Pub Date : 2024-11-15DOI: 10.1038/s42005-024-01849-6
Daisuke Yoshida, Tomoyuki Horikiri
Quantum repeaters are pivotal in the physical layer of the quantum internet, and quantum repeaters capable of efficient entanglement distribution are necessary for its development. Quantum repeater schemes based on single-photon interference are promising because of their potential efficiency. However, schemes involving first-order interference with photon sources at distant nodes require stringent phase stability of the components, which pose challenges for long-distance implementation. In this paper, we present a quantum repeater scheme that leverages single-photon interference and reduces the difficulty of achieving phase stabilization. Additionally, under specific conditions, our scheme achieves a higher entanglement distribution rate between end nodes compared with the existing schemes. Thus, the proposed approach could lead to improved rates with technologies that are currently unavailable but possible in the future and will ultimately facilitate the development of multimode quantum repeaters. Single-photon interference based quantum repeater schemes are promising due to their potential efficiency. Here, the authors offer a theoretical quantum repeater scheme with reduced complexity of phase stabilization and scope for higher entanglement rates between the end nodes.
{"title":"Multiplexed quantum repeaters based on single-photon interference with mild stabilization","authors":"Daisuke Yoshida, Tomoyuki Horikiri","doi":"10.1038/s42005-024-01849-6","DOIUrl":"10.1038/s42005-024-01849-6","url":null,"abstract":"Quantum repeaters are pivotal in the physical layer of the quantum internet, and quantum repeaters capable of efficient entanglement distribution are necessary for its development. Quantum repeater schemes based on single-photon interference are promising because of their potential efficiency. However, schemes involving first-order interference with photon sources at distant nodes require stringent phase stability of the components, which pose challenges for long-distance implementation. In this paper, we present a quantum repeater scheme that leverages single-photon interference and reduces the difficulty of achieving phase stabilization. Additionally, under specific conditions, our scheme achieves a higher entanglement distribution rate between end nodes compared with the existing schemes. Thus, the proposed approach could lead to improved rates with technologies that are currently unavailable but possible in the future and will ultimately facilitate the development of multimode quantum repeaters. Single-photon interference based quantum repeater schemes are promising due to their potential efficiency. Here, the authors offer a theoretical quantum repeater scheme with reduced complexity of phase stabilization and scope for higher entanglement rates between the end nodes.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-9"},"PeriodicalIF":5.4,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01849-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-14DOI: 10.1038/s42005-024-01859-4
Ana Palacios, Rodrigo Martínez-Peña, Miguel C. Soriano, Gian Luca Giorgi, Roberta Zambrini
Quantum Reservoir Computing (QRC) offers potential advantages over classical reservoir computing, including inherent processing of quantum inputs and a vast Hilbert space for state exploration. Yet, the relation between the performance of reservoirs based on complex and many-body quantum systems and non-classical state features is not established. Through an extensive analysis of QRC based on a transverse-field Ising model we show how different quantum effects, such as quantum coherence and correlations, contribute to improving the performance in temporal tasks, as measured by the Information Processing Capacity. Additionally, we critically assess the impact of finite measurement resources and noise on the reservoir’s dynamics in different regimes, quantifying the limited ability to exploit quantum effects for increasing damping and noise strengths. Our results reveal a monotonic relationship between reservoir performance and coherence, along with the importance of quantum effects in the ergodic regime. Quantum Reservoir Computing leverages the quantum properties of physical systems for solving temporal tasks. This study shows the importance of quantum effects, such as coherence and superposition, in the reservoir’s performance for different dynamical regimes, while considering the impact of finite measurements and noisy environments.
