首页 > 最新文献

Chemical Vapor Deposition最新文献

英文 中文
Chem. Vap. Deposition (7–8–9/2014) Chem.Vap.沉积 (7-8-9/2014)
Pub Date : 2014-09-10 DOI: 10.1002/cvde.201477893
{"title":"Chem. Vap. Deposition (7–8–9/2014)","authors":"","doi":"10.1002/cvde.201477893","DOIUrl":"https://doi.org/10.1002/cvde.201477893","url":null,"abstract":"","PeriodicalId":10093,"journal":{"name":"Chemical Vapor Deposition","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2014-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cvde.201477893","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"137663719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chem. Vap. Deposition (7–8–9/2014) Chem.Vap.沉积 (7-8-9/2014)
Pub Date : 2014-09-10 DOI: 10.1002/cvde.201477892
{"title":"Chem. Vap. Deposition (7–8–9/2014)","authors":"","doi":"10.1002/cvde.201477892","DOIUrl":"https://doi.org/10.1002/cvde.201477892","url":null,"abstract":"","PeriodicalId":10093,"journal":{"name":"Chemical Vapor Deposition","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2014-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cvde.201477892","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"137669133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preface to the CVD Special Issue: Atomic-Scale-Engineered Materials (ASEM) CVD特刊前言:原子尺度工程材料(ASEM)
Pub Date : 2014-09-10 DOI: 10.1002/cvde.201477896
Anjana Devi, W. M. M. (Erwin) Kessels
{"title":"Preface to the CVD Special Issue: Atomic-Scale-Engineered Materials (ASEM)","authors":"Anjana Devi, W. M. M. (Erwin) Kessels","doi":"10.1002/cvde.201477896","DOIUrl":"10.1002/cvde.201477896","url":null,"abstract":"","PeriodicalId":10093,"journal":{"name":"Chemical Vapor Deposition","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2014-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cvde.201477896","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"51322153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chem. Vap. Deposition (7–8–9/2014) Chem.Vap.沉积 (7-8-9/2014)
Pub Date : 2014-09-10 DOI: 10.1002/cvde.201477894

Vanadium Oxide Compounds: Structure, Properties, and Growth from the Gas Phase.

氧化钒化合物:结构、性质和气相生长。
{"title":"Chem. Vap. Deposition (7–8–9/2014)","authors":"","doi":"10.1002/cvde.201477894","DOIUrl":"https://doi.org/10.1002/cvde.201477894","url":null,"abstract":"<p>Vanadium Oxide Compounds: Structure, Properties, and Growth from the Gas Phase.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":10093,"journal":{"name":"Chemical Vapor Deposition","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2014-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cvde.201477894","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"137663718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of Optical, Electrical, and Mechanical Properties of MOCVD-grown ZrO2 Films† mocvd生长ZrO2薄膜的光学、电学和力学性能研究
Pub Date : 2014-09-01 DOI: 10.1002/cvde.201407124
Van-Son Dang, Manish Banerjee, Huaizhi Zhu, Nagendra Babu Srinivasan, Harish Parala, Janine Pfetzing-Micklich, Andreas D. Wieck, Anjana Devi

Metal-organic (MO)CVD of ZrO2 thin films is performed using the precursor [Zr(NMe2)2(guan)2] (guan = η2-(iPrN)2CNMe2) as the Zr source, together with oxygen. Film deposition is carried out on both Si(100) and glass substrates at various deposition temperatures. The resulting films are characterized by X-ray diffraction (XRD) and atomic force microscopy (AFM) for investigating the crystallinity and morphology, respectively. Optical properties are measured by ellipsometry and UV-vis on Si substrates and glass substrates, respectively, showing a high average refractive index of 2.14 and transmittance of more than 80% in visible light for the film deposited at 500°C. The potential of ZrO2 thin films as gate dielectrics is verified by carrying out capacitance-voltage (C-V) and current-voltage (I-V) measurements. Dielectric constants are estimated from the accumulation capacitance, and found to be in the range 12 - 19 at an AC frequency of 1 MHz, and a leakage current of the order of 10−6 A cm−2 at the applied field of 1 to 2 MV cm−1 is measured for the films deposited at temperatures from 500 to 700°C. The low leakage current and high dielectric constant implies the good quality of the film, relevant for high-k applications. The hardness of the film ranges from 4.2 to 6.3 GPa for the 400 nm thick film, as determined by nano-indentation measurements. The optimum dielectric and hardness is found for the film deposited at 600°C, while the highest refractive index is found to be 2.14 for the film deposited at 500°C, due to higher density of the layers.

