Pub Date : 2024-10-29DOI: 10.1109/TSIPI.2024.3487539
Chaofeng Li;Xiao-Ding Cai;Manish K. Mathew;Junyong Park;Mehdi Mousavi;Shameem Ahmed;Bidyut Sen;DongHyun Kim
A high-speed via model considering equivalent high-order-mode inductance for frequencies above 70 GHz is proposed in this article. The proposed via model, which considers the equivalent high-order-mode inductance, is a high-accuracy and high-bandwidth via model, improved from the previously proposed mode-decomposition-based equivalent via (MEV) model. The equivalent high-order-mode inductance is an inductance produced by the magnetic fields of high-order modes in the via domain. By including the empirical equivalent high-order-mode inductance, the proposed via model accurately predicts the insertion and return losses of the via with a large antipad size up to the frequency of 150 GHz, which expands the application range of the previously proposed MEV model. In this article, the limitation of the previously proposed MEV model is analyzed by comparing the input impedance extracted from the MEV model and the full-wave simulation. An empirical closed-form formula is proposed to calculate the equivalent high-order-mode inductance at high frequencies to improve the accuracy of the previously proposed model. In addition, the proposed single high-speed via model was expanded to a differential via pair model. The proposed high-speed via model was verified using simulation and measurement results.
{"title":"Effective High-Speed via Model Considering Equivalent High-Order-Mode Inductance","authors":"Chaofeng Li;Xiao-Ding Cai;Manish K. Mathew;Junyong Park;Mehdi Mousavi;Shameem Ahmed;Bidyut Sen;DongHyun Kim","doi":"10.1109/TSIPI.2024.3487539","DOIUrl":"https://doi.org/10.1109/TSIPI.2024.3487539","url":null,"abstract":"A high-speed via model considering equivalent high-order-mode inductance for frequencies above 70 GHz is proposed in this article. The proposed via model, which considers the equivalent high-order-mode inductance, is a high-accuracy and high-bandwidth via model, improved from the previously proposed mode-decomposition-based equivalent via (MEV) model. The equivalent high-order-mode inductance is an inductance produced by the magnetic fields of high-order modes in the via domain. By including the empirical equivalent high-order-mode inductance, the proposed via model accurately predicts the insertion and return losses of the via with a large antipad size up to the frequency of 150 GHz, which expands the application range of the previously proposed MEV model. In this article, the limitation of the previously proposed MEV model is analyzed by comparing the input impedance extracted from the MEV model and the full-wave simulation. An empirical closed-form formula is proposed to calculate the equivalent high-order-mode inductance at high frequencies to improve the accuracy of the previously proposed model. In addition, the proposed single high-speed via model was expanded to a differential via pair model. The proposed high-speed via model was verified using simulation and measurement results.","PeriodicalId":100646,"journal":{"name":"IEEE Transactions on Signal and Power Integrity","volume":"3 ","pages":"169-177"},"PeriodicalIF":0.0,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142671987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-29DOI: 10.1109/TSIPI.2024.3487547
Kuei-Ju Lin;Chien-Min Lin;Ruey-Beei Wu
As high-speed digital systems require faster transmission and computing speed, the impact of complex interconnects in a limited space on the electrical performance of the channel-link system becomes more and more serious. This article aims to optimize the interconnection links between the enhanced second-generation high-bandwidth memory modules and systems on chip (CPU or GPU) for achieving the optimized signal and power integrity. Since the signal lines are susceptible to crosstalk, an improved diagonal-staggering wiring scheme is proposed to reduce the coupling coefficient between the signal lines by at least five times. The contour map for the mismatched systems with the peak distortion analysis is then applied to quickly find the optimal impedance design of lines for the best eye diagram. At a data rate of 6.4 Gb/s with a rise time of 15 ps, the eye height is optimized to be 4.6 times that in the original layout. Finally, the power supply and grounds are interleaved to increase the capacitance and alleviate the power noise through the power delivery network (PDN) in the construction of the four-element voltage regulator module along with the on-chip capacitor and the specific power–ground layers. Modifying the layout scheme in the PDN with reasonable decoupling capacitance can lead to an additional 1.4 times improvement in the eye height over the original design.
{"title":"Optimized Signal and Power Integrity of Silicon Interposer for HBM2E in CoWoS Packaging","authors":"Kuei-Ju Lin;Chien-Min Lin;Ruey-Beei Wu","doi":"10.1109/TSIPI.2024.3487547","DOIUrl":"https://doi.org/10.1109/TSIPI.2024.3487547","url":null,"abstract":"As high-speed digital systems require faster transmission and computing speed, the impact of complex interconnects in a limited space on the electrical performance of the channel-link system becomes more and more serious. This article aims to optimize the interconnection links between the enhanced second-generation high-bandwidth memory modules and systems on chip (CPU or GPU) for achieving the optimized signal and power integrity. Since the signal lines are susceptible to crosstalk, an improved diagonal-staggering wiring scheme is proposed to reduce the coupling coefficient between the signal lines by at least five times. The contour map for the mismatched systems with the peak distortion analysis is then applied to quickly find the optimal impedance design of lines for the best eye diagram. At a data rate of 6.4 Gb/s with a rise time of 15 ps, the eye height is optimized to be 4.6 times that in the original layout. Finally, the power supply and grounds are interleaved to increase the capacitance and alleviate the power noise through the power delivery network (PDN) in the construction of the four-element voltage regulator module along with the on-chip capacitor and the specific power–ground layers. Modifying the layout scheme in the PDN with reasonable decoupling capacitance can lead to an additional 1.4 times improvement in the eye height over the original design.","PeriodicalId":100646,"journal":{"name":"IEEE Transactions on Signal and Power Integrity","volume":"3 ","pages":"159-168"},"PeriodicalIF":0.0,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142645479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Routing density is becoming in big challenge in die-to-die interconnects. In this article, we propose use of the dual-stripline configuration for routing signals in high-density interconnects. The scheme can improve the routing density by up to 33% when compared with the conventionally used stripline configuration. To address the challenges of crosstalk due to the proximity between vertically adjacent signal lines, half-pitch offset between lines on vertically adjacent layers has been proposed. The proposed routing scheme has been validated using 3-D full-wave electromagnetic simulations. The simulations show that the scheme can be used for increasing the routing density in the bunch-of-wires interface by 25%, while meeting all the bunch-of-wires channel specifications, which include eye-opening value above 68% unit interval at a bit error rate of $10^{-15}$