Pub Date : 2025-06-12DOI: 10.1109/OJIA.2025.3579641
Joel Filipe Guerreiro;Tiago Davi Curi Busarello;Hildo Guillardi;Igor Alves Maronni;José De A. Olímpio Filho;Helmo K. Morales Paredes;José A. Pomilio
The grid-connected inverter is responsible for exchanging energy between the electrical grid and energy sources, such as photovoltaic and storage. The interconnection stability of these inverters may be addressed via their impedance characteristics, which comprise the control system and the ac filter. In many cases, the stability deteriorates when these devices are placed in weak grids due to the known effects of phase-locked loop and voltage feedforward. LCL-type ac filters and resonant-based controllers also pose challenges to the stability of the operation. This work proposes an approach to impedance shaping to stabilize LCL-type grid-connected inverters in nonideal grids with long feeders and disturbing loads. The method relies on regulating the voltage feedforward gain by disturbing and adapting the system based on the distortion of the output current. The technique enables the self-stabilization of the inverter even when an instability is already triggered and without the need for impedance measurements or processor-intensive algorithms. A frequency sweep verification is performed to measure the converter’s impedance and validate it against the theoretical one. An hardware experiment is implemented to evaluate the stability of the converter for large grid impedance variations using the proposed impedance shaping approach.
{"title":"Self-Stabilization of Grid-Connected Inverters by Means of an Impedance-Based Adaptive Controller","authors":"Joel Filipe Guerreiro;Tiago Davi Curi Busarello;Hildo Guillardi;Igor Alves Maronni;José De A. Olímpio Filho;Helmo K. Morales Paredes;José A. Pomilio","doi":"10.1109/OJIA.2025.3579641","DOIUrl":"https://doi.org/10.1109/OJIA.2025.3579641","url":null,"abstract":"The grid-connected inverter is responsible for exchanging energy between the electrical grid and energy sources, such as photovoltaic and storage. The interconnection stability of these inverters may be addressed via their impedance characteristics, which comprise the control system and the ac filter. In many cases, the stability deteriorates when these devices are placed in weak grids due to the known effects of phase-locked loop and voltage feedforward. <italic>LCL</i>-type ac filters and resonant-based controllers also pose challenges to the stability of the operation. This work proposes an approach to impedance shaping to stabilize <italic>LCL</i>-type grid-connected inverters in nonideal grids with long feeders and disturbing loads. The method relies on regulating the voltage feedforward gain by disturbing and adapting the system based on the distortion of the output current. The technique enables the self-stabilization of the inverter even when an instability is already triggered and without the need for impedance measurements or processor-intensive algorithms. A frequency sweep verification is performed to measure the converter’s impedance and validate it against the theoretical one. An hardware experiment is implemented to evaluate the stability of the converter for large grid impedance variations using the proposed impedance shaping approach.","PeriodicalId":100629,"journal":{"name":"IEEE Open Journal of Industry Applications","volume":"6 ","pages":"366-381"},"PeriodicalIF":7.9,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11034728","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144519303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-11DOI: 10.1109/OJIA.2025.3578884
Mohammad AlShaikh Saleh;Alamera Nouran Alquennah;Ali Ghrayeb;Shady S. Refaat;Haitham Abu-Rub;Sunil P. Khatri
This article presents a review of the aging mechanisms and lifetime estimation methodologies for medium and high-voltage cross-linked polyethylene (XLPE) cables under harsh environmental service conditions, which are integral to the reliability and safety of modern electrical power systems. This article first briefly delves into the various aging mechanisms experienced by power cables, describing the physical and chemical processes that underlie the degradation of XLPE cable insulation over time. The discussion then extends to various life models: physical life models that describe material property changes under operational stresses, phenomenological life models and multistress models that consider the concurrent impact of multiple stressors on cable aging, and probabilistic and reliability lifetime models, which introduce a statistical perspective to the remaining lifetime estimation, essential for risk assessment in power systems. The review also explores frequency-based life models that investigate the effects of operational frequencies on cable longevity. A significant focus is placed on enlargement laws and electrical treeing life models, shedding light on specific degradation phenomena pertinent to high-voltage insulation. This article next examines artificial intelligence–based life models, a cutting-edge approach that integrates traditional knowledge with advanced computational techniques, such as machine learning and data analytics, for enhanced prediction of cable life expectancy. Future research directions are also proposed in this article, which proposes a finite element method-AI Assisted partial discharge analysis and remaining useful lifetime estimation model for XLPE cables. This comprehensive review aims to serve as an indispensable resource for engineers and researchers, offering a holistic understanding of the state-of-the-art and future directions in the domain of cable life estimation and prognostics.
