Mobile industry processor interface (MIPI) C-PHY is a signal transmission interface with three-phase encoding technology on the three-wire high-speed channel. The traditional method of superposition to generate an eye diagram on this kind of channel is time-consuming. The novel eye estimation methods for the C-PHY protocol are proposed. A new greedy algorithm and dynamic programming method are proposed to predict the worst-case eye diagram, respectively. The accuracy and efficiency of these two methods are compared. In addition, the algorithms for estimating the statistical eye diagram of MIPI C-PHY with and without considering the driver nonlinearity are also proposed and compared respectively. All the proposed algorithms are validated by experimental measurement. The excellent agreement could be well seen.
{"title":"Eye Estimation Methods for MIPI C-PHY","authors":"Yu-Ying Cheng;Pei-Yang Weng;Suani-Kai Yang;Shih-Hsien Wu;Tzong-Lin Wu","doi":"10.1109/TSIPI.2024.3396436","DOIUrl":"https://doi.org/10.1109/TSIPI.2024.3396436","url":null,"abstract":"Mobile industry processor interface (MIPI) C-PHY is a signal transmission interface with three-phase encoding technology on the three-wire high-speed channel. The traditional method of superposition to generate an eye diagram on this kind of channel is time-consuming. The novel eye estimation methods for the C-PHY protocol are proposed. A new greedy algorithm and dynamic programming method are proposed to predict the worst-case eye diagram, respectively. The accuracy and efficiency of these two methods are compared. In addition, the algorithms for estimating the statistical eye diagram of MIPI C-PHY with and without considering the driver nonlinearity are also proposed and compared respectively. All the proposed algorithms are validated by experimental measurement. The excellent agreement could be well seen.","PeriodicalId":100646,"journal":{"name":"IEEE Transactions on Signal and Power Integrity","volume":"3 ","pages":"75-84"},"PeriodicalIF":0.0,"publicationDate":"2024-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140948956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-16DOI: 10.1109/TSIPI.2024.3366499
Vinod Kumar Verma;Jai Narayan Tripathi
This work presents a comprehensive study on the impact of variability on jitter in CMOS integrated circuits. As a case study, an analytical model of a CMOS inverter has been developed, and the input–output relationship is derived considering the effect of power supply noise, variations in design parameters due to fabrication process inaccuracies, and temperature. These parameters are taken as random variables, and the timing deviation in the transition edges of the output response has been modeled analytically. The proposed approach has been validated using numerical examples by comparing results obtained from the proposed analysis with the results obtained from the SPICE-based simulator. A couple of measurement examples and an application case study are also presented to validate the state-of-the-art investigation. The considered examples and application case study suggest the importance of the current study to ensure the timing budget of a system. The proposed approach can be used to estimate critical variability issues affecting the timing budgets of the systems.
{"title":"Variability-Aware Modeling of Power Supply Induced Jitter","authors":"Vinod Kumar Verma;Jai Narayan Tripathi","doi":"10.1109/TSIPI.2024.3366499","DOIUrl":"https://doi.org/10.1109/TSIPI.2024.3366499","url":null,"abstract":"This work presents a comprehensive study on the impact of variability on jitter in CMOS integrated circuits. As a case study, an analytical model of a CMOS inverter has been developed, and the input–output relationship is derived considering the effect of power supply noise, variations in design parameters due to fabrication process inaccuracies, and temperature. These parameters are taken as random variables, and the timing deviation in the transition edges of the output response has been modeled analytically. The proposed approach has been validated using numerical examples by comparing results obtained from the proposed analysis with the results obtained from the SPICE-based simulator. A couple of measurement examples and an application case study are also presented to validate the state-of-the-art investigation. The considered examples and application case study suggest the importance of the current study to ensure the timing budget of a system. The proposed approach can be used to estimate critical variability issues affecting the timing budgets of the systems.","PeriodicalId":100646,"journal":{"name":"IEEE Transactions on Signal and Power Integrity","volume":"3 ","pages":"47-55"},"PeriodicalIF":0.0,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140291213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-06DOI: 10.1109/TSIPI.2024.3362317
Quankun Chen;Hanzhi Ma;Da Li;Tuomin Tao;Shurun Tan;En-Xiao Liu;Jose Schutt-Aine;Er-Ping Li
This article introduces a comprehensive approach for designing and analyzing signal integrity in heterogeneous integrated systems that incorporate neuromorphic Darwin chips. The proposed integrated system architecture includes a neuromorphic Darwin chip, digital signal processing unit, microcontroller unit, field programmable gate arrays, and coding and decoding modules to encode and reconstruct analog spiking signals. The study evaluates the encoding module and the heterogeneous integration structure and conducts signal integrity analysis. To achieve optimal signal integrity performance, the article proposes a novel binocular eye diagram analysis technique. This innovative approach guides the encoding algorithm modification and improves the overall system performance. This research is the first to combine joint field-circuit simulation, heterogeneous integration modeling, and signal integrity analysis of the Darwin neuromorphic chip, and it is expected to serve as a valuable reference for future studies on similar systems.
{"title":"Hybrid Signal Integrity Modeling and Analysis of Heterogeneous Integrated System With Neuromorphic Darwin Chip","authors":"Quankun Chen;Hanzhi Ma;Da Li;Tuomin Tao;Shurun Tan;En-Xiao Liu;Jose Schutt-Aine;Er-Ping Li","doi":"10.1109/TSIPI.2024.3362317","DOIUrl":"https://doi.org/10.1109/TSIPI.2024.3362317","url":null,"abstract":"This article introduces a comprehensive approach for designing and analyzing signal integrity in heterogeneous integrated systems that incorporate neuromorphic Darwin chips. The proposed integrated system architecture includes a neuromorphic Darwin chip, digital signal processing unit, microcontroller unit, field programmable gate arrays, and coding and decoding modules to encode and reconstruct analog spiking signals. The study evaluates the encoding module and the heterogeneous integration structure and conducts signal integrity analysis. To achieve optimal signal integrity performance, the article proposes a novel binocular eye diagram analysis technique. This innovative approach guides the encoding algorithm modification and improves the overall system performance. This research is the first to combine joint field-circuit simulation, heterogeneous integration modeling, and signal integrity analysis of the Darwin neuromorphic chip, and it is expected to serve as a valuable reference for future studies on similar systems.","PeriodicalId":100646,"journal":{"name":"IEEE Transactions on Signal and Power Integrity","volume":"3 ","pages":"37-46"},"PeriodicalIF":0.0,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139987179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-05DOI: 10.1109/TSIPI.2024.3361863
Ze Sun;Jian Liu;Xiaoyan Xiong;DongHyun Kim;Daryl Beetner;Victor Khilkevich
The intentional roughness created on conductor surfaces during the printed circuit board (PCB) manufacturing process leads to a substantial increase of conductor loss at frequencies in the order of tens of gigahertz. It is essential to know the roughness of PCB conductors to create adequate models of the high-speed channels. This article presents a novel method for extracting the roughness level of conductor foils using only measured S