{"title":"Role of coherence in many-body Quantum Reservoir Computing","authors":"Ana Palacios, Rodrigo Martínez-Peña, Miguel C. Soriano, Gian Luca Giorgi, Roberta Zambrini","doi":"10.1038/s42005-024-01859-4","DOIUrl":"10.1038/s42005-024-01859-4","url":null,"abstract":"Quantum Reservoir Computing (QRC) offers potential advantages over classical reservoir computing, including inherent processing of quantum inputs and a vast Hilbert space for state exploration. Yet, the relation between the performance of reservoirs based on complex and many-body quantum systems and non-classical state features is not established. Through an extensive analysis of QRC based on a transverse-field Ising model we show how different quantum effects, such as quantum coherence and correlations, contribute to improving the performance in temporal tasks, as measured by the Information Processing Capacity. Additionally, we critically assess the impact of finite measurement resources and noise on the reservoir’s dynamics in different regimes, quantifying the limited ability to exploit quantum effects for increasing damping and noise strengths. Our results reveal a monotonic relationship between reservoir performance and coherence, along with the importance of quantum effects in the ergodic regime. Quantum Reservoir Computing leverages the quantum properties of physical systems for solving temporal tasks. This study shows the importance of quantum effects, such as coherence and superposition, in the reservoir’s performance for different dynamical regimes, while considering the impact of finite measurements and noisy environments.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-9"},"PeriodicalIF":5.4,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01859-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-14DOI: 10.1038/s42005-024-01858-5
Lukas Mühlnickel, Jonnel A. Jaurigue, Lina C. Jaurigue, Kathy Lüdge
Reservoir computing with photonic systems promises fast and energy efficient computations. Vertical emitting semiconductor lasers with two spin-polarized charge-carrier populations (spin-VCSEL), are good candidates for high-speed reservoir computing. With our work, we highlight the role of the internal dynamic coupling on the prediction performance. We present numerical evidence for the critical impact of different data injection schemes and internal timescales. A central finding is that the internal dynamics of all dynamical degrees of freedom can only be utilized if an appropriate perturbation via the input is chosen as data injection scheme. If the data is encoded via an optical phase difference, the internal spin-polarized carrier dynamics is not addressed but instead a faster data injection rate is possible. We find strong correlations of the prediction performance with the system response time and the underlying delay-induced bifurcation structure, which allows to transfer the results to other physical reservoir computing systems. The authors numerically investigate the reservoir computing performance of vertical emitting two-mode semiconductor lasers and show the crucial impact of dynamic coupling, injection schemes and system timescales. A central finding is that high dimensional internal dynamics can only be utilized if an appropriate perturbation via the input is chosen.
{"title":"The influence of timescales and data injection schemes for reservoir computing using spin-VCSELs","authors":"Lukas Mühlnickel, Jonnel A. Jaurigue, Lina C. Jaurigue, Kathy Lüdge","doi":"10.1038/s42005-024-01858-5","DOIUrl":"10.1038/s42005-024-01858-5","url":null,"abstract":"Reservoir computing with photonic systems promises fast and energy efficient computations. Vertical emitting semiconductor lasers with two spin-polarized charge-carrier populations (spin-VCSEL), are good candidates for high-speed reservoir computing. With our work, we highlight the role of the internal dynamic coupling on the prediction performance. We present numerical evidence for the critical impact of different data injection schemes and internal timescales. A central finding is that the internal dynamics of all dynamical degrees of freedom can only be utilized if an appropriate perturbation via the input is chosen as data injection scheme. If the data is encoded via an optical phase difference, the internal spin-polarized carrier dynamics is not addressed but instead a faster data injection rate is possible. We find strong correlations of the prediction performance with the system response time and the underlying delay-induced bifurcation structure, which allows to transfer the results to other physical reservoir computing systems. The authors numerically investigate the reservoir computing performance of vertical emitting two-mode semiconductor lasers and show the crucial impact of dynamic coupling, injection schemes and system timescales. A central finding is that high dimensional internal dynamics can only be utilized if an appropriate perturbation via the input is chosen.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-12"},"PeriodicalIF":5.4,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01858-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-13DOI: 10.1038/s42005-024-01820-5
Fang Qin, Rui Chen, Ching Hua Lee
The Hall response can be dramatically different from its quantized value in materials with broken inversion symmetry. This stems from the leading Hall contribution beyond the linear order, known as the Berry curvature dipole (BCD). While the BCD is in principle always present, it is typically very small outside of a narrow window close to a topological transition and is thus experimentally elusive without careful tuning of external fields, temperature, or impurities. We transcend this challenge by devising optical driving and quench protocols that enable practical and direct access to large BCD. Varying the amplitude of an incident circularly polarized laser drives a topological transition between normal and Chern insulator phases, and importantly allows the precise unlocking of nonlinear Hall currents comparable to or larger than the linear Hall contributions. This strong BCD engineering is even more versatile with our two-parameter quench protocol, as demonstrated in our experimental proposal. In this work, the authors investigate nonlinear Hall materials under optical driving. They find that nonlinear Hall materials can exhibit a strong light-enhanced nonlinear Hall response when excited by circularly polarized lasers.
