首页 > 最新文献

Communications Physics最新文献

英文 中文
Multiplexed quantum repeaters based on single-photon interference with mild stabilization 基于温和稳定的单光子干涉的复用量子中继器
IF 5.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-11-15 DOI: 10.1038/s42005-024-01849-6
Daisuke Yoshida, Tomoyuki Horikiri
Quantum repeaters are pivotal in the physical layer of the quantum internet, and quantum repeaters capable of efficient entanglement distribution are necessary for its development. Quantum repeater schemes based on single-photon interference are promising because of their potential efficiency. However, schemes involving first-order interference with photon sources at distant nodes require stringent phase stability of the components, which pose challenges for long-distance implementation. In this paper, we present a quantum repeater scheme that leverages single-photon interference and reduces the difficulty of achieving phase stabilization. Additionally, under specific conditions, our scheme achieves a higher entanglement distribution rate between end nodes compared with the existing schemes. Thus, the proposed approach could lead to improved rates with technologies that are currently unavailable but possible in the future and will ultimately facilitate the development of multimode quantum repeaters. Single-photon interference based quantum repeater schemes are promising due to their potential efficiency. Here, the authors offer a theoretical quantum repeater scheme with reduced complexity of phase stabilization and scope for higher entanglement rates between the end nodes.
量子中继器是量子互联网物理层的关键,而能够高效分配纠缠的量子中继器是量子互联网发展的必要条件。基于单光子干涉的量子中继器方案因其潜在的效率而大有可为。然而,涉及与遥远节点光子源的一阶干涉的方案要求组件具有严格的相位稳定性,这给远距离实施带来了挑战。在本文中,我们提出了一种量子中继器方案,它利用单光子干涉,降低了实现相位稳定的难度。此外,在特定条件下,与现有方案相比,我们的方案在终端节点之间实现了更高的纠缠分配率。因此,所提出的方法可以利用目前尚不存在但未来有可能实现的技术提高速率,并最终促进多模量子中继器的发展。基于单光子干涉的量子中继器方案因其潜在的效率而大有可为。在此,作者提出了一种理论上的量子中继器方案,该方案降低了相位稳定的复杂性,并可提高终端节点之间的纠缠率。
{"title":"Multiplexed quantum repeaters based on single-photon interference with mild stabilization","authors":"Daisuke Yoshida, Tomoyuki Horikiri","doi":"10.1038/s42005-024-01849-6","DOIUrl":"10.1038/s42005-024-01849-6","url":null,"abstract":"Quantum repeaters are pivotal in the physical layer of the quantum internet, and quantum repeaters capable of efficient entanglement distribution are necessary for its development. Quantum repeater schemes based on single-photon interference are promising because of their potential efficiency. However, schemes involving first-order interference with photon sources at distant nodes require stringent phase stability of the components, which pose challenges for long-distance implementation. In this paper, we present a quantum repeater scheme that leverages single-photon interference and reduces the difficulty of achieving phase stabilization. Additionally, under specific conditions, our scheme achieves a higher entanglement distribution rate between end nodes compared with the existing schemes. Thus, the proposed approach could lead to improved rates with technologies that are currently unavailable but possible in the future and will ultimately facilitate the development of multimode quantum repeaters. Single-photon interference based quantum repeater schemes are promising due to their potential efficiency. Here, the authors offer a theoretical quantum repeater scheme with reduced complexity of phase stabilization and scope for higher entanglement rates between the end nodes.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-9"},"PeriodicalIF":5.4,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01849-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Role of coherence in many-body Quantum Reservoir Computing 相干性在多体量子存储计算中的作用
IF 5.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-11-14 DOI: 10.1038/s42005-024-01859-4
Ana Palacios, Rodrigo Martínez-Peña, Miguel C. Soriano, Gian Luca Giorgi, Roberta Zambrini
Quantum Reservoir Computing (QRC) offers potential advantages over classical reservoir computing, including inherent processing of quantum inputs and a vast Hilbert space for state exploration. Yet, the relation between the performance of reservoirs based on complex and many-body quantum systems and non-classical state features is not established. Through an extensive analysis of QRC based on a transverse-field Ising model we show how different quantum effects, such as quantum coherence and correlations, contribute to improving the performance in temporal tasks, as measured by the Information Processing Capacity. Additionally, we critically assess the impact of finite measurement resources and noise on the reservoir’s dynamics in different regimes, quantifying the limited ability to exploit quantum effects for increasing damping and noise strengths. Our results reveal a monotonic relationship between reservoir performance and coherence, along with the importance of quantum effects in the ergodic regime. Quantum Reservoir Computing leverages the quantum properties of physical systems for solving temporal tasks. This study shows the importance of quantum effects, such as coherence and superposition, in the reservoir’s performance for different dynamical regimes, while considering the impact of finite measurements and noisy environments.