采用前驱体[Zr(NMe2)2(guan)2] (guan = η2-(iPrN)2CNMe2)作为Zr源,与氧气一起进行了ZrO2薄膜的金属有机(MO)CVD。在不同的沉积温度下,在Si(100)和玻璃基板上进行薄膜沉积。用x射线衍射仪(XRD)和原子力显微镜(AFM)对制备的薄膜进行了形貌和结晶度表征。在Si基片和玻璃基片上分别用椭偏仪和紫外可见仪测量了薄膜的光学性能,结果表明,在500°C下沉积的薄膜在可见光下的平均折射率为2.14,透过率超过80%。通过电容电压(C-V)和电流电压(I-V)测量,验证了ZrO2薄膜作为栅极介质的潜力。从积累电容估计介电常数,发现在交流频率为1 MHz时介电常数在12 - 19范围内,并且在温度为500至700°C沉积的薄膜中,在1至2 MV cm - 1的施加磁场下测量到泄漏电流为10−6 a cm - 2。低泄漏电流和高介电常数意味着薄膜质量好,适用于高k应用。通过纳米压痕测量,400 nm厚的薄膜的硬度范围为4.2至6.3 GPa。在600°C时沉积的薄膜的最佳介电和硬度,而在500°C时沉积的薄膜由于层的密度更高,折射率最高,为2.14。
{"title":"Investigation of Optical, Electrical, and Mechanical Properties of MOCVD-grown ZrO2 Films†","authors":"Van-Son Dang,&nbsp;Manish Banerjee,&nbsp;Huaizhi Zhu,&nbsp;Nagendra Babu Srinivasan,&nbsp;Harish Parala,&nbsp;Janine Pfetzing-Micklich,&nbsp;Andreas D. Wieck,&nbsp;Anjana Devi","doi":"10.1002/cvde.201407124","DOIUrl":"10.1002/cvde.201407124","url":null,"abstract":"<div>\u0000 \u0000 <section>\u0000 \u0000 <p>Metal-organic (MO)CVD of ZrO<sub>2</sub> thin films is performed using the precursor [Zr(NMe<sub>2</sub>)<sub>2</sub>(guan)<sub>2</sub>] (guan = η<sup>2</sup>-(<sup><i>i</i></sup>PrN)<sub>2</sub>CNMe<sub>2</sub>) as the Zr source, together with oxygen. Film deposition is carried out on both Si(100) and glass substrates at various deposition temperatures. The resulting films are characterized by X-ray diffraction (XRD) and atomic force microscopy (AFM) for investigating the crystallinity and morphology, respectively. Optical properties are measured by ellipsometry and UV-vis on Si substrates and glass substrates, respectively, showing a high average refractive index of 2.14 and transmittance of more than 80% in visible light for the film deposited at 500°C. The potential of ZrO<sub>2</sub> thin films as gate dielectrics is verified by carrying out capacitance-voltage (<i>C</i>-<i>V</i>) and current-voltage (<i>I</i>-<i>V</i>) measurements. Dielectric constants are estimated from the accumulation capacitance, and found to be in the range 12 - 19 at an AC frequency of 1 MHz, and a leakage current of the order of 10<sup>−6</sup> A cm<sup>−2</sup> at the applied field of 1 to 2 MV cm<sup>−1</sup> is measured for the films deposited at temperatures from 500 to 700°C. The low leakage current and high dielectric constant implies the good quality of the film, relevant for high-<i>k</i> applications. The hardness of the film ranges from 4.2 to 6.3 GPa for the 400 nm thick film, as determined by nano-indentation measurements. The optimum dielectric and hardness is found for the film deposited at 600°C, while the highest refractive index is found to be 2.14 for the film deposited at 500°C, due to higher density of the layers.</p>\u0000 </section>\u0000 </div>","PeriodicalId":10093,"journal":{"name":"Chemical Vapor Deposition","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2014-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cvde.201407124","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"51321252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Focused Electron Beam-Induced CVD of Iron: a Practical Guide for Direct Writing† 聚焦电子束诱导的铁的CVD:直接写入的实用指南†
Pub Date : 2014-08-20 DOI: 10.1002/cvde.201407118
Marco Gavagnin, Heinz D. Wanzenboeck, Mostafa M. Shawrav, Domagoj Belic, Stefan Wachter, Simon Waid, Michael Stoeger–Pollach, Emmerich Bertagnolli