{"title":"Light-enhanced nonlinear Hall effect","authors":"Fang Qin, Rui Chen, Ching Hua Lee","doi":"10.1038/s42005-024-01820-5","DOIUrl":"10.1038/s42005-024-01820-5","url":null,"abstract":"The Hall response can be dramatically different from its quantized value in materials with broken inversion symmetry. This stems from the leading Hall contribution beyond the linear order, known as the Berry curvature dipole (BCD). While the BCD is in principle always present, it is typically very small outside of a narrow window close to a topological transition and is thus experimentally elusive without careful tuning of external fields, temperature, or impurities. We transcend this challenge by devising optical driving and quench protocols that enable practical and direct access to large BCD. Varying the amplitude of an incident circularly polarized laser drives a topological transition between normal and Chern insulator phases, and importantly allows the precise unlocking of nonlinear Hall currents comparable to or larger than the linear Hall contributions. This strong BCD engineering is even more versatile with our two-parameter quench protocol, as demonstrated in our experimental proposal. In this work, the authors investigate nonlinear Hall materials under optical driving. They find that nonlinear Hall materials can exhibit a strong light-enhanced nonlinear Hall response when excited by circularly polarized lasers.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-14"},"PeriodicalIF":5.4,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01820-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ever since the discovery of high-temperature superconductivity in cuprates, gaining microscopic insights into the nature of pairing in strongly correlated systems has remained one of the greatest challenges in modern condensed matter physics. Following recent experiments reporting superconductivity in the bilayer nickelate La3Ni2O7 (LNO) with remarkably high critical temperatures of Tc = 80 K, it has been argued that the low-energy physics of LNO can be described by the strongly correlated, mixed-dimensional bilayer t–J model. Here we investigate this bilayer system and utilize density matrix renormalization group techniques to establish a thorough understanding of the model and the magnetically induced pairing through comparison to the perturbative limit of dominating inter-layer spin couplings. In particular, this allows us to explain appearing finite-size effects, firmly establishing the existence of long-range superconducting order in the thermodynamic limit. By analyzing binding energies, we predict a BEC–BCS crossover as a function of the Hamiltonian parameters. We find large binding energies of the order of the inter-layer coupling that suggest strikingly high critical temperatures of the Berezinskii–Kosterlitz–Thouless transition, raising the question of whether (mixD) bilayer superconductors possibly facilitate critical temperatures above room temperature. The authors study a minimal model to describe the physics of bilayer nickelates, a novel high-temperature superconductor. They find that the model features extraordinarily high critical temperatures for superconductivity, and gain a detailed understanding of the underlying physics through an intuitive perturbative limit.