{"title":"A Review on the Lifetime Estimation Methods of XLPE Power Cables","authors":"Mohammad AlShaikh Saleh;Alamera Nouran Alquennah;Ali Ghrayeb;Shady S. Refaat;Haitham Abu-Rub;Sunil P. Khatri","doi":"10.1109/OJIA.2025.3578884","DOIUrl":"https://doi.org/10.1109/OJIA.2025.3578884","url":null,"abstract":"This article presents a review of the aging mechanisms and lifetime estimation methodologies for medium and high-voltage cross-linked polyethylene (XLPE) cables under harsh environmental service conditions, which are integral to the reliability and safety of modern electrical power systems. This article first briefly delves into the various aging mechanisms experienced by power cables, describing the physical and chemical processes that underlie the degradation of XLPE cable insulation over time. The discussion then extends to various life models: physical life models that describe material property changes under operational stresses, phenomenological life models and multistress models that consider the concurrent impact of multiple stressors on cable aging, and probabilistic and reliability lifetime models, which introduce a statistical perspective to the remaining lifetime estimation, essential for risk assessment in power systems. The review also explores frequency-based life models that investigate the effects of operational frequencies on cable longevity. A significant focus is placed on enlargement laws and electrical treeing life models, shedding light on specific degradation phenomena pertinent to high-voltage insulation. This article next examines artificial intelligence–based life models, a cutting-edge approach that integrates traditional knowledge with advanced computational techniques, such as machine learning and data analytics, for enhanced prediction of cable life expectancy. Future research directions are also proposed in this article, which proposes a finite element method-AI Assisted partial discharge analysis and remaining useful lifetime estimation model for XLPE cables. This comprehensive review aims to serve as an indispensable resource for engineers and researchers, offering a holistic understanding of the state-of-the-art and future directions in the domain of cable life estimation and prognostics.","PeriodicalId":100629,"journal":{"name":"IEEE Open Journal of Industry Applications","volume":"6 ","pages":"445-489"},"PeriodicalIF":7.9,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11030829","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144597893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-30DOI: 10.1109/OJIA.2025.3565905
Ahmed A. Ibrahim;Michele Darisi;Tommaso Caldognetto;Davide Biadene;Paolo Magnone;Paolo Mattavelli
Triple active bridge converter, an isolated multiport converter, connects three dc ports via a three-terminal high-frequency transformer, enabling zero voltage switching (ZVS) without the need for additional snubber circuits. However, under certain loading conditions ZVS is lost and rms currents increase. This article introduces a model-free, online optimization method using multi-dimensional ripple correlation control (MD-RCC) to ensure ZVS operation while reducing rms currents. The MD-RCC is an online model-free approach, providing robust performance against parameter uncertainties or operational variations. Two distinct methods are utilized to evaluate the cost function online. The first method involves the oversampling of the transformer currents. The second approach relies on the correlation between the EMI noise level and the hard switching of the devices, providing a simpler alternative to oversampling techniques. The proposed MD-RCC technique has been validated through both simulation and experimental testing on a 5 kW prototype, demonstrating its efficacy in optimizing ZVS, reducing EMI noise, and rms currents.
