCs for more accurately replicating harmonic phenomena in a PHIL test bench. First, a theoretical analysis of the proposed method is presented and, subsequently, the method is validated with MATLAB simulations and experimental tests.","PeriodicalId":100629,"journal":{"name":"IEEE Open Journal of Industry Applications","volume":"4 ","pages":"139-148"},"PeriodicalIF":0.0,"publicationDate":"2023-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8782707/10008994/10101823.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50350794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-05DOI: 10.1109/OJIA.2023.3264651
Juan Domínguez-Jiménez;Nilson Henao;Kodjo Agbossou;Alejandro Parrado;Javier Campillo;Shaival H. Nagarsheth
Demand response and distributed energy storage play a crucial role in improving the efficiency and reliability of electric grids. This article describes a strategy for optimally integrating distributed energy storage units within a forward market to address space heating demand under a Stackelberg game in isolated microgrids. The proposed strategy performs distributed management in an offline fashion through proximal decomposition methods. It leverages stochastic programming to consider user flexibility degree and wind power generation uncertainties. Also, flexibility for demand response is realized through electric thermal storage (ETS). The performance of the proposed strategy is evaluated via simulation studies carried out through a case study in Kuujjuaq, Quebec. Ten residential agents compose the demand side, each with flexibility levels and economic preferences. The simulation results show that adapting ETS results in economic savings for the customers. Those benefits increased in the presence of wind power, from 25% to 40% on average. Likewise, coordinated strategies led the coordinator to obtain reduced operational costs and peak-to-average ratio by over 35% and 56%, respectively. The proposed approach reveals that optimal coordination of ETS in the presence of dynamic tariffs can reduce diesel consumption, maximize renewable production and reduce grid stress.
{"title":"A Stochastic Approach to Integrating Electrical Thermal Storage in Distributed Demand Response for Nordic Communities With Wind Power Generation","authors":"Juan Domínguez-Jiménez;Nilson Henao;Kodjo Agbossou;Alejandro Parrado;Javier Campillo;Shaival H. Nagarsheth","doi":"10.1109/OJIA.2023.3264651","DOIUrl":"https://doi.org/10.1109/OJIA.2023.3264651","url":null,"abstract":"Demand response and distributed energy storage play a crucial role in improving the efficiency and reliability of electric grids. This article describes a strategy for optimally integrating distributed energy storage units within a forward market to address space heating demand under a Stackelberg game in isolated microgrids. The proposed strategy performs distributed management in an offline fashion through proximal decomposition methods. It leverages stochastic programming to consider user flexibility degree and wind power generation uncertainties. Also, flexibility for demand response is realized through electric thermal storage (ETS). The performance of the proposed strategy is evaluated via simulation studies carried out through a case study in Kuujjuaq, Quebec. Ten residential agents compose the demand side, each with flexibility levels and economic preferences. The simulation results show that adapting ETS results in economic savings for the customers. Those benefits increased in the presence of wind power, from 25% to 40% on average. Likewise, coordinated strategies led the coordinator to obtain reduced operational costs and peak-to-average ratio by over 35% and 56%, respectively. The proposed approach reveals that optimal coordination of ETS in the presence of dynamic tariffs can reduce diesel consumption, maximize renewable production and reduce grid stress.","PeriodicalId":100629,"journal":{"name":"IEEE Open Journal of Industry Applications","volume":"4 ","pages":"121-138"},"PeriodicalIF":0.0,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8782707/10008994/10093061.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50350793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-30DOI: 10.1109/OJIA.2023.3263182
Georges Zissis;Paolo Bertoldi
Research and development over the last century have historically concentrated on improving one specific aspect of energy efficiency. The market penetration rate for systems using solid-state light sources is currently between 40 and 45 percent, and it is rising. This article provides an update on the state of lighting technology based on the compilation of more than 160 recent documents. The only widespread use of solid-state lighting sources over the next years might help reduce greenhouse gas emissions by up to 500 Mtn per year and decrease electrical energy utilization for illumination by up to 4% by 2030. But this forecast could be severely affected by the “rebound effect.” Switching to the SSL 2