{"title":"Superconductivity in the pressurized nickelate La3Ni2O7 in the vicinity of a BEC–BCS crossover","authors":"Henning Schlömer, Ulrich Schollwöck, Fabian Grusdt, Annabelle Bohrdt","doi":"10.1038/s42005-024-01854-9","DOIUrl":"10.1038/s42005-024-01854-9","url":null,"abstract":"Ever since the discovery of high-temperature superconductivity in cuprates, gaining microscopic insights into the nature of pairing in strongly correlated systems has remained one of the greatest challenges in modern condensed matter physics. Following recent experiments reporting superconductivity in the bilayer nickelate La3Ni2O7 (LNO) with remarkably high critical temperatures of Tc = 80 K, it has been argued that the low-energy physics of LNO can be described by the strongly correlated, mixed-dimensional bilayer t–J model. Here we investigate this bilayer system and utilize density matrix renormalization group techniques to establish a thorough understanding of the model and the magnetically induced pairing through comparison to the perturbative limit of dominating inter-layer spin couplings. In particular, this allows us to explain appearing finite-size effects, firmly establishing the existence of long-range superconducting order in the thermodynamic limit. By analyzing binding energies, we predict a BEC–BCS crossover as a function of the Hamiltonian parameters. We find large binding energies of the order of the inter-layer coupling that suggest strikingly high critical temperatures of the Berezinskii–Kosterlitz–Thouless transition, raising the question of whether (mixD) bilayer superconductors possibly facilitate critical temperatures above room temperature. The authors study a minimal model to describe the physics of bilayer nickelates, a novel high-temperature superconductor. They find that the model features extraordinarily high critical temperatures for superconductivity, and gain a detailed understanding of the underlying physics through an intuitive perturbative limit.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-8"},"PeriodicalIF":5.4,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01854-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142596163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-08DOI: 10.1038/s42005-024-01857-6
V. Sazgari, T. P. Ying, J. N. Graham, C. Mielke III, D. Das, S. S. Islam, S. Shin, M. Medarde, M. Bartkowiak, R. Khasanov, H. Luetkens, H. Hosono, Z. Guguchia
Vacancies in solid-state physics are underexplored in materials with strong electron-electron correlations. Recent research on the Ir-Sb binary system revealed an extended buckled-honeycomb vacancy (BHV) order. Superconductivity arises by suppressing BHV ordering through high-pressure growth with excess Ir atoms or Rh substitution, yet the superconducting pairing nature remains unknown. To explore this, we conducted muon spin rotation experiments on Ir1−δSb (synthesized at 5.5 GPa, Tc = 4.2 K) and ambient pressure synthesized optimally Rh-doped Ir1−xRhxSb (x=0.3, Tc = 2.7 K). The exponential temperature dependence of the superfluid density suggests a fully gapped superconducting state exists in both samples. The ratio of Tc to the superfluid density resembles that of unconventional superconductors. A significant increase in the superfluid density in the high-pressure synthesized sample correlates with Tc, indicating that unconventional superconductivity is intrinsic to the Ir-Sb binary system. These findings, along with the dome-shaped phase diagram, highlight IrSb as the first unconventional superconducting parent phase with ordered vacancies, requiring further theoretical investigations. Vacancies or defects are structural features of the crystal lattice that can be used to engineer the physical properties of a solid-state system, and have played an important role in the investigation of quantum materials. Here, the authors apply muon spin rotation to explore the suppression of vacancy ordering in Rh-doped Ir1−xRhxSb and discuss the potential presence of unconventional superconductivity in the system.
{"title":"Unveiling nodeless unconventional superconductivity proximate to honeycomb-vacancy ordering in the Ir-Sb binary system","authors":"V. Sazgari, T. P. Ying, J. N. Graham, C. Mielke III, D. Das, S. S. Islam, S. Shin, M. Medarde, M. Bartkowiak, R. Khasanov, H. Luetkens, H. Hosono, Z. Guguchia","doi":"10.1038/s42005-024-01857-6","DOIUrl":"10.1038/s42005-024-01857-6","url":null,"abstract":"Vacancies in solid-state physics are underexplored in materials with strong electron-electron correlations. Recent research on the Ir-Sb binary system revealed an extended buckled-honeycomb vacancy (BHV) order. Superconductivity arises by suppressing BHV ordering through high-pressure growth with excess Ir atoms or Rh substitution, yet the superconducting pairing nature remains unknown. To explore this, we conducted muon spin rotation experiments on Ir1−δSb (synthesized at 5.5 GPa, Tc = 4.2 K) and ambient pressure synthesized optimally Rh-doped Ir1−xRhxSb (x=0.3, Tc = 2.7 K). The exponential temperature dependence of the superfluid density suggests a fully gapped superconducting state exists in both samples. The ratio of Tc to the superfluid density resembles that of