The present investigation systematically explores the effect of a minor addition of silicon on the microstructure, texture, and mechanical properties of FCC CrFeNi medium entropy alloy during rolling at room temperature. The addition of 2 at% Si in CrFeNi alloy results in the reduction of stacking fault energy from 22.4 mJ/m2 for CrFeNi to 18.6 mJ/m2 for (CrFeNi)98Si2 alloy. Bulk texture analysis reveals the presence of Brass and Goss texture components in the 90 % rolled samples. Microtextural study reveals that in CrFeNi and (CrFeNi)98Si2 alloy, Goss-orientated grains exhibit greater stability throughout the deformation compared to Cu-oriented grains. In addition to twinning, profuse shear banding was observed in both alloys at 90 % rolling reduction. The mechanical properties of homogenised (CrFeNi)98Si2 alloy demonstrate the enhanced combination of yield strength and hardness due to improved solid solution strengthening and dislocation strengthening accompanied by a marginal decrease in ductility due to twinning-induced strain hardening. While in 90 % rolled CrFeNi and (CrFeNi)98Si2 alloy, both yield strength and ultimate tensile strength increase drastically due to enhanced solid solution and dislocation strengthening though with a significant decrease in ductility.
{"title":"Effect of minor addition of silicon on deformation behaviour and texture evolution in CrFeNi medium entropy alloy","authors":"Swati Mahato , Tirupati Dhidhi , Nilesh P. Gurao , Krishanu Biswas","doi":"10.1016/j.jalmes.2024.100133","DOIUrl":"10.1016/j.jalmes.2024.100133","url":null,"abstract":"<div><div>The present investigation systematically explores the effect of a minor addition of silicon on the microstructure, texture, and mechanical properties of FCC CrFeNi medium entropy alloy during rolling at room temperature. The addition of 2 at% Si in CrFeNi alloy results in the reduction of stacking fault energy from 22.4 mJ/m<sup>2</sup> for CrFeNi to 18.6 mJ/m<sup>2</sup> for (CrFeNi)<sub>98</sub>Si<sub>2</sub> alloy. Bulk texture analysis reveals the presence of Brass and Goss texture components in the 90 % rolled samples. Microtextural study reveals that in CrFeNi and (CrFeNi)<sub>98</sub>Si<sub>2</sub> alloy, Goss-orientated grains exhibit greater stability throughout the deformation compared to Cu-oriented grains. In addition to twinning, profuse shear banding was observed in both alloys at 90 % rolling reduction. The mechanical properties of homogenised (CrFeNi)<sub>98</sub>Si<sub>2</sub> alloy demonstrate the enhanced combination of yield strength and hardness due to improved solid solution strengthening and dislocation strengthening accompanied by a marginal decrease in ductility due to twinning-induced strain hardening. While in 90 % rolled CrFeNi and (CrFeNi)<sub>98</sub>Si<sub>2</sub> alloy, both yield strength and ultimate tensile strength increase drastically due to enhanced solid solution and dislocation strengthening though with a significant decrease in ductility.</div></div>","PeriodicalId":100753,"journal":{"name":"Journal of Alloys and Metallurgical Systems","volume":"8 ","pages":"Article 100133"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142756578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study aimed to investigate the microstructural characteristics of a pearlitic austempered nodular cast iron (ADI) prepared with different austempering times. In austempering of ductile irons, the material is austenitiezed and rapidly cooled to temperatures typically between 420 and 290°C in a salt bath to allow the formation of a microstructure composed of graphite nodules dispersed in a residual austenitic matrix, stabilized with a high carbon content, and acicular ferrite, known as “ausferrite”. Presently, microstructure characterization by optical and scanning electron microscopy were carried out after different austempering times. Neural network image segmentation using ImageJ® software was employed to perform quantitative phase analysis, and the results were compared with volume fractions obtained by XRD measurements, one of the traditional methods for determining the residual austenite content in ferrous alloys. It was found that both carbon content in austenite and austenite fraction increase with austempering time and that graphite nodule geometry becomes gradually more irregular. The proposed methodology for quantitative analysis allowed classification of microstructure constituents with high accuracy in comparison to the XRD results.