与经典储层计算相比,量子储层计算(QRC)具有潜在的优势,包括量子输入的固有处理和用于状态探索的巨大希尔伯特空间。然而,基于复杂多体量子系统的储层性能与非经典状态特征之间的关系尚未确立。通过对基于横向场伊辛模型的 QRC 进行广泛分析,我们展示了不同的量子效应(如量子相干性和相关性)如何有助于提高时间任务的性能(以信息处理能力衡量)。此外,我们还批判性地评估了有限测量资源和噪声对不同状态下水库动态的影响,量化了利用量子效应提高阻尼和噪声强度的有限能力。我们的研究结果揭示了水库性能与相干性之间的单调关系,以及量子效应在遍历机制中的重要性。量子水库计算利用物理系统的量子特性来解决时间任务。这项研究显示了量子效应(如相干性和叠加性)在不同动力学状态下水库性能中的重要性,同时考虑了有限测量和噪声环境的影响。
{"title":"Role of coherence in many-body Quantum Reservoir Computing","authors":"Ana Palacios, Rodrigo Martínez-Peña, Miguel C. Soriano, Gian Luca Giorgi, Roberta Zambrini","doi":"10.1038/s42005-024-01859-4","DOIUrl":"10.1038/s42005-024-01859-4","url":null,"abstract":"Quantum Reservoir Computing (QRC) offers potential advantages over classical reservoir computing, including inherent processing of quantum inputs and a vast Hilbert space for state exploration. Yet, the relation between the performance of reservoirs based on complex and many-body quantum systems and non-classical state features is not established. Through an extensive analysis of QRC based on a transverse-field Ising model we show how different quantum effects, such as quantum coherence and correlations, contribute to improving the performance in temporal tasks, as measured by the Information Processing Capacity. Additionally, we critically assess the impact of finite measurement resources and noise on the reservoir’s dynamics in different regimes, quantifying the limited ability to exploit quantum effects for increasing damping and noise strengths. Our results reveal a monotonic relationship between reservoir performance and coherence, along with the importance of quantum effects in the ergodic regime. Quantum Reservoir Computing leverages the quantum properties of physical systems for solving temporal tasks. This study shows the importance of quantum effects, such as coherence and superposition, in the reservoir’s performance for different dynamical regimes, while considering the impact of finite measurements and noisy environments.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-9"},"PeriodicalIF":5.4,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01859-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The influence of timescales and data injection schemes for reservoir computing using spin-VCSELs 利用自旋-VCSEL 进行储层计算时标和数据注入方案的影响
IF 5.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-11-14 DOI: 10.1038/s42005-024-01858-5
Lukas Mühlnickel, Jonnel A. Jaurigue, Lina C. Jaurigue, Kathy Lüdge
Reservoir computing with photonic systems promises fast and energy efficient computations. Vertical emitting semiconductor lasers with two spin-polarized charge-carrier populations (spin-VCSEL), are good candidates for high-speed reservoir computing. With our work, we highlight the role of the internal dynamic coupling on the prediction performance. We present numerical evidence for the critical impact of different data injection schemes and internal timescales. A central finding is that the internal dynamics of all dynamical degrees of freedom can only be utilized if an appropriate perturbation via the input is chosen as data injection scheme. If the data is encoded via an optical phase difference, the internal spin-polarized carrier dynamics is not addressed but instead a faster data injection rate is possible. We find strong correlations of the prediction performance with the system response time and the underlying delay-induced bifurcation structure, which allows to transfer the results to other physical reservoir computing systems. The authors numerically investigate the reservoir computing performance of vertical emitting two-mode semiconductor lasers and show the crucial impact of dynamic coupling, injection schemes and system timescales. A central finding is that high dimensional internal dynamics can only be utilized if an appropriate perturbation via the input is chosen.
利用光子系统进行存储计算可实现快速、节能的计算。具有两个自旋偏振电荷载流子群的垂直发射半导体激光器(spin-VCSEL)是高速存储计算的理想候选者。通过我们的工作,我们强调了内部动态耦合对预测性能的作用。我们提出了不同数据注入方案和内部时间尺度的关键影响的数值证据。一个核心发现是,只有选择适当的输入扰动作为数据注入方案,才能利用所有动态自由度的内部动态。如果通过光学相位差对数据进行编码,则无法解决内部自旋极化载流子动力学问题,反而有可能实现更快的数据注入速率。我们发现预测性能与系统响应时间和底层延迟诱导分岔结构有很强的相关性,因此可以将结果应用于其他物理水库计算系统。作者对垂直发射双模半导体激光器的储层计算性能进行了数值研究,并展示了动态耦合、注入方案和系统时间尺度的重要影响。一个核心发现是,只有通过输入选择适当的扰动,才能利用高维内部动力学。
{"title":"The influence of timescales and data injection schemes for reservoir computing using spin-VCSELs","authors":"Lukas Mühlnickel, Jonnel A. Jaurigue, Lina C. Jaurigue, Kathy Lüdge","doi":"10.1038/s42005-024-01858-5","DOIUrl":"10.1038/s42005-024-01858-5","url":null,"abstract":"Reservoir computing with photonic systems promises fast and energy efficient computations. Vertical emitting semiconductor lasers with two spin-polarized charge-carrier populations (spin-VCSEL), are good candidates for high-speed reservoir computing. With our work, we highlight the role of the internal dynamic coupling on the prediction performance. We present numerical evidence for the critical impact of different data injection schemes and internal timescales. A central finding is that the internal dynamics of all dynamical degrees of freedom can only be utilized if an appropriate perturbation via the input is chosen as data injection scheme. If the data is encoded via an optical phase difference, the internal spin-polarized carrier dynamics is not addressed but instead a faster data injection rate is possible. We find strong correlations of the prediction performance with the system response time and the underlying delay-induced bifurcation structure, which allows to transfer the results to other physical reservoir computing systems. The authors numerically investigate the reservoir computing performance of vertical emitting two-mode semiconductor lasers and show the crucial impact of dynamic coupling, injection schemes and system timescales. A central finding is that high dimensional internal dynamics can only be utilized if an appropriate perturbation via the input is chosen.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-12"},"PeriodicalIF":5.4,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01858-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Light-enhanced nonlinear Hall effect 光增强非线性霍尔效应