unconventional superconductors. A significant increase in the superfluid density in the high-pressure synthesized sample correlates with Tc, indicating that unconventional superconductivity is intrinsic to the Ir-Sb binary system. These findings, along with the dome-shaped phase diagram, highlight IrSb as the first unconventional superconducting parent phase with ordered vacancies, requiring further theoretical investigations. Vacancies or defects are structural features of the crystal lattice that can be used to engineer the physical properties of a solid-state system, and have played an important role in the investigation of quantum materials. Here, the authors apply muon spin rotation to explore the suppression of vacancy ordering in Rh-doped Ir1−xRhxSb and discuss the potential presence of unconventional superconductivity in the system.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-7"},"PeriodicalIF":5.4,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01857-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142596150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-07DOI: 10.1038/s42005-024-01852-x
Laura Budewig, Sang-Kil Son, Robin Santra
In an intense X-ray free-electron laser (XFEL) pulse, atoms are sequentially ionised by multiple X-ray photons. Photoionisation generally induces an alignment of the electron cloud of the produced atomic ion regarding its orbital-angular-momentum projections. However, how the alignment evolves during sequential X-ray multi-photon ionisation accompanied by decay processes has been unexplored. Here we present a theoretical prediction of the time evolution of the electron-cloud alignment of argon ions induced by XFEL pulses. To this end, we calculate state-resolved ionisation dynamics of atomic argon interacting with an intense linearly polarised X-ray pulse, which generates ions in a wide range of charge states with non-zero orbital- and spin-angular momenta. Employing time-resolved alignment parameters, we predict the existence of non-trivial alignment dynamics during intense XFEL pulses. This implies that even if initially the atomic electron cloud is perfectly spherically symmetric, X-ray multi-photon ionisation can lead to noticeable reshaping of the electron cloud. Single photoionisation can align an atomic electron cloud, yet it is unexplored how the alignment evolves during sequential multi-photon multiple ionisation induced by intense X-ray pulses. In their paper, the authors predict the existence of non-trivial electron-cloud alignment dynamics in quantum-state-resolved X-ray multi-photon ionisation.
在强 X 射线自由电子激光(XFEL)脉冲中,原子依次被多个 X 射线光子电离。光离子化通常会导致产生的原子离子的电子云在其轨道-角动量投影上发生排列。然而,在伴随衰变过程的连续 X 射线多光子电离过程中,排列是如何演变的还没有被研究。在此,我们对 XFEL 脉冲诱导的氩离子电子云排列的时间演变进行了理论预测。为此,我们计算了与强线性偏振 X 射线脉冲相互作用的原子氩的状态分辨电离动力学,该脉冲会产生具有非零轨道矩和自旋角矩的多种电荷态离子。利用时间分辨对齐参数,我们预测在强 XFEL 脉冲期间存在非三维对齐动力学。这意味着,即使原子电子云最初是完全球对称的,X射线多光子电离也会导致电子云的明显重塑。单光子电离可以使原子电子云排列整齐,但在强 X 射线脉冲诱导的连续多光子多重电离过程中,电子云的排列是如何演变的,这一点尚未得到研究。作者在论文中预测,在量子态分辨 X 射线多光子电离过程中,电子云对齐动力学存在非难性。
{"title":"Electron-cloud alignment dynamics induced by an intense X-ray free-electron laser pulse: a case study on atomic argon","authors":"Laura Budewig, Sang-Kil Son, Robin Santra","doi":"10.1038/s42005-024-01852-x","DOIUrl":"10.1038/s42005-024-01852-x","url":null,"abstract":"In an intense X-ray free-electron laser (XFEL) pulse, atoms are sequentially ionised by multiple X-ray photons. Photoionisation generally induces an alignment of the electron cloud of the produced atomic ion regarding its orbital-angular-momentum projections. However, how the alignment evolves during sequential X-ray multi-photon ionisation accompanied by decay processes has been unexplored. Here we present a theoretical prediction of the time evolution of the electron-cloud alignment of argon ions induced by XFEL pulses. To this end, we calculate state-resolved ionisation dynamics of atomic argon interacting with an intense linearly polarised X-ray pulse, which generates ions in a wide range of charge states with non-zero orbital- and spin-angular momenta. Employing time-resolved alignment parameters, we predict the existence of non-trivial alignment dynamics during intense XFEL pulses. This implies that even if initially the atomic electron cloud is perfectly spherically symmetric, X-ray multi-photon ionisation can lead to noticeable reshaping of the electron cloud. Single photoionisation can align an atomic electron cloud, yet it is unexplored how the alignment evolves during sequential multi-photon multiple ionisation induced by intense X-ray pulses. In their paper, the authors predict the existence of non-trivial electron-cloud alignment dynamics in quantum-state-resolved X-ray multi-photon ionisation.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-9"},"PeriodicalIF":5.4,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01852-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142595697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-07DOI: 10.1038/s42005-024-01855-8
Grazia Di Bello, Andrea Ponticelli, Fabrizio Pavan, Vittorio Cataudella, Giulio De Filippis, Antonio de Candia, Carmine Antonio Perroni