{"title":"EMI-Silent Operation of Triple Active Bridge Converters With Online Model-Free ZVS Optimization and RMS Current Reduction","authors":"Ahmed A. Ibrahim;Michele Darisi;Tommaso Caldognetto;Davide Biadene;Paolo Magnone;Paolo Mattavelli","doi":"10.1109/OJIA.2025.3565905","DOIUrl":"https://doi.org/10.1109/OJIA.2025.3565905","url":null,"abstract":"Triple active bridge converter, an isolated multiport converter, connects three dc ports via a three-terminal high-frequency transformer, enabling zero voltage switching (ZVS) without the need for additional snubber circuits. However, under certain loading conditions ZVS is lost and rms currents increase. This article introduces a model-free, online optimization method using multi-dimensional ripple correlation control (MD-RCC) to ensure ZVS operation while reducing rms currents. The MD-RCC is an online model-free approach, providing robust performance against parameter uncertainties or operational variations. Two distinct methods are utilized to evaluate the cost function online. The first method involves the oversampling of the transformer currents. The second approach relies on the correlation between the EMI noise level and the hard switching of the devices, providing a simpler alternative to oversampling techniques. The proposed MD-RCC technique has been validated through both simulation and experimental testing on a 5 kW prototype, demonstrating its efficacy in optimizing ZVS, reducing EMI noise, and rms currents.","PeriodicalId":100629,"journal":{"name":"IEEE Open Journal of Industry Applications","volume":"6 ","pages":"249-261"},"PeriodicalIF":7.9,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10980478","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144090776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-30DOI: 10.1109/OJIA.2025.3565826
Md. Mizanur Rahman;Yasser Abdel-Rady I. Mohamed
The grid-forming (GFM) control of voltage-source converter (VSC)-based photovoltaic (PV) systems has shown promise in supporting the grid frequency and inertia. However, the literature lacks GFM control development for current-source converter (CSC)-based PV systems and comparisons with the VSC counterpart. In particular, previous studies did not address dynamic performance assessment and comparison under critical operating conditions, such as black-start (autonomous power system restoration) and hot-swap (the transition between isolated and grid-tied modes). Furthermore, previous research did not address the dc- and ac-side stability differences among VSC- and CSC-based GFM PV systems. This article addresses these research gaps by differentiating the dynamic performance and stability of GFM VSC- and CSC-based PV systems under different operating conditions. Furthermore, this article presents active compensators for both GFM systems to enhance their dynamic performance and stability. Compared to the GFM VSC, the GFM CSC provides a better frequency profile under black-start and hot-swap conditions, improved robustness under grid impedance variation, and inherent fast current limitation under faults. Detailed offline and real-time simulation results validate the comparative analysis and the effectiveness of the proposed active damping methods for both GFM systems.
{"title":"Black-Start and Hot-Swap Performance Assessment and Improved Control Strategy for Grid-Forming VSC and CSC-Based PV Systems","authors":"Md. Mizanur Rahman;Yasser Abdel-Rady I. Mohamed","doi":"10.1109/OJIA.2025.3565826","DOIUrl":"https://doi.org/10.1109/OJIA.2025.3565826","url":null,"abstract":"The grid-forming (GFM) control of voltage-source converter (VSC)-based photovoltaic (PV) systems has shown promise in supporting the grid frequency and inertia. However, the literature lacks GFM control development for current-source converter (CSC)-based PV systems and comparisons with the VSC counterpart. In particular, previous studies did not address dynamic performance assessment and comparison under critical operating conditions, such as black-start (autonomous power system restoration) and hot-swap (the transition between isolated and grid-tied modes). Furthermore, previous research did not address the dc- and ac-side stability differences among VSC- and CSC-based GFM PV systems. This article addresses these research gaps by differentiating the dynamic performance and stability of GFM VSC- and CSC-based PV systems under different operating conditions. Furthermore, this article presents active compensators for both GFM systems to enhance their dynamic performance and stability. Compared to the GFM VSC, the GFM CSC provides a better frequency profile under black-start and hot-swap conditions, improved robustness under grid impedance variation, and inherent fast current limitation under faults. Detailed offline and real-time simulation results validate the comparative analysis and the effectiveness of the proposed active damping methods for both GFM systems.","PeriodicalId":100629,"journal":{"name":"IEEE Open Journal of Industry Applications","volume":"6 ","pages":"350-365"},"PeriodicalIF":7.9,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10980456","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144170870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-28DOI: 10.1109/OJIA.2025.3564730
Mariam Saeed;Juan Manuel Guerrero;Victor Lopez;David Ortega;Igor Larrazabal;Juan Jose Valera;Ewald Falke;Fernando Briz
On-board energy storage systems for railway traction are becoming a clear trend for many new rail projects, both for retrofit and new designs. This has raised safety and reliability concerns in railway industry given the novelty of the technology. Reliability analysis is mostly based on detailed modeling of the physics of failure. However, it is thought for system optimization and does not consider catastrophic and human factor failures. On the other hand, risk assessment studies are widely used for identifying, analyzing and prioritizing all possible modes of failure. However, they are not based on systems models and are not extendable to other converter topologies or battery configurations. To overcome the limitations of the two aforementioned approaches, this article proposes a method for risk assessment based on systems models. The proposed methodology is applied to study the critical risks of using a multilevel converter topology integrating a configuration of two series low-voltage ($< $1 kV) traction batteries to the dc bus of a train. The proposed approach is directly extendable to any converter topology or battery configuration.