IF 5.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-11-13 DOI: 10.1038/s42005-024-01820-5
Fang Qin, Rui Chen, Ching Hua Lee
The Hall response can be dramatically different from its quantized value in materials with broken inversion symmetry. This stems from the leading Hall contribution beyond the linear order, known as the Berry curvature dipole (BCD). While the BCD is in principle always present, it is typically very small outside of a narrow window close to a topological transition and is thus experimentally elusive without careful tuning of external fields, temperature, or impurities. We transcend this challenge by devising optical driving and quench protocols that enable practical and direct access to large BCD. Varying the amplitude of an incident circularly polarized laser drives a topological transition between normal and Chern insulator phases, and importantly allows the precise unlocking of nonlinear Hall currents comparable to or larger than the linear Hall contributions. This strong BCD engineering is even more versatile with our two-parameter quench protocol, as demonstrated in our experimental proposal. In this work, the authors investigate nonlinear Hall materials under optical driving. They find that nonlinear Hall materials can exhibit a strong light-enhanced nonlinear Hall response when excited by circularly polarized lasers.
在具有破碎反转对称性的材料中,霍尔响应可能与其量化值大相径庭。这源于超出线性阶的霍尔前导贡献,即贝里曲率偶极子(BCD)。虽然 BCD 原则上始终存在,但在拓扑转变附近的狭窄窗口外,它通常非常小,因此,如果不对外部场、温度或杂质进行仔细调整,在实验中是难以捉摸的。我们通过设计光学驱动和淬火协议超越了这一挑战,实现了对大 BCD 的实际和直接访问。改变入射圆偏振激光的振幅可以驱动正常绝缘体相与切尔绝缘体相之间的拓扑转变,更重要的是可以精确地解锁与线性霍尔贡献相当或更大的非线性霍尔电流。这种强大的 BCD 工程在我们的双参数淬火协议下用途更加广泛,这一点已在我们的实验提案中得到证明。在这项工作中,作者研究了光驱动下的非线性霍尔材料。他们发现,非线性霍尔材料在圆偏振激光的激励下,可以表现出强烈的光增强非线性霍尔响应。
{"title":"Light-enhanced nonlinear Hall effect","authors":"Fang Qin, Rui Chen, Ching Hua Lee","doi":"10.1038/s42005-024-01820-5","DOIUrl":"10.1038/s42005-024-01820-5","url":null,"abstract":"The Hall response can be dramatically different from its quantized value in materials with broken inversion symmetry. This stems from the leading Hall contribution beyond the linear order, known as the Berry curvature dipole (BCD). While the BCD is in principle always present, it is typically very small outside of a narrow window close to a topological transition and is thus experimentally elusive without careful tuning of external fields, temperature, or impurities. We transcend this challenge by devising optical driving and quench protocols that enable practical and direct access to large BCD. Varying the amplitude of an incident circularly polarized laser drives a topological transition between normal and Chern insulator phases, and importantly allows the precise unlocking of nonlinear Hall currents comparable to or larger than the linear Hall contributions. This strong BCD engineering is even more versatile with our two-parameter quench protocol, as demonstrated in our experimental proposal. In this work, the authors investigate nonlinear Hall materials under optical driving. They find that nonlinear Hall materials can exhibit a strong light-enhanced nonlinear Hall response when excited by circularly polarized lasers.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-14"},"PeriodicalIF":5.4,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01820-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Superconductivity in the pressurized nickelate La3Ni2O7 in the vicinity of a BEC–BCS crossover 加压镍酸盐 La3Ni2O7 在 BEC-BCS 交叉点附近的超导性
IF 5.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-11-09 DOI: 10.1038/s42005-024-01854-9
Henning Schlömer, Ulrich Schollwöck, Fabian Grusdt, Annabelle Bohrdt
Ever since the discovery of high-temperature superconductivity in cuprates, gaining microscopic insights into the nature of pairing in strongly correlated systems has remained one of the greatest challenges in modern condensed matter physics. Following recent experiments reporting superconductivity in the bilayer nickelate La3Ni2O7 (LNO) with remarkably high critical temperatures of Tc = 80 K, it has been argued that the low-energy physics of LNO can be described by the strongly correlated, mixed-dimensional bilayer t–J model. Here we investigate this bilayer system and utilize density matrix renormalization group techniques to establish a thorough understanding of the model and the magnetically induced pairing through comparison to the perturbative limit of dominating inter-layer spin couplings. In particular, this allows us to explain appearing finite-size effects, firmly establishing the existence of long-range superconducting order in the thermodynamic limit. By analyzing binding energies, we predict a BEC–BCS crossover as a function of the Hamiltonian parameters. We find large binding energies of the order of the inter-layer coupling that suggest strikingly high critical temperatures of the Berezinskii–Kosterlitz–Thouless transition, raising the question of whether (mixD) bilayer superconductors possibly facilitate critical temperatures above room temperature. The authors study a minimal model to describe the physics of bilayer nickelates, a novel high-temperature superconductor. They find that the model features extraordinarily high critical temperatures for superconductivity, and gain a detailed understanding of the underlying physics through an intuitive perturbative limit.
