Pub Date : 2024-02-27DOI: 10.1109/OJIA.2024.3369993
Jonathan D. Boyd;Donald R. Reising;Anthony M. Murphy;Justin D. Kuhlers;C. Michael McAmis;James B. Rossman
Voltage unbalance is a growing issue that, among other things, can impact three-phase motor and drive loads, result in nuisance tripping of generation units and capacitor banks, and prevent optimization of conservative voltage regulation strategies. This difference between the three phases of voltage delivered to customers can damage the equipment of these customers as well as negatively impact the power system itself. This work presents an approach for predicting voltage unbalance using machine learning. Historical megawatt and megavar data–obtained through a Supervisory Control And Data Acquisition (SCADA) system–are used to train an artificial neural network model as a binary classifier with a portion of the data serving to validate the trained model. Voltage unbalance is predicted at an accuracy above 95% for eight substations within the power utility's extra-high voltage transmission network and over 91% for all 42 substations. The trained model is tested in a manner that would be employed using simulated data generated by state estimation software. This simulated data validates the model's capacity to predict the substation buses that would experience voltage unbalance.
{"title":"Machine Learning Techniques to Predict Voltage Unbalance in a Power Transmission System","authors":"Jonathan D. Boyd;Donald R. Reising;Anthony M. Murphy;Justin D. Kuhlers;C. Michael McAmis;James B. Rossman","doi":"10.1109/OJIA.2024.3369993","DOIUrl":"10.1109/OJIA.2024.3369993","url":null,"abstract":"Voltage unbalance is a growing issue that, among other things, can impact three-phase motor and drive loads, result in nuisance tripping of generation units and capacitor banks, and prevent optimization of conservative voltage regulation strategies. This difference between the three phases of voltage delivered to customers can damage the equipment of these customers as well as negatively impact the power system itself. This work presents an approach for predicting voltage unbalance using machine learning. Historical megawatt and megavar data–obtained through a Supervisory Control And Data Acquisition (SCADA) system–are used to train an artificial neural network model as a binary classifier with a portion of the data serving to validate the trained model. Voltage unbalance is predicted at an accuracy above 95% for eight substations within the power utility's extra-high voltage transmission network and over 91% for all 42 substations. The trained model is tested in a manner that would be employed using simulated data generated by state estimation software. This simulated data validates the model's capacity to predict the substation buses that would experience voltage unbalance.","PeriodicalId":100629,"journal":{"name":"IEEE Open Journal of Industry Applications","volume":"5 ","pages":"86-93"},"PeriodicalIF":0.0,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10448538","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140002408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-26DOI: 10.1109/OJIA.2024.3354443
{"title":"IEEE Industry Applications Society Information","authors":"","doi":"10.1109/OJIA.2024.3354443","DOIUrl":"https://doi.org/10.1109/OJIA.2024.3354443","url":null,"abstract":"","PeriodicalId":100629,"journal":{"name":"IEEE Open Journal of Industry Applications","volume":"5 ","pages":"C2-C2"},"PeriodicalIF":0.0,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10444962","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139976195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-20DOI: 10.1109/OJIA.2024.3367547
Zahra Soltani;Mojdeh Khorsand;Shanshan Ma
Modern distribution systems are changing from passive load serving networks to active load and generation-inclusive networks. Accurate distribution systems modeling is critical for effective distribution system control, operation, and planning. This article proposes novel nonlinear and convex ac optimal power flow (ACOPF) models based on current–voltage (IVACOPF) formulation for an unbalanced distribution system with distributed energy resources (DERs). In the proposed formulation, untransposed distribution lines, shunt elements of distribution lines, distribution transformers, and DERs are modeled. The proposed nonlinear IVACOPF model is linearized and convexified using the Taylor series. The accuracy of the proposed nonlinear and convex IVACOPF approaches for modeling unbalanced distribution systems is compared with OpenDSS and the widely used LinDistFlow method. The proposed accurate convex IVACOPF model has multiple applications for distribution systems management, planning, and operation. Applications of the proposed model on two key parts of advanced distribution management systems (ADMS)—DERs scheduling and state estimation—are presented in this article. The proposed models are tested on the distribution feeder of an electric utility in Arizona with 2100 primary nodes and a large number of rooftop photovoltaic units. The results confirm the accuracy and effectiveness of the proposed IVACOPF for both examined ADMS applications.