{"title":"Model-Based Risk Assessment of Power Converters: Case Study of On-Board Battery System for Railway","authors":"Mariam Saeed;Juan Manuel Guerrero;Victor Lopez;David Ortega;Igor Larrazabal;Juan Jose Valera;Ewald Falke;Fernando Briz","doi":"10.1109/OJIA.2025.3564730","DOIUrl":"https://doi.org/10.1109/OJIA.2025.3564730","url":null,"abstract":"On-board energy storage systems for railway traction are becoming a clear trend for many new rail projects, both for retrofit and new designs. This has raised safety and reliability concerns in railway industry given the novelty of the technology. <italic>Reliability analysis</i> is mostly based on detailed modeling of the physics of failure. However, it is thought for system optimization and does not consider catastrophic and human factor failures. On the other hand, <italic>risk assessment</i> studies are widely used for identifying, analyzing and prioritizing all possible modes of failure. However, they are not based on systems models and are not extendable to other converter topologies or battery configurations. To overcome the limitations of the two aforementioned approaches, this article proposes a method for risk assessment based on systems models. The proposed methodology is applied to study the critical risks of using a multilevel converter topology integrating a configuration of two series low-voltage (<inline-formula><tex-math>$< $</tex-math></inline-formula>1 kV) traction batteries to the dc bus of a train. The proposed approach is directly extendable to any converter topology or battery configuration.","PeriodicalId":100629,"journal":{"name":"IEEE Open Journal of Industry Applications","volume":"6 ","pages":"221-236"},"PeriodicalIF":7.9,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10977972","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143929734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-28DOI: 10.1109/OJIA.2025.3563688
Paychuda Kritprajun;Leon M. Tolbert;Elizabeth Sutton;Yunting Liu;Jingxin Wang;Nattapat Praisuwanna;Maximiliano Ferrari
As the utilization of supercapacitors (SCs) in power system applications continues to increase, it is important to observe their behavior under transient and long-term operations to understand their impact on power grids. A real-time reconfigurable hardware testbed (HTB) is a power network emulator that provides flexibility in studying various power system scenarios. This work presents an emulation of a SC for a photovoltaic (PV) system on the HTB platform such that its dynamic behavior during power system scenarios can be observed. The developed emulator on the HTB is verified by comparing the emulation results with the model developed in MATLAB/Simulink. An improvement of grid frequency support control is proposed to enable fast-frequency recovery service provided by a grid-connected PV with SC system. The experimental results of the emulator are consistent with the simulation results under grid support scenarios. This SC emulator can potentially be used for various power system scenarios supporting other research in addition to the PV applications presented in this article.