自从发现铜氧化物的高温超导性以来,从微观角度深入了解强相关系统中配对的性质一直是现代凝聚态物理学面临的最大挑战之一。最近的实验报告了双层镍酸盐 La3Ni2O7(LNO)的超导性,其临界温度高达 Tc = 80 K,因此有人认为 LNO 的低能物理可以用强相关的混合维双层 t-J 模型来描述。在这里,我们研究了这个双层体系,并利用密度矩阵重正化群技术,通过与占主导地位的层间自旋耦合的微扰极限进行比较,建立了对该模型和磁诱导配对的透彻理解。特别是,这使我们能够解释出现的有限尺寸效应,牢固确立热力学极限中长程超导秩序的存在。通过分析结合能,我们预测了作为哈密顿参数函数的 BEC-BCS 交叉。我们发现了与层间耦合数量级相当的大结合能,这表明别列津斯基-科斯特利兹-无穷转变的临界温度非常高,从而提出了(mixD)双层超导体是否有可能使临界温度高于室温的问题。作者研究了一个描述双层镍酸盐(一种新型高温超导体)物理特性的最小模型。他们发现该模型具有超高的超导临界温度,并通过直观的微扰极限详细了解了其基本物理原理。
{"title":"Superconductivity in the pressurized nickelate La3Ni2O7 in the vicinity of a BEC–BCS crossover","authors":"Henning Schlömer, Ulrich Schollwöck, Fabian Grusdt, Annabelle Bohrdt","doi":"10.1038/s42005-024-01854-9","DOIUrl":"10.1038/s42005-024-01854-9","url":null,"abstract":"Ever since the discovery of high-temperature superconductivity in cuprates, gaining microscopic insights into the nature of pairing in strongly correlated systems has remained one of the greatest challenges in modern condensed matter physics. Following recent experiments reporting superconductivity in the bilayer nickelate La3Ni2O7 (LNO) with remarkably high critical temperatures of Tc = 80 K, it has been argued that the low-energy physics of LNO can be described by the strongly correlated, mixed-dimensional bilayer t–J model. Here we investigate this bilayer system and utilize density matrix renormalization group techniques to establish a thorough understanding of the model and the magnetically induced pairing through comparison to the perturbative limit of dominating inter-layer spin couplings. In particular, this allows us to explain appearing finite-size effects, firmly establishing the existence of long-range superconducting order in the thermodynamic limit. By analyzing binding energies, we predict a BEC–BCS crossover as a function of the Hamiltonian parameters. We find large binding energies of the order of the inter-layer coupling that suggest strikingly high critical temperatures of the Berezinskii–Kosterlitz–Thouless transition, raising the question of whether (mixD) bilayer superconductors possibly facilitate critical temperatures above room temperature. The authors study a minimal model to describe the physics of bilayer nickelates, a novel high-temperature superconductor. They find that the model features extraordinarily high critical temperatures for superconductivity, and gain a detailed understanding of the underlying physics through an intuitive perturbative limit.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-8"},"PeriodicalIF":5.4,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01854-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142596163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unveiling nodeless unconventional superconductivity proximate to honeycomb-vacancy ordering in the Ir-Sb binary system 揭示 Ir-Sb 双元体系中接近于蜂窝空位有序的无节点非常规超导性
IF 5.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-11-08 DOI: 10.1038/s42005-024-01857-6
V. Sazgari, T. P. Ying, J. N. Graham, C. Mielke III, D. Das, S. S. Islam, S. Shin, M. Medarde, M. Bartkowiak, R. Khasanov, H. Luetkens, H. Hosono, Z. Guguchia
Vacancies in solid-state physics are underexplored in materials with strong electron-electron correlations. Recent research on the Ir-Sb binary system revealed an extended buckled-honeycomb vacancy (BHV) order. Superconductivity arises by suppressing BHV ordering through high-pressure growth with excess Ir atoms or Rh substitution, yet the superconducting pairing nature remains unknown. To explore this, we conducted muon spin rotation experiments on Ir1−δSb (synthesized at 5.5 GPa, Tc = 4.2 K) and ambient pressure synthesized optimally Rh-doped Ir1−xRhxSb (x=0.3, Tc = 2.7 K). The exponential temperature dependence of the superfluid density suggests a fully gapped superconducting state exists in both samples. The ratio of Tc to the superfluid density resembles that of unconventional superconductors. A significant increase in the superfluid density in the high-pressure synthesized sample correlates with Tc, indicating that unconventional superconductivity is intrinsic to the Ir-Sb binary system. These findings, along with the dome-shaped phase diagram, highlight IrSb as the first unconventional superconducting parent phase with ordered vacancies, requiring further theoretical investigations. Vacancies or defects are structural features of the crystal lattice that can be used to engineer the physical properties of a solid-state system, and have played an important role in the investigation of quantum materials. Here, the authors apply muon spin rotation to explore the suppression of vacancy ordering in Rh-doped Ir1−xRhxSb and discuss the potential presence of unconventional superconductivity in the system.