{"title":"Influence of heat treatment time on microstructure evolution of austempered nodular cast iron evaluated by image segmentation","authors":"P.A. Ramos , I.N.R. Melo , V.H.M Medeiros , P.P. Brito","doi":"10.1016/j.jalmes.2024.100135","DOIUrl":"10.1016/j.jalmes.2024.100135","url":null,"abstract":"<div><div>This study aimed to investigate the microstructural characteristics of a pearlitic austempered nodular cast iron (ADI) prepared with different austempering times. In austempering of ductile irons, the material is austenitiezed and rapidly cooled to temperatures typically between 420 and 290°C in a salt bath to allow the formation of a microstructure composed of graphite nodules dispersed in a residual austenitic matrix, stabilized with a high carbon content, and acicular ferrite, known as “ausferrite”. Presently, microstructure characterization by optical and scanning electron microscopy were carried out after different austempering times. Neural network image segmentation using ImageJ® software was employed to perform quantitative phase analysis, and the results were compared with volume fractions obtained by XRD measurements, one of the traditional methods for determining the residual austenite content in ferrous alloys. It was found that both carbon content in austenite and austenite fraction increase with austempering time and that graphite nodule geometry becomes gradually more irregular. The proposed methodology for quantitative analysis allowed classification of microstructure constituents with high accuracy in comparison to the XRD results.</div></div>","PeriodicalId":100753,"journal":{"name":"Journal of Alloys and Metallurgical Systems","volume":"8 ","pages":"Article 100135"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142744620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01DOI: 10.1016/j.jalmes.2024.100138
Vikas Shivam , Shubhada Kar , Gopi K. Mandal , N.K. Mukhopadhyay , V.C. Srivastava
Designing a microstructure with controlled morphology is one of the determining factors for the optimum performance of a material. High entropy alloys (HEAs) have gained significant attention due to their enhanced mechanical and functional properties compared to conventional alloys, particularly based on opportunities for microstructural design. In this fast-developing field, varied thermal treatments can be applied to engineer a material as per the requirements. In the present work, we have studied the effect of thermal treatment on the microstructural modifications in the spray-formed AlCoCr0.75Cu0.5FeNi HEA. The alloy was characterized by using a light microscope, scanning electron microscope equipped with EDS detector and electron probe micro analyzer (EPMA). The elemental distribution and microstructural evolution of the alloy were studied by giving the heat treatments at different time-temperature spaces. The evolution of phases and their composition were correlated with the CALPHAD predicted property diagram and phase composition. It is observed that at a higher temperature of 1300°C, the alloy shows the simple solid solution phases to be more stable due to the high entropy effect, which brings down the Gibbs free energy of the system. The formation of the disordered BCC, FCC and their derivatives along with the sigma phase were observed in the temperature range of 600–1000°C. This work also draws attention to why understanding the microstructural evolution and solidification behaviour is important in designing the HEAs to meet the industrial promises and in this context, the role of entropy, enthalpy and slow diffusion kinetics are discussed.