{"title":"Converter-Based Supercapacitor Emulator for Photovoltaic Applications","authors":"Paychuda Kritprajun;Leon M. Tolbert;Elizabeth Sutton;Yunting Liu;Jingxin Wang;Nattapat Praisuwanna;Maximiliano Ferrari","doi":"10.1109/OJIA.2025.3563688","DOIUrl":"https://doi.org/10.1109/OJIA.2025.3563688","url":null,"abstract":"As the utilization of supercapacitors (SCs) in power system applications continues to increase, it is important to observe their behavior under transient and long-term operations to understand their impact on power grids. A real-time reconfigurable hardware testbed (HTB) is a power network emulator that provides flexibility in studying various power system scenarios. This work presents an emulation of a SC for a photovoltaic (PV) system on the HTB platform such that its dynamic behavior during power system scenarios can be observed. The developed emulator on the HTB is verified by comparing the emulation results with the model developed in MATLAB/Simulink. An improvement of grid frequency support control is proposed to enable fast-frequency recovery service provided by a grid-connected PV with SC system. The experimental results of the emulator are consistent with the simulation results under grid support scenarios. This SC emulator can potentially be used for various power system scenarios supporting other research in addition to the PV applications presented in this article.","PeriodicalId":100629,"journal":{"name":"IEEE Open Journal of Industry Applications","volume":"6 ","pages":"178-190"},"PeriodicalIF":7.9,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10978069","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143925247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-25DOI: 10.1109/OJIA.2025.3564501
Anant Narula;Massimo Bongiorno;Paolo Mattavelli;Mebtu Beza;Jan R. Svensson;Wentao Liu
The increasing penetration of converter-interfaced generation units results in a frequency-weak power system characterized by decreasing system inertia. Consequently, the angular frequency of the power system may deviate from its nominal value, with its dynamics significantly influenced by the various control loops of converters. To accurately conduct small-signal analysis of such power systems, two impedance-based modeling approaches have been proposed in recent years. The first approach derives small-signal models in a synchronously rotating reference frame, also referred to as the dq-frame, which is defined by the power system's nominal angular frequency. This method characterizes individual converter systems using only their dq-domain impedance matrix. The second approach, on the other hand, develops small-signal models in a dq-frame defined by the dynamic angular frequency of the power system. In this case, converter systems are characterized not only by their dq-impedance matrix but also by an additional transfer matrix that relates variations in the output current to variations in the power system's angular frequency. This leads to different closed-loop transfer matrices for the two approaches, which are used to assess small-signal stability. This article shows, using the derived analytical models, that despite the differences in the closed-loop transfer matrices, the two impedance-based modeling approaches are equivalent and lead to the same conclusions regarding the small-signal stability of the overall system. However, the second approach offers better physical insight into the behavior of converter systems during disturbances. Experimental results are provided to validate the theoretical analysis.
{"title":"Evaluation and Comparison of Small-Signal Characteristics of Grid-Forming Converter Systems in Two Different Reference Frames","authors":"Anant Narula;Massimo Bongiorno;Paolo Mattavelli;Mebtu Beza;Jan R. Svensson;Wentao Liu","doi":"10.1109/OJIA.2025.3564501","DOIUrl":"https://doi.org/10.1109/OJIA.2025.3564501","url":null,"abstract":"The increasing penetration of converter-interfaced generation units results in a frequency-weak power system characterized by decreasing system inertia. Consequently, the angular frequency of the power system may deviate from its nominal value, with its dynamics significantly influenced by the various control loops of converters. To accurately conduct small-signal analysis of such power systems, two impedance-based modeling approaches have been proposed in recent years. The first approach derives small-signal models in a synchronously rotating reference frame, also referred to as the <italic>dq</i>-frame, which is defined by the power system's nominal angular frequency. This method characterizes individual converter systems using only their <italic>dq</i>-domain impedance matrix. The second approach, on the other hand, develops small-signal models in a <italic>dq</i>-frame defined by the dynamic angular frequency of the power system. In this case, converter systems are characterized not only by their <italic>dq</i>-impedance matrix but also by an additional transfer matrix that relates variations in the output current to variations in the power system's angular frequency. This leads to different closed-loop transfer matrices for the two approaches, which are used to assess small-signal stability. This article shows, using the derived analytical models, that despite the differences in the closed-loop transfer matrices, the two impedance-based modeling approaches are equivalent and lead to the same conclusions regarding the small-signal stability of the overall system. However, the second approach offers better physical insight into the behavior of converter systems during disturbances. Experimental results are provided to validate the theoretical analysis.","PeriodicalId":100629,"journal":{"name":"IEEE Open Journal of Industry Applications","volume":"6 ","pages":"206-220"},"PeriodicalIF":7.9,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10976625","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143925246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-23DOI: 10.1109/OJIA.2025.3563851