Quantum states beyond thermodynamic equilibrium represent fascinating and cutting-edge research. However, the behavior of dynamical quantum phase transitions in complex open quantum systems remains poorly understood. Here, using state-of-the-art numerical approaches, we show that by quenching the qubits-oscillator coupling in a dissipative two-qubit Rabi model, the system undergoes dynamical quantum phase transitions. These transitions are characterized by kinks in the Loschmidt echo rate function at parameter values close to a thermodynamic quantum phase transition and are associated with distinct entanglement features. The two classes of critical phenomena depend on qubit interactions and entanglement, revealing different behaviors of the critical exponent of the first kink of the Loschmidt echo for interacting versus non-interacting qubits. This research enhances our understanding of non-equilibrium quantum systems and offers potential applications in quantum sensing and metrology, as it examines how dynamical transitions can enhance the sensitivity of the Loschmidt echo to the quench parameters. Dynamical quantum phase transitions can be observed when time is treated as a control parameter in non-equilibrium quantum systems. The authors show that quenching the qubits-oscillator coupling in a dissipative two-qubit system leads to different transitions depending on interactions and entanglement, with promising applications in quantum sensing and metrology.
{"title":"Environment induced dynamical quantum phase transitions in two-qubit Rabi model","authors":"Grazia Di Bello, Andrea Ponticelli, Fabrizio Pavan, Vittorio Cataudella, Giulio De Filippis, Antonio de Candia, Carmine Antonio Perroni","doi":"10.1038/s42005-024-01855-8","DOIUrl":"10.1038/s42005-024-01855-8","url":null,"abstract":"Quantum states beyond thermodynamic equilibrium represent fascinating and cutting-edge research. However, the behavior of dynamical quantum phase transitions in complex open quantum systems remains poorly understood. Here, using state-of-the-art numerical approaches, we show that by quenching the qubits-oscillator coupling in a dissipative two-qubit Rabi model, the system undergoes dynamical quantum phase transitions. These transitions are characterized by kinks in the Loschmidt echo rate function at parameter values close to a thermodynamic quantum phase transition and are associated with distinct entanglement features. The two classes of critical phenomena depend on qubit interactions and entanglement, revealing different behaviors of the critical exponent of the first kink of the Loschmidt echo for interacting versus non-interacting qubits. This research enhances our understanding of non-equilibrium quantum systems and offers potential applications in quantum sensing and metrology, as it examines how dynamical transitions can enhance the sensitivity of the Loschmidt echo to the quench parameters. Dynamical quantum phase transitions can be observed when time is treated as a control parameter in non-equilibrium quantum systems. The authors show that quenching the qubits-oscillator coupling in a dissipative two-qubit system leads to different transitions depending on interactions and entanglement, with promising applications in quantum sensing and metrology.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-11"},"PeriodicalIF":5.4,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01855-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142595694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-06DOI: 10.1038/s42005-024-01856-7
Yuan-Zhi He, Chen-Sheng Ma, Hao Yin
The application of terahertz technology in space is frontier for the development of 6G technologies. Terahertz transceiver devices based on gallium arsenide Schottky barrier diodes (GaAs SBDs) have the characteristics of small size, light weight and low power consumption, making them suitable for application on spacecraft. However, there is currently a lack of experimental assessments on their space adaptability. Here, we study the radiation hardness of terahertz devices to determine their adaptability in complex space environments. We exposed GaAs SBDs and terahertz multipliers as typical terahertz devices to gamma rays and protons. The experimental results showed that the terahertz devices exhibited good tolerance to protons, but prolonged exposure to gamma rays could significantly increase the leakage current of the GaAs SBDs and alter its C-V characteristics, leading to the failure of the terahertz multiplier. Nevertheless, the terahertz devices maintained a good level of radiation hardness, making them highly suitable for use in Low Earth Orbit (LEO) satellites. The comparison between the results of proton and gamma ray tests indicated that the terahertz devices exhibited high inherent radiation hardness against displacement damage but were more sensitive to ionization damage, requiring higher shielding requirements. Terahertz technology holds tremendous potential for application in high-speed, high-capacity space communication missions, yet there currently exists a lack of research on the space adaptability of its key components. The authors have conducted radiation hardness testing of gallium arsenide terahertz devices through ground-based simulated irradiation experiments.