{"title":"Current–Voltage Unbalanced Distribution AC Optimal Power Flow for Advanced Distribution Management System Applications","authors":"Zahra Soltani;Mojdeh Khorsand;Shanshan Ma","doi":"10.1109/OJIA.2024.3367547","DOIUrl":"10.1109/OJIA.2024.3367547","url":null,"abstract":"Modern distribution systems are changing from passive load serving networks to active load and generation-inclusive networks. Accurate distribution systems modeling is critical for effective distribution system control, operation, and planning. This article proposes novel nonlinear and convex ac optimal power flow (ACOPF) models based on current–voltage (IVACOPF) formulation for an unbalanced distribution system with distributed energy resources (DERs). In the proposed formulation, untransposed distribution lines, shunt elements of distribution lines, distribution transformers, and DERs are modeled. The proposed nonlinear IVACOPF model is linearized and convexified using the Taylor series. The accuracy of the proposed nonlinear and convex IVACOPF approaches for modeling unbalanced distribution systems is compared with OpenDSS and the widely used LinDistFlow method. The proposed accurate convex IVACOPF model has multiple applications for distribution systems management, planning, and operation. Applications of the proposed model on two key parts of advanced distribution management systems (ADMS)—DERs scheduling and state estimation—are presented in this article. The proposed models are tested on the distribution feeder of an electric utility in Arizona with 2100 primary nodes and a large number of rooftop photovoltaic units. The results confirm the accuracy and effectiveness of the proposed IVACOPF for both examined ADMS applications.","PeriodicalId":100629,"journal":{"name":"IEEE Open Journal of Industry Applications","volume":"5 ","pages":"155-167"},"PeriodicalIF":0.0,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10440561","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139945644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-16DOI: 10.1109/OJIA.2024.3366524
Dennis Erdogan;Zhang Peng Du;Stefan Jakubek;Franz Holzinger;Christian Mayr;Christoph Hametner
Power hardware-in-the-loop (PHIL) testing has become indispensable for the rapid, modular, and cost-saving development of automotive components. This article focuses on PHIL tests composed of entire powertrains that exchange speed and torque signals with vehicle simulations. Previous studies pointed out the importance of promptly following the references from the virtual simulation environment to replicate realistic driving conditions and introduced control strategies to cope with the challenges associated with this setup. However, a comprehensive comparison of the different control strategies has not yet been carried out. To fill this gap, the concepts are first investigated in-depth in simulations and are then, rigorously validated on a state-of-the-art powertrain test bed under highly dynamic driving scenarios, including full-braking. Furthermore, an improvement of existing shaft torque control approaches, which are mainly based on feedforward control, is proposed to better compete with the other methods. The proposed extension shows higher resilience to low accuracy of torque actuators, while the other concepts exhibit greater robustness against time delays. The results from the direct comparisons are summarized and allow the appropriate selection of control strategies for specific use cases.
动力硬件在环(PHIL)测试已成为快速、模块化和节约成本的汽车零部件开发不可或缺的一部分。本文重点讨论由整个动力系统组成的 PHIL 测试,这些动力系统与车辆模拟交换速度和扭矩信号。以往的研究指出,必须及时遵循虚拟仿真环境中的参考数据来复制真实的驾驶条件,并引入了控制策略来应对与这种设置相关的挑战。然而,尚未对不同的控制策略进行全面比较。为了填补这一空白,我们首先在模拟环境中对这些概念进行了深入研究,然后在包括完全制动在内的高动态驾驶场景下,在最先进的动力总成试验台上进行了严格验证。此外,还对现有的轴扭矩控制方法(主要基于前馈控制)提出了改进建议,以更好地与其他方法竞争。所提出的扩展方案对扭矩执行器的低精度表现出更高的适应性,而其他概念则对时间延迟表现出更高的鲁棒性。对直接比较的结果进行了总结,以便为特定的使用案例选择适当的控制策略。
{"title":"Experimental Validation of Innovative Control Concepts for Powertrain Test Beds in Power Hardware-in-the-Loop Configuration","authors":"Dennis Erdogan;Zhang Peng Du;Stefan Jakubek;Franz Holzinger;Christian Mayr;Christoph Hametner","doi":"10.1109/OJIA.2024.3366524","DOIUrl":"10.1109/OJIA.2024.3366524","url":null,"abstract":"Power hardware-in-the-loop (PHIL) testing has become indispensable for the rapid, modular, and cost-saving development of automotive components. This article focuses on PHIL tests composed of entire powertrains that exchange speed and torque signals with vehicle simulations. Previous studies pointed out the importance of promptly following the references from the virtual simulation environment to replicate realistic driving conditions and introduced control strategies to cope with the challenges associated with this setup. However, a comprehensive comparison of the different control strategies has not yet been carried out. To fill this gap, the concepts are first investigated in-depth in simulations and are then, rigorously validated on a state-of-the-art powertrain test bed under highly dynamic driving scenarios, including full-braking. Furthermore, an improvement of existing shaft torque control approaches, which are mainly based on feedforward control, is proposed to better compete with the other methods. The proposed extension shows higher resilience to low accuracy of torque actuators, while the other concepts exhibit greater robustness against time delays. The results from the direct comparisons are summarized and allow the appropriate selection of control strategies for specific use cases.","PeriodicalId":100629,"journal":{"name":"IEEE Open Journal of Industry Applications","volume":"5 ","pages":"128-142"},"PeriodicalIF":0.0,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10438857","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139956910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-15DOI: 10.1109/OJIA.2024.3366415
Alessandro Faro;Alessandro Lidozzi;Marco di Benedetto;Luca Solero;Stefano Bifaretti
Repetitive controller provides a very low third harmonic dimension in the quantities under control. It exhibits an inherent issue when operated to track variable frequency references. The article deals with the analysis of the operating conditions when the controller is executed at variable frequency without any resynchronization with respect to the pulsewidth modulation carrier, which is the most common mode of operation. The delays introduced are then evaluated analytically concerning the sampling and output frequency that must be tracked. The proposed analysis allows obtaining the maximum delay affecting the control chain, which was introduced by the repetitive control desynched operation. The knowledge of the delay introduced in the control loops is at the basis of any control tuning procedure and gains selection, even when adaptive control strategies are used.
