Pub Date : 2022-09-12DOI: 10.1109/OJIM.2022.3205680
Jie Lin;Song Chen;Enping Lin;Yu Yang
Deep learning neural network serves as a powerful tool for visual anomaly detection (AD) and fault diagnosis, attributed to its strong abstractive interpretation ability in the representation domain. The deep features from neural networks that are pretrained on the ImageNet classification task have been proved to be useful for AD based on Gaussian discriminant analysis. However, with the ever-increasing complexity of deep learning neural networks, the set of deep features becomes massive where redundancy appears to be inevitable. The redundant features increase computational cost and degrade the performance of the AD method. In this article, we discuss the deep feature selection for the AD task and show how to reduce the redundancy in the representation domain. We propose a horizontal selection (dimensional reduction) method of features with subspace decomposition and a vertical selection to identify the most effective network layer for AD and fault diagnosis. We test the proposed method on two public datasets, one for AD task and the other for fault diagnosis of bearings. We show the significance of different network layers and feature subspaces on AD tasks and prove the effectiveness of the feature selection strategy.
{"title":"Deep Feature Selection for Anomaly Detection Based on Pretrained Network and Gaussian Discriminative Analysis","authors":"Jie Lin;Song Chen;Enping Lin;Yu Yang","doi":"10.1109/OJIM.2022.3205680","DOIUrl":"https://doi.org/10.1109/OJIM.2022.3205680","url":null,"abstract":"Deep learning neural network serves as a powerful tool for visual anomaly detection (AD) and fault diagnosis, attributed to its strong abstractive interpretation ability in the representation domain. The deep features from neural networks that are pretrained on the ImageNet classification task have been proved to be useful for AD based on Gaussian discriminant analysis. However, with the ever-increasing complexity of deep learning neural networks, the set of deep features becomes massive where redundancy appears to be inevitable. The redundant features increase computational cost and degrade the performance of the AD method. In this article, we discuss the deep feature selection for the AD task and show how to reduce the redundancy in the representation domain. We propose a horizontal selection (dimensional reduction) method of features with subspace decomposition and a vertical selection to identify the most effective network layer for AD and fault diagnosis. We test the proposed method on two public datasets, one for AD task and the other for fault diagnosis of bearings. We show the significance of different network layers and feature subspaces on AD tasks and prove the effectiveness of the feature selection strategy.","PeriodicalId":100630,"journal":{"name":"IEEE Open Journal of Instrumentation and Measurement","volume":"1 ","pages":"1-11"},"PeriodicalIF":0.0,"publicationDate":"2022-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/9552935/9687502/09887794.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50426832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-09-12DOI: 10.1109/OJIM.2022.3205649
Ming Zhang;Duo Wang;Nasser Amaitik;Yuchun Xu
With the rapid development of information and sensor technology, the data-driven remaining useful lifetime (RUL) prediction methods have been acquired a successful development. Nowadays, the data-driven RUL methods are focused on estimating the RUL value. However, it is more important to quantify the uncertainty associated with the RUL value. This is because increasingly complex industrial systems would arise various sources of uncertainty. This article proposes a novel distributional RUL prediction method, which aims at quantifying the RUL uncertainty by identifying the confidence interval with the cumulative distribution function (CDF). The proposed learning method has been built based on quantile regression and implemented from a distributional perspective under the deep neural network framework. The results of the run-to-failure degradation experiments of rolling bearing demonstrate the effectiveness and good performance of the proposed method compared to other state-of-the-art methods. The visualization results obtained by $t{text{-}}SNE$