Magnetic materials synthesized on the nanometer-scale level are essential for several applications, such as spintronics and magnetologic. As a successful nanofabrication approach, focused electron beam-induced deposition (FEBID) stands out as a direct-write technique. FEBID uses an electron beam to locally induce a CVD process, avoiding the use of masks and resists. In this work, Fe–based nanostructures are synthesized on Si(100) by FEBID, starting from iron pentacarbonyl. A systematic variation of FEBID parameters is performed, to study their influence on the geometry and composition of the deposit. Based on the results, specific deposition conditions are suggested for magneto-logic applications and fabrication of large structures.

纳米级合成的磁性材料在自旋电子学和磁学等领域具有重要的应用价值。作为一种成功的纳米制造方法,聚焦电子束诱导沉积(FEBID)作为一种直接写入技术脱颖而出。FEBID使用电子束局部诱导CVD过程,避免使用掩膜和电阻。本研究以五羰基铁为起始原料,用FEBID在Si(100)上合成了铁基纳米结构。对FEBID参数进行了系统的变化,以研究它们对矿床几何形状和组成的影响。在此基础上,提出了磁逻辑应用和大型结构制造的具体沉积条件。
{"title":"Focused Electron Beam-Induced CVD of Iron: a Practical Guide for Direct Writing†","authors":"Marco Gavagnin,&nbsp;Heinz D. Wanzenboeck,&nbsp;Mostafa M. Shawrav,&nbsp;Domagoj Belic,&nbsp;Stefan Wachter,&nbsp;Simon Waid,&nbsp;Michael Stoeger–Pollach,&nbsp;Emmerich Bertagnolli","doi":"10.1002/cvde.201407118","DOIUrl":"10.1002/cvde.201407118","url":null,"abstract":"<div>\u0000 \u0000 <section>\u0000 \u0000 <p>Magnetic materials synthesized on the nanometer-scale level are essential for several applications, such as spintronics and magnetologic. As a successful nanofabrication approach, focused electron beam-induced deposition (FEBID) stands out as a direct-write technique. FEBID uses an electron beam to locally induce a CVD process, avoiding the use of masks and resists. In this work, Fe–based nanostructures are synthesized on Si(100) by FEBID, starting from iron pentacarbonyl. A systematic variation of FEBID parameters is performed, to study their influence on the geometry and composition of the deposit. Based on the results, specific deposition conditions are suggested for magneto-logic applications and fabrication of large structures.</p>\u0000 </section>\u0000 </div>","PeriodicalId":10093,"journal":{"name":"Chemical Vapor Deposition","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2014-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cvde.201407118","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"51321195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 15
Electron Beam-Induced CVD of Nanoalloys for Nanoelectronics† 纳米电子学领域纳米合金的电子束诱导CVD研究
Pub Date : 2014-08-19 DOI: 10.1002/cvde.201407119
Mostafa Moonir Shawrav, Domagoj Belić, Marco Gavagnin, Stefan Wachter, Markus Schinnerl, Heinz D. Wanzenboeck, Emmerich Bertagnolli

Among various multi-metal combinations, Au-Fe nanoalloys are envisaged as prospective materials for data storage applications. Here we report on the first successful achievement of Au-Fe nanoalloys using focused electron beam-induced deposition (FEBID), exploiting the possibility of directly writing nanostructures at nanometer resolution. Gaseous organometallic precursors are injected simultaneously into the deposition chamber to co-deposit Fe and Au within the same nanostructure. Fabricated nanostructures show a spatially uniform elemental ratio of iron to gold that can be tailored by experimental conditions.