在具有强电子-电子相关性的材料中,固态物理学中的空位尚未得到充分探索。最近对 Ir-Sb 双元体系的研究揭示了一种扩展的降压蜂窝状空位(BHV)有序。通过过量 Ir 原子的高压生长或 Rh 替代来抑制 BHV 有序,从而产生超导电性,但其超导配对性质仍然未知。为了探索这个问题,我们对 Ir1-δSb(在 5.5 GPa 下合成,Tc = 4.2 K)和常压合成的最佳 Rh 掺杂 Ir1-xRhxSb(x=0.3,Tc = 2.7 K)进行了μ介子自旋旋转实验。超流体密度的指数温度依赖性表明,两种样品中都存在全间隙超导状态。Tc 与超流体密度之比类似于非常规超导体。高压合成样品中超流体密度的显著增加与 Tc 相关,表明非常规超导性是 Ir-Sb 双元体系的固有特性。这些发现以及穹顶形相图凸显了 IrSb 是第一个具有有序空位的非常规超导母相,需要进一步的理论研究。空位或缺陷是晶格的结构特征,可用于设计固态系统的物理性质,在量子材料研究中发挥了重要作用。在此,作者应用μ介子自旋旋转探索了掺Rh的Ir1-xRhxSb中空位有序的抑制,并讨论了该体系中可能存在的非常规超导性。
{"title":"Unveiling nodeless unconventional superconductivity proximate to honeycomb-vacancy ordering in the Ir-Sb binary system","authors":"V. Sazgari, T. P. Ying, J. N. Graham, C. Mielke III, D. Das, S. S. Islam, S. Shin, M. Medarde, M. Bartkowiak, R. Khasanov, H. Luetkens, H. Hosono, Z. Guguchia","doi":"10.1038/s42005-024-01857-6","DOIUrl":"10.1038/s42005-024-01857-6","url":null,"abstract":"Vacancies in solid-state physics are underexplored in materials with strong electron-electron correlations. Recent research on the Ir-Sb binary system revealed an extended buckled-honeycomb vacancy (BHV) order. Superconductivity arises by suppressing BHV ordering through high-pressure growth with excess Ir atoms or Rh substitution, yet the superconducting pairing nature remains unknown. To explore this, we conducted muon spin rotation experiments on Ir1−δSb (synthesized at 5.5 GPa, Tc = 4.2 K) and ambient pressure synthesized optimally Rh-doped Ir1−xRhxSb (x=0.3, Tc = 2.7 K). The exponential temperature dependence of the superfluid density suggests a fully gapped superconducting state exists in both samples. The ratio of Tc to the superfluid density resembles that of unconventional superconductors. A significant increase in the superfluid density in the high-pressure synthesized sample correlates with Tc, indicating that unconventional superconductivity is intrinsic to the Ir-Sb binary system. These findings, along with the dome-shaped phase diagram, highlight IrSb as the first unconventional superconducting parent phase with ordered vacancies, requiring further theoretical investigations. Vacancies or defects are structural features of the crystal lattice that can be used to engineer the physical properties of a solid-state system, and have played an important role in the investigation of quantum materials. Here, the authors apply muon spin rotation to explore the suppression of vacancy ordering in Rh-doped Ir1−xRhxSb and discuss the potential presence of unconventional superconductivity in the system.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-7"},"PeriodicalIF":5.4,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01857-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142596150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electron-cloud alignment dynamics induced by an intense X-ray free-electron laser pulse: a case study on atomic argon 强 X 射线自由电子激光脉冲诱导的电子云排列动力学:原子氩的案例研究
IF 5.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-11-07 DOI: 10.1038/s42005-024-01852-x
Laura Budewig, Sang-Kil Son, Robin Santra
In an intense X-ray free-electron laser (XFEL) pulse, atoms are sequentially ionised by multiple X-ray photons. Photoionisation generally induces an alignment of the electron cloud of the produced atomic ion regarding its orbital-angular-momentum projections. However, how the alignment evolves during sequential X-ray multi-photon ionisation accompanied by decay processes has been unexplored. Here we present a theoretical prediction of the time evolution of the electron-cloud alignment of argon ions induced by XFEL pulses. To this end, we calculate state-resolved ionisation dynamics of atomic argon interacting with an intense linearly polarised X-ray pulse, which generates ions in a wide range of charge states with non-zero orbital- and spin-angular momenta. Employing time-resolved alignment parameters, we predict the existence of non-trivial alignment dynamics during intense XFEL pulses. This implies that even if initially the atomic electron cloud is perfectly spherically symmetric, X-ray multi-photon ionisation can lead to noticeable reshaping of the electron cloud. Single photoionisation can align an atomic electron cloud, yet it is unexplored how the alignment evolves during sequential multi-photon multiple ionisation induced by intense X-ray pulses. In their paper, the authors predict the existence of non-trivial electron-cloud alignment dynamics in quantum-state-resolved X-ray multi-photon ionisation.