{"title":"Microstructural design opportunities and phase stability in the spray-formed AlCoCr0.75Cu0.5FeNi high entropy alloy","authors":"Vikas Shivam , Shubhada Kar , Gopi K. Mandal , N.K. Mukhopadhyay , V.C. Srivastava","doi":"10.1016/j.jalmes.2024.100138","DOIUrl":"10.1016/j.jalmes.2024.100138","url":null,"abstract":"<div><div>Designing a microstructure with controlled morphology is one of the determining factors for the optimum performance of a material. High entropy alloys (HEAs) have gained significant attention due to their enhanced mechanical and functional properties compared to conventional alloys, particularly based on opportunities for microstructural design. In this fast-developing field, varied thermal treatments can be applied to engineer a material as per the requirements. In the present work, we have studied the effect of thermal treatment on the microstructural modifications in the spray-formed AlCoCr<sub>0.75</sub>Cu<sub>0.5</sub>FeNi HEA. The alloy was characterized by using a light microscope, scanning electron microscope equipped with EDS detector and electron probe micro analyzer (EPMA). The elemental distribution and microstructural evolution of the alloy were studied by giving the heat treatments at different time-temperature spaces. The evolution of phases and their composition were correlated with the CALPHAD predicted property diagram and phase composition. It is observed that at a higher temperature of 1300°C, the alloy shows the simple solid solution phases to be more stable due to the high entropy effect, which brings down the Gibbs free energy of the system. The formation of the disordered BCC, FCC and their derivatives along with the sigma phase were observed in the temperature range of 600–1000°C. This work also draws attention to why understanding the microstructural evolution and solidification behaviour is important in designing the HEAs to meet the industrial promises and in this context, the role of entropy, enthalpy and slow diffusion kinetics are discussed.</div></div>","PeriodicalId":100753,"journal":{"name":"Journal of Alloys and Metallurgical Systems","volume":"8 ","pages":"Article 100138"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143165416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Erratum to “Application of machine learning methods for the prediction of roll force and torque during plate rolling of micro-alloyed steel” [J. Alloys Metal. Syst. 4C (2023) 100044]","authors":"Suman Kant Thakur , Alok Kumar Das , Bimal Kumar Jha","doi":"10.1016/j.jalmes.2024.100111","DOIUrl":"10.1016/j.jalmes.2024.100111","url":null,"abstract":"","PeriodicalId":100753,"journal":{"name":"Journal of Alloys and Metallurgical Systems","volume":"8 ","pages":"Article 100111"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143165417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01DOI: 10.1016/j.jalmes.2024.100129
Parmeshwar P. Ritapure , Rashmi G. Yadav , Vivek T. Rasal , Adinath V. Damale , Yashwant R. Kharde
{"title":"Corrigendum to “Comparative review and experimental validation of Tribological and Mechanical Properties of Zinc Aluminium Alloy (ZA27) and Aluminium Zinc Alloy (Al-25Zn)” [J. Alloy. Metall. Syst. 7 (2024) 100099]","authors":"Parmeshwar P. Ritapure , Rashmi G. Yadav , Vivek T. Rasal , Adinath V. Damale , Yashwant R. Kharde","doi":"10.1016/j.jalmes.2024.100129","DOIUrl":"10.1016/j.jalmes.2024.100129","url":null,"abstract":"","PeriodicalId":100753,"journal":{"name":"Journal of Alloys and Metallurgical Systems","volume":"8 ","pages":"Article 100129"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143164377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01DOI: 10.1016/j.jalmes.2024.100137
Yogesh Kumar Yadav , Mohammad Abu Shaz , Nilay Krishna Mukhopadhyay , Thakur Prasad Yadav
In the present investigation, we synthesized a single-phase high-entropy alloy in Al-Cu-Fe-Ni-Ti system by melting of the individual metals using a radiofrequency induction furnace under an argon environment. The as-synthesized alloy showed the formation of a B2-type ordered phase with a lattice parameter of 0.289 nm. The mechanical stability of this single phase high-entropy alloy was investigated under high-energy ball milling. The milling was performed at a speed of 400 rpm for 10, 20, and 40 h under a hexane medium with a ball-to-powder ratio of 40:1. The formation of nano crystallites (∼ 10 nm sizes) body centered cubic (BCC) phase (disordered B2) has been observed after 40 h of ball milling, which has been confirmed by X-ray diffraction and transmission electron microscopic investigation. The equiatomic Al-Cu-Fe-Ni-Ti high entropy alloy structure is observed to be quite stable during mechanical milling up to 40 h; only grain refinements and lattice strain accumulation were observed with milling time.