Nabil Karania;Mohamad Alaaeddin Alali;Stefano Di Gennaro;Jean–Pierre Barbot
This article presents a compact structure ofshunt active photovoltaic filter based on a cascaded H-bridge multilevel inverter (SAF-PV/CHB-MLI) to eliminate electrical perturbations caused by nonlinear loads and to generate MPPT of PV generators. The SAF-PV/CHB-MLI structure, while injecting the maximum current of PV generators, opts to increase the apparent switching frequency, reduces the coupling/output filter size, improves grid-side power quality, generates sinusoidal-like output stepping voltage, and minimizes voltage stresses on IGBTs devices. To achieve these objectives, the SAF-PV/CHB-MLI structure is configured for an HB module per phase/cluster, combined with an appropriate common control strategy for both active filtering and PV generation. The $p - q$ current identification algorithm is adapted/modified to include a P&O algorithm for MPPT detection and a developed PLL to ensure reliable operation under grid distortion conditions. The common control strategy comprises three complementary control loops: the injected current controller for perturbation compensation and maximum PV current injection, the individual cluster voltage balancing controller, and the overall dc voltage regulator which is incorporated within the adapted/modified p-q algorithm. Then, a multicarriers phase-shifted pulsewidth modulation is adopted to ensure the required individual and apparent switching frequencies, while reducing the sideband harmonic components’ impact. A tradeoff among the HB modules number, IGBTs rating, individual and apparent switching frequencies, and the accumulative output voltage is elaborated to create reliable and economical structure that meets industrial application recommendations. To validate the proposed structure's performance, a case study is conducted for textile industrial factory suffering from harmonic impact on its main sensitive load (SL) textile machine of almost 50 kVA; site measurements using power-quality analyzer devices are collected. A numerical model of the factory's network was developed to investigate the proposed structure performance on SL.
{"title":"Advanced High Switching-Frequency Cascaded H-Bridge Multilevel Inverter Based Shunt Active Filter for PV Generation: A Case Study","authors":"Nabil Karania;Mohamad Alaaeddin Alali;Stefano Di Gennaro;Jean–Pierre Barbot","doi":"10.1109/OJIA.2025.3563851","DOIUrl":"https://doi.org/10.1109/OJIA.2025.3563851","url":null,"abstract":"This article presents a compact structure ofshunt active photovoltaic filter based on a cascaded H-bridge multilevel inverter (SAF-PV/CHB-MLI) to eliminate electrical perturbations caused by nonlinear loads and to generate MPPT of PV generators. The SAF-PV/CHB-MLI structure, while injecting the maximum current of PV generators, opts to increase the apparent switching frequency, reduces the coupling/output filter size, improves grid-side power quality, generates sinusoidal-like output stepping voltage, and minimizes voltage stresses on IGBTs devices. To achieve these objectives, the SAF-PV/CHB-MLI structure is configured for an HB module per phase/cluster, combined with an appropriate common control strategy for both active filtering and PV generation. The <inline-formula><tex-math>$p - q$</tex-math></inline-formula> current identification algorithm is adapted/modified to include a P&O algorithm for MPPT detection and a developed PLL to ensure reliable operation under grid distortion conditions. The common control strategy comprises three complementary control loops: the injected current controller for perturbation compensation and maximum PV current injection, the individual cluster voltage balancing controller, and the overall dc voltage regulator which is incorporated within the adapted/modified <italic>p</i>-<italic>q</i> algorithm. Then, a multicarriers phase-shifted pulsewidth modulation is adopted to ensure the required individual and apparent switching frequencies, while reducing the sideband harmonic components’ impact. A tradeoff among the HB modules number, IGBTs rating, individual and apparent switching frequencies, and the accumulative output voltage is elaborated to create reliable and economical structure that meets industrial application recommendations. To validate the proposed structure's performance, a case study is conducted for textile industrial factory suffering from harmonic impact on its main sensitive load (SL) textile machine of almost 50 kVA; site measurements using power-quality analyzer devices are collected. A numerical model of the factory's network was developed to investigate the proposed structure performance on SL.","PeriodicalId":100629,"journal":{"name":"IEEE Open Journal of Industry Applications","volume":"6 ","pages":"262-280"},"PeriodicalIF":7.9,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10975133","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144090730","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-22DOI: 10.1109/OJIA.2025.3562702
Erika Stracqualursi;Rodolfo Araneo;Massimo Mitolo
Grounding systems play a critical role in ensuring the safety and reliability of power systems, particularly in substations, where public access poses a significant risk. This article presents a computational study of grounding configurations for substation fences, based on guidelines from the IEEE Std 80-2000. A specialized code was developed and tested to simulate various grounding scenarios, including cases where the fence is connected to or isolated from the substation's grounding grid. The study examines key parameters, such as touch and surface potentials under fault conditions. Prospective and simulation results on five distinct fence grounding setups are presented. The article highlights the effectiveness of the developed code in accurately predicting hazardous conditions, providing valuable insights for optimizing substation grounding designs.