在强 X 射线自由电子激光(XFEL)脉冲中,原子依次被多个 X 射线光子电离。光离子化通常会导致产生的原子离子的电子云在其轨道-角动量投影上发生排列。然而,在伴随衰变过程的连续 X 射线多光子电离过程中,排列是如何演变的还没有被研究。在此,我们对 XFEL 脉冲诱导的氩离子电子云排列的时间演变进行了理论预测。为此,我们计算了与强线性偏振 X 射线脉冲相互作用的原子氩的状态分辨电离动力学,该脉冲会产生具有非零轨道矩和自旋角矩的多种电荷态离子。利用时间分辨对齐参数,我们预测在强 XFEL 脉冲期间存在非三维对齐动力学。这意味着,即使原子电子云最初是完全球对称的,X射线多光子电离也会导致电子云的明显重塑。单光子电离可以使原子电子云排列整齐,但在强 X 射线脉冲诱导的连续多光子多重电离过程中,电子云的排列是如何演变的,这一点尚未得到研究。作者在论文中预测,在量子态分辨 X 射线多光子电离过程中,电子云对齐动力学存在非难性。
{"title":"Electron-cloud alignment dynamics induced by an intense X-ray free-electron laser pulse: a case study on atomic argon","authors":"Laura Budewig, Sang-Kil Son, Robin Santra","doi":"10.1038/s42005-024-01852-x","DOIUrl":"10.1038/s42005-024-01852-x","url":null,"abstract":"In an intense X-ray free-electron laser (XFEL) pulse, atoms are sequentially ionised by multiple X-ray photons. Photoionisation generally induces an alignment of the electron cloud of the produced atomic ion regarding its orbital-angular-momentum projections. However, how the alignment evolves during sequential X-ray multi-photon ionisation accompanied by decay processes has been unexplored. Here we present a theoretical prediction of the time evolution of the electron-cloud alignment of argon ions induced by XFEL pulses. To this end, we calculate state-resolved ionisation dynamics of atomic argon interacting with an intense linearly polarised X-ray pulse, which generates ions in a wide range of charge states with non-zero orbital- and spin-angular momenta. Employing time-resolved alignment parameters, we predict the existence of non-trivial alignment dynamics during intense XFEL pulses. This implies that even if initially the atomic electron cloud is perfectly spherically symmetric, X-ray multi-photon ionisation can lead to noticeable reshaping of the electron cloud. Single photoionisation can align an atomic electron cloud, yet it is unexplored how the alignment evolves during sequential multi-photon multiple ionisation induced by intense X-ray pulses. In their paper, the authors predict the existence of non-trivial electron-cloud alignment dynamics in quantum-state-resolved X-ray multi-photon ionisation.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-9"},"PeriodicalIF":5.4,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01852-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142595697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Environment induced dynamical quantum phase transitions in two-qubit Rabi model 双量子比特拉比模型中环境诱导的动态量子相变
IF 5.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-11-07 DOI: 10.1038/s42005-024-01855-8
Grazia Di Bello, Andrea Ponticelli, Fabrizio Pavan, Vittorio Cataudella, Giulio De Filippis, Antonio de Candia, Carmine Antonio Perroni
Quantum states beyond thermodynamic equilibrium represent fascinating and cutting-edge research. However, the behavior of dynamical quantum phase transitions in complex open quantum systems remains poorly understood. Here, using state-of-the-art numerical approaches, we show that by quenching the qubits-oscillator coupling in a dissipative two-qubit Rabi model, the system undergoes dynamical quantum phase transitions. These transitions are characterized by kinks in the Loschmidt echo rate function at parameter values close to a thermodynamic quantum phase transition and are associated with distinct entanglement features. The two classes of critical phenomena depend on qubit interactions and entanglement, revealing different behaviors of the critical exponent of the first kink of the Loschmidt echo for interacting versus non-interacting qubits. This research enhances our understanding of non-equilibrium quantum systems and offers potential applications in quantum sensing and metrology, as it examines how dynamical transitions can enhance the sensitivity of the Loschmidt echo to the quench parameters. Dynamical quantum phase transitions can be observed when time is treated as a control parameter in non-equilibrium quantum systems. The authors show that quenching the qubits-oscillator coupling in a dissipative two-qubit system leads to different transitions depending on interactions and entanglement, with promising applications in quantum sensing and metrology.