在各种多金属组合中,金铁纳米合金被认为是有前景的数据存储材料。本文报道了利用聚焦电子束诱导沉积技术(FEBID)制备Au-Fe纳米合金的首次成功成果,探索了在纳米分辨率下直接写入纳米结构的可能性。将气态有机金属前驱体同时注入沉积室,在同一纳米结构内共沉积铁和金。制备的纳米结构显示出空间上均匀的铁与金的元素比例,可以根据实验条件进行调整。
{"title":"Electron Beam-Induced CVD of Nanoalloys for Nanoelectronics†","authors":"Mostafa Moonir Shawrav,&nbsp;Domagoj Belić,&nbsp;Marco Gavagnin,&nbsp;Stefan Wachter,&nbsp;Markus Schinnerl,&nbsp;Heinz D. Wanzenboeck,&nbsp;Emmerich Bertagnolli","doi":"10.1002/cvde.201407119","DOIUrl":"10.1002/cvde.201407119","url":null,"abstract":"<div>\u0000 \u0000 <section>\u0000 \u0000 <p>Among various multi-metal combinations, Au-Fe nanoalloys are envisaged as prospective materials for data storage applications. Here we report on the first successful achievement of Au-Fe nanoalloys using focused electron beam-induced deposition (FEBID), exploiting the possibility of directly writing nanostructures at nanometer resolution. Gaseous organometallic precursors are injected simultaneously into the deposition chamber to co-deposit Fe and Au within the same nanostructure. Fabricated nanostructures show a spatially uniform elemental ratio of iron to gold that can be tailored by experimental conditions.</p>\u0000 </section>\u0000 </div>","PeriodicalId":10093,"journal":{"name":"Chemical Vapor Deposition","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2014-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cvde.201407119","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"51321201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 16
Plasma-Assisted Atomic Layer Deposition of PtOx from (MeCp)PtMe3 and O2 Plasma† 等离子体辅助PtOx原子层沉积(MeCp)PtMe3和O2等离子体†
Pub Date : 2014-08-06 DOI: 10.1002/cvde.201407109
Ivo J. M. Erkens, Marcel A. Verheijen, Harm C. M. Knoops, Tatiana F. Landaluce, Fred Roozeboom, Wilhelmus M. M. Kessels

Atomic layer deposition (ALD) using (MeCp)PtMe3 and O2 gas or O2 plasma is a well-established technique for the deposition of thin films of Pt, but the potential of ALD to deposit platinum oxide (PtOx) has not yet been systematically explored. This work demonstrates how PtOx can be deposited by plasma-assisted (PA)-ALD in a temperature window from room temperature (RT) to 300 °C by controlling the O2 plasma and (MeCp)PtMe3 exposure. With increasing substrate temperature, the thermal stability of PtOx decreases and the reducing activity of the precursor ligands increases. Therefore, longer O2 plasma exposures and/or lower (MeCp)PtMe3 exposures are required to obtain PtOx at higher temperatures. Furthermore, it is established that, during the nucleation stage, PtOx ALD starts by the formation of islands that grow and coalesce during the initial ∼40 cycles. Closed-layer thin films of PtOx with an O/Pt ratio of 2.5 can be deposited at 100 °C with a minimal thickness of only ∼2 nm. It is also demonstrated that a conformality of ∼90% can be reached for PtOx films in trenches with an aspect ratio of 9 when using optimized O2 plasma and precursor exposure times.