{"title":"Analysis of Transferred Potentials on Substation Fences","authors":"Erika Stracqualursi;Rodolfo Araneo;Massimo Mitolo","doi":"10.1109/OJIA.2025.3562702","DOIUrl":"https://doi.org/10.1109/OJIA.2025.3562702","url":null,"abstract":"Grounding systems play a critical role in ensuring the safety and reliability of power systems, particularly in substations, where public access poses a significant risk. This article presents a computational study of grounding configurations for substation fences, based on guidelines from the IEEE Std 80-2000. A specialized code was developed and tested to simulate various grounding scenarios, including cases where the fence is connected to or isolated from the substation's grounding grid. The study examines key parameters, such as touch and surface potentials under fault conditions. Prospective and simulation results on five distinct fence grounding setups are presented. The article highlights the effectiveness of the developed code in accurately predicting hazardous conditions, providing valuable insights for optimizing substation grounding designs.","PeriodicalId":100629,"journal":{"name":"IEEE Open Journal of Industry Applications","volume":"6 ","pages":"307-315"},"PeriodicalIF":7.9,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10974581","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144171053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-22DOI: 10.1109/OJIA.2025.3563502
Andrei Tregubov;Petros Karamanakos;Ludovico Ortombina
Long-horizon finite control set model predictive control (FCS-MPC) is known for its superior performance, particularly when applied to complex, higher order systems, such as grid-connected converters with $LCL$ filters. This article proposes a long-horizon FCS-MPC method that effectively operates such systems even in the presence of time-varying model parameters and distorted grid voltage with variable harmonic content. To do so, the proposed method incorporates information about the grid voltage distortion when generating the reference trajectories of the controlled variables, namely, the grid and converter currents and the filter capacitor voltage. In addition, a fast estimation algorithm continuously updates the grid- and converter-side reactances, thus ensuring robustness to parameter variations in the system model. Real-time tests conducted in a hardware-in-the-loop environment validate the effectiveness of the proposed control approach across various operating conditions.
{"title":"Long-Horizon Direct Model Predictive Control for Medium-Voltage Converters Connected to a Distorted Grid","authors":"Andrei Tregubov;Petros Karamanakos;Ludovico Ortombina","doi":"10.1109/OJIA.2025.3563502","DOIUrl":"https://doi.org/10.1109/OJIA.2025.3563502","url":null,"abstract":"Long-horizon finite control set model predictive control (FCS-MPC) is known for its superior performance, particularly when applied to complex, higher order systems, such as grid-connected converters with <inline-formula><tex-math>$LCL$</tex-math></inline-formula> filters. This article proposes a long-horizon FCS-MPC method that effectively operates such systems even in the presence of time-varying model parameters and distorted grid voltage with variable harmonic content. To do so, the proposed method incorporates information about the grid voltage distortion when generating the reference trajectories of the controlled variables, namely, the grid and converter currents and the filter capacitor voltage. In addition, a fast estimation algorithm continuously updates the grid- and converter-side reactances, thus ensuring robustness to parameter variations in the system model. Real-time tests conducted in a hardware-in-the-loop environment validate the effectiveness of the proposed control approach across various operating conditions.","PeriodicalId":100629,"journal":{"name":"IEEE Open Journal of Industry Applications","volume":"6 ","pages":"191-205"},"PeriodicalIF":7.9,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10974479","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143925028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}