{"title":"Analytical Delay Evaluation for FPGA-Based Repetitive Controller in AC Variable Frequency Applications","authors":"Alessandro Faro;Alessandro Lidozzi;Marco di Benedetto;Luca Solero;Stefano Bifaretti","doi":"10.1109/OJIA.2024.3366415","DOIUrl":"10.1109/OJIA.2024.3366415","url":null,"abstract":"Repetitive controller provides a very low third harmonic dimension in the quantities under control. It exhibits an inherent issue when operated to track variable frequency references. The article deals with the analysis of the operating conditions when the controller is executed at variable frequency without any resynchronization with respect to the pulsewidth modulation carrier, which is the most common mode of operation. The delays introduced are then evaluated analytically concerning the sampling and output frequency that must be tracked. The proposed analysis allows obtaining the maximum delay affecting the control chain, which was introduced by the repetitive control desynched operation. The knowledge of the delay introduced in the control loops is at the basis of any control tuning procedure and gains selection, even when adaptive control strategies are used.","PeriodicalId":100629,"journal":{"name":"IEEE Open Journal of Industry Applications","volume":"5 ","pages":"117-127"},"PeriodicalIF":0.0,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10437987","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139945579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-13DOI: 10.1109/OJIA.2024.3365576
Muhammad Usama;Muhammad Naveed Aman
Cybersecurity is important in the realization of various smart grid technologies. Several studies have been conducted to discuss different types of cyberattacks and provide their countermeasures. The false command injection attack (FCIA) is considered one of the most critical attacks that have been studied. Various techniques have been proposed in the literature to detect FCIAs on different components of smart grids. The predominant focus of current surveys lies on FCIAs and detection techniques for such attacks. This article presents a survey of existing works on FCIAs and classifies FCIAs in smart grids according to the targeted component. The impacts of FCIAs on smart grids are also discussed. Subsequently, this article provides an extensive review of detection studies, categorizing them based on the type of detection technique employed.
{"title":"Command Injection Attacks in Smart Grids: A Survey","authors":"Muhammad Usama;Muhammad Naveed Aman","doi":"10.1109/OJIA.2024.3365576","DOIUrl":"10.1109/OJIA.2024.3365576","url":null,"abstract":"Cybersecurity is important in the realization of various smart grid technologies. Several studies have been conducted to discuss different types of cyberattacks and provide their countermeasures. The false command injection attack (FCIA) is considered one of the most critical attacks that have been studied. Various techniques have been proposed in the literature to detect FCIAs on different components of smart grids. The predominant focus of current surveys lies on FCIAs and detection techniques for such attacks. This article presents a survey of existing works on FCIAs and classifies FCIAs in smart grids according to the targeted component. The impacts of FCIAs on smart grids are also discussed. Subsequently, this article provides an extensive review of detection studies, categorizing them based on the type of detection technique employed.","PeriodicalId":100629,"journal":{"name":"IEEE Open Journal of Industry Applications","volume":"5 ","pages":"75-85"},"PeriodicalIF":0.0,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10433776","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139945611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-22DOI: 10.1109/OJIA.2024.3353309
Xingxuan Huang;Dingrui Li;Min Lin;Leon M. Tolbert;Fred Wang;William Giewont
This article presents a desat protection scheme with the ultrafast response for high-voltage (>3.3 kV) SiC MOSFETs. Its working principle is the same as the conventional desat protection designed for high-voltage SiC MOSFETs, yet its blanking time is implemented by fully considering the influence of high negative dvds/dt