利用(MeCp)PtMe3和O2气体或O2等离子体原子层沉积(ALD)是一种成熟的铂薄膜沉积技术,但ALD沉积氧化铂(PtOx)的潜力尚未得到系统的探索。这项工作证明了PtOx是如何通过控制O2等离子体和(MeCp)PtMe3暴露在室温(RT)至300°C的温度窗内通过等离子体辅助(PA)-ALD沉积的。随着底物温度的升高,PtOx的热稳定性降低,前体配体的还原活性增加。因此,在较高温度下获得PtOx需要较长的氧等离子体暴露和/或较低(MeCp)的PtMe3暴露。此外,在成核阶段,PtOx ALD开始形成岛屿,在最初的~ 40个周期中生长和合并。O/Pt比为2.5的PtOx闭层薄膜可以在100°C下沉积,最小厚度仅为~ 2 nm。研究还表明,当使用优化的O2等离子体和前驱体曝光时间时,PtOx薄膜在宽高比为9的沟槽中可以达到约90%的一致性。
{"title":"Plasma-Assisted Atomic Layer Deposition of PtOx from (MeCp)PtMe3 and O2 Plasma†","authors":"Ivo J. M. Erkens,&nbsp;Marcel A. Verheijen,&nbsp;Harm C. M. Knoops,&nbsp;Tatiana F. Landaluce,&nbsp;Fred Roozeboom,&nbsp;Wilhelmus M. M. Kessels","doi":"10.1002/cvde.201407109","DOIUrl":"10.1002/cvde.201407109","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <p>Atomic layer deposition (ALD) using (MeCp)PtMe<sub>3</sub> and O<sub>2</sub> gas or O<sub>2</sub> plasma is a well-established technique for the deposition of thin films of Pt, but the potential of ALD to deposit platinum oxide (PtO<sub><i>x</i></sub>) has not yet been systematically explored. This work demonstrates how PtO<sub><i>x</i></sub> can be deposited by plasma-assisted (PA)-ALD in a temperature window from room temperature (RT) to 300 °C by controlling the O<sub>2</sub> plasma and (MeCp)PtMe<sub>3</sub> exposure. With increasing substrate temperature, the thermal stability of PtO<sub><i>x</i></sub> decreases and the reducing activity of the precursor ligands increases. Therefore, longer O<sub>2</sub> plasma exposures and/or lower (MeCp)PtMe<sub>3</sub> exposures are required to obtain PtO<sub><i>x</i></sub> at higher temperatures. Furthermore, it is established that, during the nucleation stage, PtO<sub><i>x</i></sub> ALD starts by the formation of islands that grow and coalesce during the initial ∼40 cycles. Closed-layer thin films of PtO<sub><i>x</i></sub> with an O/Pt ratio of 2.5 can be deposited at 100 °C with a minimal thickness of only ∼2 nm. It is also demonstrated that a conformality of ∼90% can be reached for PtO<sub><i>x</i></sub> films in trenches with an aspect ratio of 9 when using optimized O<sub>2</sub> plasma and precursor exposure times.</p>\u0000 </section>\u0000 </div>","PeriodicalId":10093,"journal":{"name":"Chemical Vapor Deposition","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2014-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cvde.201407109","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"51321407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 13
Atomic Layer Deposition of Transparent VOx Thin Films for Resistive Switching Applications† 用于电阻开关应用的透明VOx薄膜的原子层沉积
Pub Date : 2014-08-04 DOI: 10.1002/cvde.201407122
Trilok Singh, Shuangzhou Wang, Nabeel Aslam, Hehe Zhang, Susanne Hoffmann-Eifert, Sanjay Mathur

Atomic layer deposition (ALD) offers nearly pinhole-free, conformal, and with good thickness control, metal oxide nanometric thin films required for next-generation memory devices. Here we report on the ALD of VOx thin films grown at about 100°C from a vanadium tri-isopropoxide (VTIP) precursor, with water as the co-reactant, followed by their post-growth treatments, for potential applications in resistive switching (RS) devices. As-grown VOx films are amorphous, and transform into polycrystalline layers upon annealing. Capacitor structures fabricated from amorphous VOx films show current-voltage (I-V) characteristics, interesting for RS applications. Depending on the electroforming conditions, bipolar-type memory switching with a resistance ratio ROFF/RON > 103 is obtained, as well as a combination of memory and threshold switching. The latter is attractive for its highly non-linear I-V characteristics, which is attributed to the temperature-induced insulator-to-metal transition (IMT) in vanadium dioxide.