超越热力学平衡的量子态是一项引人入胜的前沿研究。然而,人们对复杂开放量子系统中的动态量子相变行为仍然知之甚少。在这里,我们利用最先进的数值方法证明,通过淬灭耗散双量子比特拉比模型中的量子比特-振荡器耦合,系统会发生动态量子相变。这些转变的特点是,在参数值接近热力学量子相变时,洛施米特回波速率函数出现扭结,并与不同的纠缠特征相关联。这两类临界现象取决于量子比特的相互作用和纠缠,揭示了相互作用与非相互作用量子比特的洛氏回波第一个扭结的临界指数的不同行为。这项研究增强了我们对非平衡态量子系统的理解,并为量子传感和计量学提供了潜在应用,因为它研究了动态跃迁如何增强洛氏回波对淬火参数的敏感性。当时间被视为非平衡量子系统中的一个控制参数时,就能观察到动态量子相变。作者的研究表明,在耗散的双量子比特系统中淬灭量子比特-振荡器耦合会导致不同的转变,这取决于相互作用和纠缠,在量子传感和计量学中具有广阔的应用前景。
{"title":"Environment induced dynamical quantum phase transitions in two-qubit Rabi model","authors":"Grazia Di Bello, Andrea Ponticelli, Fabrizio Pavan, Vittorio Cataudella, Giulio De Filippis, Antonio de Candia, Carmine Antonio Perroni","doi":"10.1038/s42005-024-01855-8","DOIUrl":"10.1038/s42005-024-01855-8","url":null,"abstract":"Quantum states beyond thermodynamic equilibrium represent fascinating and cutting-edge research. However, the behavior of dynamical quantum phase transitions in complex open quantum systems remains poorly understood. Here, using state-of-the-art numerical approaches, we show that by quenching the qubits-oscillator coupling in a dissipative two-qubit Rabi model, the system undergoes dynamical quantum phase transitions. These transitions are characterized by kinks in the Loschmidt echo rate function at parameter values close to a thermodynamic quantum phase transition and are associated with distinct entanglement features. The two classes of critical phenomena depend on qubit interactions and entanglement, revealing different behaviors of the critical exponent of the first kink of the Loschmidt echo for interacting versus non-interacting qubits. This research enhances our understanding of non-equilibrium quantum systems and offers potential applications in quantum sensing and metrology, as it examines how dynamical transitions can enhance the sensitivity of the Loschmidt echo to the quench parameters. Dynamical quantum phase transitions can be observed when time is treated as a control parameter in non-equilibrium quantum systems. The authors show that quenching the qubits-oscillator coupling in a dissipative two-qubit system leads to different transitions depending on interactions and entanglement, with promising applications in quantum sensing and metrology.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-11"},"PeriodicalIF":5.4,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01855-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142595694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Measuring the radiation hardness of terahertz devices for space applications 测量空间应用太赫兹设备的辐射硬度
IF 5.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-11-06 DOI: 10.1038/s42005-024-01856-7
Yuan-Zhi He, Chen-Sheng Ma, Hao Yin
The application of terahertz technology in space is frontier for the development of 6G technologies. Terahertz transceiver devices based on gallium arsenide Schottky barrier diodes (GaAs SBDs) have the characteristics of small size, light weight and low power consumption, making them suitable for application on spacecraft. However, there is currently a lack of experimental assessments on their space adaptability. Here, we study the radiation hardness of terahertz devices to determine their adaptability in complex space environments. We exposed GaAs SBDs and terahertz multipliers as typical terahertz devices to gamma rays and protons. The experimental results showed that the terahertz devices exhibited good tolerance to protons, but prolonged exposure to gamma rays could significantly increase the leakage current of the GaAs SBDs and alter its C-V characteristics, leading to the failure of the terahertz multiplier. Nevertheless, the terahertz devices maintained a good level of radiation hardness, making them highly suitable for use in Low Earth Orbit (LEO) satellites. The comparison between the results of proton and gamma ray tests indicated that the terahertz devices exhibited high inherent radiation hardness against displacement damage but were more sensitive to ionization damage, requiring higher shielding requirements. Terahertz technology holds tremendous potential for application in high-speed, high-capacity space communication missions, yet there currently exists a lack of research on the space adaptability of its key components. The authors have conducted radiation hardness testing of gallium arsenide terahertz devices through ground-based simulated irradiation experiments.