{"title":"Formation of B2 phase and its stability in equiatomic Al-Cu-Fe-Ni-Ti high entropy alloy","authors":"Yogesh Kumar Yadav , Mohammad Abu Shaz , Nilay Krishna Mukhopadhyay , Thakur Prasad Yadav","doi":"10.1016/j.jalmes.2024.100137","DOIUrl":"10.1016/j.jalmes.2024.100137","url":null,"abstract":"<div><div>In the present investigation, we synthesized a single-phase high-entropy alloy in Al-Cu-Fe-Ni-Ti system by melting of the individual metals using a radiofrequency induction furnace under an argon environment. The as-synthesized alloy showed the formation of a B2-type ordered phase with a lattice parameter of 0.289 nm. The mechanical stability of this single phase high-entropy alloy was investigated under high-energy ball milling. The milling was performed at a speed of 400 rpm for 10, 20, and 40 h under a hexane medium with a ball-to-powder ratio of 40:1. The formation of nano crystallites (∼ 10 nm sizes) body centered cubic (BCC) phase (disordered B2) has been observed after 40 h of ball milling, which has been confirmed by X-ray diffraction and transmission electron microscopic investigation. The equiatomic Al-Cu-Fe-Ni-Ti high entropy alloy structure is observed to be quite stable during mechanical milling up to 40 h; only grain refinements and lattice strain accumulation were observed with milling time.</div></div>","PeriodicalId":100753,"journal":{"name":"Journal of Alloys and Metallurgical Systems","volume":"8 ","pages":"Article 100137"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143165415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01DOI: 10.1016/j.jalmes.2024.100134
Qi Zhang , Nejib Chekir , Mathieu Brochu
Six Ti-6Al-4V deposits with two geometries to extract tensile coupons from the build direction (Z) and travel direction (X), were produced by laser wire deposition (LWD) with different wire diameters. Inconsistent wall profiles were found for deposits produced with wire diameters of 1.1 and 1.6 mm due to the inhomogeneous melt pool sizes generated during the deposition process, indicating the unstable thermal history. It was found that increasing the wire diameter resulted in increased heat input, which produced coarser grains and resulted in decreased strength. Fractography analysis showed that greater amounts of defects were observed on the fracture surfaces of deposits produced with increased wire diameters, which weakened the tensile properties. The grain boundary and the surrounding colony facilitated crack propagation and caused early failure. This research also proposed a platform using modeling techniques to control cooling rates, microstructure ( phase fractions and lath widths) and yield strength of LWD Ti-6Al-4V. The accuracy of all models was validated by comparing them with experimental data.
{"title":"Thermo-microstructural-mechanical modeling of the effect of wire diameters on single-bead Ti-6Al-4V wall deposits by laser wire deposition","authors":"Qi Zhang , Nejib Chekir , Mathieu Brochu","doi":"10.1016/j.jalmes.2024.100134","DOIUrl":"10.1016/j.jalmes.2024.100134","url":null,"abstract":"<div><div>Six Ti-6Al-4V deposits with two geometries to extract tensile coupons from the build direction (Z) and travel direction (X), were produced by laser wire deposition (LWD) with different wire diameters. Inconsistent wall profiles were found for deposits produced with wire diameters of 1.1 and 1.6 mm due to the inhomogeneous melt pool sizes generated during the deposition process, indicating the unstable thermal history. It was found that increasing the wire diameter resulted in increased heat input, which produced coarser grains and resulted in decreased strength. Fractography analysis showed that greater amounts of defects were observed on the fracture surfaces of deposits produced with increased wire diameters, which weakened the tensile properties. The grain boundary <span><math><mi>α</mi></math></span> and the surrounding colony <span><math><mi>α</mi></math></span> facilitated crack propagation and caused early failure. This research also proposed a platform using modeling techniques to control cooling rates, microstructure (<span><math><mrow><mi>α</mi><mo>/</mo><mi>β</mi></mrow></math></span> phase fractions and <span><math><mi>α</mi></math></span> lath widths) and yield strength of LWD Ti-6Al-4V. The accuracy of all models was validated by comparing them with experimental data.</div></div>","PeriodicalId":100753,"journal":{"name":"Journal of Alloys and Metallurgical Systems","volume":"8 ","pages":"Article 100134"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142744619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01DOI: 10.1016/j.jalmes.2024.100136
Qanita Tayyaba , Adnan Qayyum Butt , Tayyab Ali khan , Zeeshan Nazar , Abdul Rehman , Wu Yusheng
The effect of alloying bronze with aluminum (Al) and nickel (Ni) on hardness and corrosion resistance is examined in this work. Bronze alloys were manufactured in vacuum induction melting (VIM) using 99.9 % pure copper as the main component. High-purity tin, aluminum, and nickel were added. This study examined the corrosion behavior of an Al and Ni-modified bronze alloy in a 3.5 % NaCl solution using potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS). The corrosion resistance of the alloys was assessed, with findings indicating that Ni-bronze had the best corrosion resistance—nearly twice as much as bronze. Microstructural examinations and Rockwell hardness testing further revealed that nickel-bronze had the highest hardness values, owing to strong nickel intermetallic phases formed. This thorough analysis highlights how Ni-bronze alloys perform better in challenging conditions, which qualifies them for uses needing strong mechanical durability and resistance to corrosion.