原子层沉积(ALD)提供了下一代存储器件所需的几乎无针孔、保形且具有良好厚度控制的金属氧化物纳米薄膜。本文报道了以三异丙醇钒(VTIP)为前驱体,以水为共反应物,在约100°C下生长的VOx薄膜的ALD,以及其生长后处理,在电阻开关(RS)器件中的潜在应用。生长的VOx薄膜是无定形的,在退火后转变成多晶层。由非晶VOx薄膜制成的电容器结构具有电流-电压(I-V)特性,对RS应用很有兴趣。根据电铸条件的不同,可以得到电阻比为ROFF/RON > 103的双极型记忆开关,以及记忆开关和阈值开关的结合。后者因其高度非线性的I-V特性而具有吸引力,这归因于二氧化钒中温度诱导的绝缘体到金属转变(IMT)。
{"title":"Atomic Layer Deposition of Transparent VOx Thin Films for Resistive Switching Applications†","authors":"Trilok Singh,&nbsp;Shuangzhou Wang,&nbsp;Nabeel Aslam,&nbsp;Hehe Zhang,&nbsp;Susanne Hoffmann-Eifert,&nbsp;Sanjay Mathur","doi":"10.1002/cvde.201407122","DOIUrl":"10.1002/cvde.201407122","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <p>Atomic layer deposition (ALD) offers nearly pinhole-free, conformal, and with good thickness control, metal oxide nanometric thin films required for next-generation memory devices. Here we report on the ALD of VO<sub><i>x</i></sub> thin films grown at about 100°C from a vanadium tri-isopropoxide (VTIP) precursor, with water as the co-reactant, followed by their post-growth treatments, for potential applications in resistive switching (RS) devices. As-grown VO<sub><i>x</i></sub> films are amorphous, and transform into polycrystalline layers upon annealing. Capacitor structures fabricated from amorphous VO<sub><i>x</i></sub> films show current-voltage (<i>I-V</i>) characteristics, interesting for RS applications. Depending on the electroforming conditions, bipolar-type memory switching with a resistance ratio <i>R</i><sub>OFF</sub>/<i>R</i><sub>ON</sub> &gt; 10<sup>3</sup> is obtained, as well as a combination of memory and threshold switching. The latter is attractive for its highly non-linear <i>I-V</i> characteristics, which is attributed to the temperature-induced insulator-to-metal transition (IMT) in vanadium dioxide.</p>\u0000 </section>\u0000 </div>","PeriodicalId":10093,"journal":{"name":"Chemical Vapor Deposition","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2014-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cvde.201407122","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"51321210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 27
Atomic Layer Deposition of TiOx/Al2O3 Bilayer Structures for Resistive Switching Memory Applications† 阻性开关存储器中TiOx/Al2O3双层结构的原子层沉积
Pub Date : 2014-07-28 DOI: 10.1002/cvde.201407123
Hehe Zhang, Nabeel Aslam, Marcel Reiners, Rainer Waser, Susanne Hoffmann-Eifert

The resistive switching (RS) properties of a thin Al2O3 layer and TiOx/Al2O3 bilayers integrated into TiN/metal oxide/Pt crossbar devices are investigated for future memristive device (ReRAM) applications. The oxide bilayer stack is realized in consecutive atomic layer deposition (ALD) processes at 300 °C without any post-annealing step. Stoichiometric Al2O3 and oxygen-deficient TiOx thin films are grown from dimethylaluminum isopropoxide [DMAI: (CH3)2AlOCH(CH3)2] and tetrakis-dimethlyamido-titanium [TDMAT: Ti(N(CH3)2)4], respectively, as the metal sources, and water as the oxygen source. High insulating characteristics are confirmed for as-grown amorphous Al2O3 films with a dielectric permittivity of 8.0 and disruptive field strength of about 7 MV cm−1, whereas the oxygen-deficient TiOx shows semiconducting behavior. The bipolar-type RS characteristics of TiN/TiOx/Al2O3/Pt cells show a strong dependence on both oxide layer thicknesses. A stable OFF/ON state resistance ratio of about 105 is obtained for the bilayer structure of 5 nm TiOx and 3.7 nm Al2O3.