太赫兹技术在太空中的应用是 6G 技术发展的前沿。基于砷化镓肖特基势垒二极管(GaAs SBD)的太赫兹收发器具有体积小、重量轻和功耗低的特点,适合在航天器上应用。然而,目前还缺乏对其空间适应性的实验评估。在此,我们研究了太赫兹器件的辐射硬度,以确定它们在复杂空间环境中的适应性。我们将砷化镓 SBD 和太赫兹乘法器作为典型的太赫兹器件暴露在伽马射线和质子的辐射下。实验结果表明,太赫兹器件对质子具有良好的耐受性,但长时间暴露在伽马射线下会显著增加砷化镓 SBD 的漏电流并改变其 C-V 特性,从而导致太赫兹乘法器失效。尽管如此,太赫兹器件仍保持了良好的辐射硬度,因此非常适合用于低地球轨道(LEO)卫星。质子和伽马射线测试结果的比较表明,太赫兹设备对位移损伤具有很高的固有辐射硬度,但对电离损伤更为敏感,因此需要更高的屏蔽要求。太赫兹技术在高速、大容量空间通信任务中具有巨大的应用潜力,但目前缺乏对其关键部件空间适应性的研究。作者通过地面模拟辐照实验对砷化镓太赫兹器件进行了辐射硬度测试。
{"title":"Measuring the radiation hardness of terahertz devices for space applications","authors":"Yuan-Zhi He, Chen-Sheng Ma, Hao Yin","doi":"10.1038/s42005-024-01856-7","DOIUrl":"10.1038/s42005-024-01856-7","url":null,"abstract":"The application of terahertz technology in space is frontier for the development of 6G technologies. Terahertz transceiver devices based on gallium arsenide Schottky barrier diodes (GaAs SBDs) have the characteristics of small size, light weight and low power consumption, making them suitable for application on spacecraft. However, there is currently a lack of experimental assessments on their space adaptability. Here, we study the radiation hardness of terahertz devices to determine their adaptability in complex space environments. We exposed GaAs SBDs and terahertz multipliers as typical terahertz devices to gamma rays and protons. The experimental results showed that the terahertz devices exhibited good tolerance to protons, but prolonged exposure to gamma rays could significantly increase the leakage current of the GaAs SBDs and alter its C-V characteristics, leading to the failure of the terahertz multiplier. Nevertheless, the terahertz devices maintained a good level of radiation hardness, making them highly suitable for use in Low Earth Orbit (LEO) satellites. The comparison between the results of proton and gamma ray tests indicated that the terahertz devices exhibited high inherent radiation hardness against displacement damage but were more sensitive to ionization damage, requiring higher shielding requirements. Terahertz technology holds tremendous potential for application in high-speed, high-capacity space communication missions, yet there currently exists a lack of research on the space adaptability of its key components. The authors have conducted radiation hardness testing of gallium arsenide terahertz devices through ground-based simulated irradiation experiments.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-12"},"PeriodicalIF":5.4,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01856-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142588300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Speed limits to fluctuation dynamics 波动动态的速度限制
IF 5.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-11-06 DOI: 10.1038/s42005-024-01851-y
Ryusuke Hamazaki
Fluctuation dynamics of an experimentally measured observable offer a primary signal for nonequilibrium systems, along with dynamics of the mean. While universal speed limits for the mean have actively been studied recently, constraints for the speed of the fluctuation have been elusive. Here, we develop a theory concerning rigorous limits to the rate of fluctuation growth. We find a principle that the speed of an observable’s fluctuation is upper bounded by the fluctuation of an appropriate observable describing velocity, which also indicates a tradeoff relation between the changes for the mean and fluctuation. We demonstrate the advantages of our inequalities for processes with non-negligible dispersion of observables, quantum work extraction, and the entanglement growth in free fermionic systems. Our results open an avenue toward a quantitative theory of fluctuation dynamics in various non-equilibrium systems encompassing quantum many-body systems and nonlinear population dynamics. Fluctuation dynamics of an observable offers a primary signal for understanding non-equilibrium statistical mechanics. Here, the author derives a principle that the speed of an observable’s fluctuation is upper bounded by the fluctuation of an observable describing velocity, which is valid for various non-equilibrium systems from quantum many-body systems to nonlinear population dynamics.
实验测量观测指标的波动动态与均值动态一样,都是非平衡系统的主要信号。最近,人们积极研究了平均值的普遍速度限制,但对波动速度的限制却一直难以捉摸。在这里,我们提出了一个关于波动增长速度严格限制的理论。我们发现了一个原理,即一个观测值的波动速度的上限是一个描述速度的适当观测值的波动速度,这也表明了均值变化和波动变化之间的权衡关系。我们证明了我们的不等式在自由费米子系统中具有不可忽略的观测值离散性、量子功提取和纠缠增长等过程中的优势。我们的研究成果开辟了一条通往各种非平衡系统波动动力学定量理论的道路,其中包括量子多体系统和非线性种群动力学。观测指标的波动动力学为理解非平衡统计力学提供了一个主要信号。在此,作者推导出一个原理,即观测值的波动速度的上限是描述速度的观测值的波动,该原理适用于从量子多体系统到非线性种群动力学的各种非平衡系统。
{"title":"Speed limits to fluctuation dynamics","authors":"Ryusuke Hamazaki","doi":"10.1038/s42005-024-01851-y","DOIUrl":"10.1038/s42005-024-01851-y","url":null,"abstract":"Fluctuation dynamics of an experimentally measured observable offer a primary signal for nonequilibrium systems, along with dynamics of the mean. While universal speed limits for the mean have actively been studied recently, constraints for the speed of the fluctuation have been elusive. Here, we develop a theory concerning rigorous limits to the rate of fluctuation growth. We find a principle that the speed of an observable’s fluctuation is upper bounded by the fluctuation of an appropriate observable describing velocity, which also indicates a tradeoff relation between the changes for the mean and fluctuation. We demonstrate the advantages of our inequalities for processes with non-negligible dispersion of observables, quantum work extraction, and the entanglement growth in free fermionic systems. Our results open an avenue toward a quantitative theory of fluctuation dynamics in various non-equilibrium systems encompassing quantum many-body systems and nonlinear population dynamics. Fluctuation dynamics of an observable offers a primary signal for understanding non-equilibrium statistical mechanics. Here, the author derives a principle that the speed of an observable’s fluctuation is upper bounded by the fluctuation of an observable describing velocity, which is valid for various non-equilibrium systems from quantum many-body systems to nonlinear population dynamics.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-11"},"PeriodicalIF":5.4,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01851-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142588289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Communications Physics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1