{"title":"Mechanical alloying of bronze with aluminum and nickel: Impact on corrosion resistance and hardness","authors":"Qanita Tayyaba , Adnan Qayyum Butt , Tayyab Ali khan , Zeeshan Nazar , Abdul Rehman , Wu Yusheng","doi":"10.1016/j.jalmes.2024.100136","DOIUrl":"10.1016/j.jalmes.2024.100136","url":null,"abstract":"<div><div>The effect of alloying bronze with aluminum (Al) and nickel (Ni) on hardness and corrosion resistance is examined in this work. Bronze alloys were manufactured in vacuum induction melting (VIM) using 99.9 % pure copper as the main component. High-purity tin, aluminum, and nickel were added. This study examined the corrosion behavior of an Al and Ni-modified bronze alloy in a 3.5 % NaCl solution using potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS). The corrosion resistance of the alloys was assessed, with findings indicating that Ni-bronze had the best corrosion resistance—nearly twice as much as bronze. Microstructural examinations and Rockwell hardness testing further revealed that nickel-bronze had the highest hardness values, owing to strong nickel intermetallic phases formed. This thorough analysis highlights how Ni-bronze alloys perform better in challenging conditions, which qualifies them for uses needing strong mechanical durability and resistance to corrosion.</div></div>","PeriodicalId":100753,"journal":{"name":"Journal of Alloys and Metallurgical Systems","volume":"8 ","pages":"Article 100136"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142744621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-20DOI: 10.1016/j.jalmes.2024.100132
Padiri Murali, Kausik Chattopadhyay, Vikas Jindal
Ti/TiB composites exhibit promising potential for applications in the automotive, aerospace, and biomedical sectors. Hot pressing coupled with in situ reaction synthesis is a commonly employed technique for fabricating discontinuously TiB-reinforced titanium matrix composites. Despite its efficacy, comprehensive research investigating the influence of hot-pressing process parameters on the densification and properties of these composites remains scarce. This study systematically examined the effects of pressure (16–48 MPa) and temperature (1250 °C to 1350 °C) on the density, microstructure, and mechanical properties of Ti/TiB composites produced through hot pressing. By analyzing densification curves and rate curves, the densification behavior under varying processing conditions was elucidated. The results indicate that elevated sintering temperatures and pressures correlate with increased densification rates, reduced porosity, and enhanced sample density. A strong relationship between relative densities and hardness was observed. This research contributes to a deeper understanding of the hot-pressing sintering process for Ti-TiB composites and facilitates the optimization of processing conditions.
{"title":"Effect of hot-pressing sintering temperature and pressure on the densification and properties of Ti-TiB composites","authors":"Padiri Murali, Kausik Chattopadhyay, Vikas Jindal","doi":"10.1016/j.jalmes.2024.100132","DOIUrl":"10.1016/j.jalmes.2024.100132","url":null,"abstract":"<div><div>Ti/TiB composites exhibit promising potential for applications in the automotive, aerospace, and biomedical sectors. Hot pressing coupled with in situ reaction synthesis is a commonly employed technique for fabricating discontinuously TiB-reinforced titanium matrix composites. Despite its efficacy, comprehensive research investigating the influence of hot-pressing process parameters on the densification and properties of these composites remains scarce. This study systematically examined the effects of pressure (16–48 MPa) and temperature (1250 °C to 1350 °C) on the density, microstructure, and mechanical properties of Ti/TiB composites produced through hot pressing. By analyzing densification curves and rate curves, the densification behavior under varying processing conditions was elucidated. The results indicate that elevated sintering temperatures and pressures correlate with increased densification rates, reduced porosity, and enhanced sample density. A strong relationship between relative densities and hardness was observed. This research contributes to a deeper understanding of the hot-pressing sintering process for Ti-TiB composites and facilitates the optimization of processing conditions.</div></div>","PeriodicalId":100753,"journal":{"name":"Journal of Alloys and Metallurgical Systems","volume":"8 ","pages":"Article 100132"},"PeriodicalIF":0.0,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142706634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}