研究了集成在TiN/金属氧化物/Pt交叉栅器件中的薄Al2O3层和TiOx/Al2O3双层层的电阻开关(RS)特性,用于未来的忆阻器件(ReRAM)应用。在300°C的连续原子层沉积(ALD)工艺中实现了氧化物双层堆叠,而无需任何后退火步骤。以二甲基异丙铝[DMAI: (CH3)2AlOCH(CH3)2]和四甲基-二甲酰胺-钛[TDMAT: Ti(N(CH3)2)4]为金属源,水为氧源,分别制备了Al2O3和缺氧TiOx薄膜。非晶Al2O3薄膜具有较高的绝缘特性,其介电常数为8.0,破坏场强约为7 MV cm−1,而缺氧TiOx薄膜则表现出半导体特性。TiN/TiOx/Al2O3/Pt电池的双极性RS特性对两种氧化层厚度都有很强的依赖性。对于5nm TiOx和3.7 nm Al2O3的双层结构,获得了稳定的OFF/ON电阻比约为105。
{"title":"Atomic Layer Deposition of TiOx/Al2O3 Bilayer Structures for Resistive Switching Memory Applications†","authors":"Hehe Zhang,&nbsp;Nabeel Aslam,&nbsp;Marcel Reiners,&nbsp;Rainer Waser,&nbsp;Susanne Hoffmann-Eifert","doi":"10.1002/cvde.201407123","DOIUrl":"10.1002/cvde.201407123","url":null,"abstract":"<div>\u0000 \u0000 <section>\u0000 \u0000 <p>The resistive switching (RS) properties of a thin Al<sub>2</sub>O<sub>3</sub> layer and TiO<sub><i>x</i></sub>/Al<sub>2</sub>O<sub>3</sub> bilayers integrated into TiN/metal oxide/Pt crossbar devices are investigated for future memristive device (ReRAM) applications. The oxide bilayer stack is realized in consecutive atomic layer deposition (ALD) processes at 300 °C without any post-annealing step. Stoichiometric Al<sub>2</sub>O<sub>3</sub> and oxygen-deficient TiO<sub><i>x</i></sub> thin films are grown from dimethylaluminum isopropoxide [DMAI: (CH<sub>3</sub>)<sub>2</sub>AlOCH(CH<sub>3</sub>)<sub>2</sub>] and tetrakis-dimethlyamido-titanium [TDMAT: Ti(N(CH<sub>3</sub>)<sub>2</sub>)<sub>4</sub>], respectively, as the metal sources, and water as the oxygen source. High insulating characteristics are confirmed for as-grown amorphous Al<sub>2</sub>O<sub>3</sub> films with a dielectric permittivity of 8.0 and disruptive field strength of about 7 MV cm<sup>−1</sup>, whereas the oxygen-deficient TiO<sub><i>x</i></sub> shows semiconducting behavior. The bipolar-type RS characteristics of TiN/TiO<sub><i>x</i></sub>/Al<sub>2</sub>O<sub>3</sub>/Pt cells show a strong dependence on both oxide layer thicknesses. A stable OFF/ON state resistance ratio of about 10<sup>5</sup> is obtained for the bilayer structure of 5 nm TiO<sub><i>x</i></sub> and 3.7 nm Al<sub>2</sub>O<sub>3</sub>.</p>\u0000 </section>\u0000 </div>","PeriodicalId":10093,"journal":{"name":"Chemical Vapor Deposition","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2014-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cvde.201407123","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"51321222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 12
期刊
Chemical Vapor Deposition
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1