{"title":"Measuring the radiation hardness of terahertz devices for space applications","authors":"Yuan-Zhi He, Chen-Sheng Ma, Hao Yin","doi":"10.1038/s42005-024-01856-7","DOIUrl":"10.1038/s42005-024-01856-7","url":null,"abstract":"The application of terahertz technology in space is frontier for the development of 6G technologies. Terahertz transceiver devices based on gallium arsenide Schottky barrier diodes (GaAs SBDs) have the characteristics of small size, light weight and low power consumption, making them suitable for application on spacecraft. However, there is currently a lack of experimental assessments on their space adaptability. Here, we study the radiation hardness of terahertz devices to determine their adaptability in complex space environments. We exposed GaAs SBDs and terahertz multipliers as typical terahertz devices to gamma rays and protons. The experimental results showed that the terahertz devices exhibited good tolerance to protons, but prolonged exposure to gamma rays could significantly increase the leakage current of the GaAs SBDs and alter its C-V characteristics, leading to the failure of the terahertz multiplier. Nevertheless, the terahertz devices maintained a good level of radiation hardness, making them highly suitable for use in Low Earth Orbit (LEO) satellites. The comparison between the results of proton and gamma ray tests indicated that the terahertz devices exhibited high inherent radiation hardness against displacement damage but were more sensitive to ionization damage, requiring higher shielding requirements. Terahertz technology holds tremendous potential for application in high-speed, high-capacity space communication missions, yet there currently exists a lack of research on the space adaptability of its key components. The authors have conducted radiation hardness testing of gallium arsenide terahertz devices through ground-based simulated irradiation experiments.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-12"},"PeriodicalIF":5.4,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01856-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142588300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-06DOI: 10.1038/s42005-024-01851-y
Ryusuke Hamazaki
Fluctuation dynamics of an experimentally measured observable offer a primary signal for nonequilibrium systems, along with dynamics of the mean. While universal speed limits for the mean have actively been studied recently, constraints for the speed of the fluctuation have been elusive. Here, we develop a theory concerning rigorous limits to the rate of fluctuation growth. We find a principle that the speed of an observable’s fluctuation is upper bounded by the fluctuation of an appropriate observable describing velocity, which also indicates a tradeoff relation between the changes for the mean and fluctuation. We demonstrate the advantages of our inequalities for processes with non-negligible dispersion of observables, quantum work extraction, and the entanglement growth in free fermionic systems. Our results open an avenue toward a quantitative theory of fluctuation dynamics in various non-equilibrium systems encompassing quantum many-body systems and nonlinear population dynamics. Fluctuation dynamics of an observable offers a primary signal for understanding non-equilibrium statistical mechanics. Here, the author derives a principle that the speed of an observable’s fluctuation is upper bounded by the fluctuation of an observable describing velocity, which is valid for various non-equilibrium systems from quantum many-body systems to nonlinear population dynamics.
{"title":"Speed limits to fluctuation dynamics","authors":"Ryusuke Hamazaki","doi":"10.1038/s42005-024-01851-y","DOIUrl":"10.1038/s42005-024-01851-y","url":null,"abstract":"Fluctuation dynamics of an experimentally measured observable offer a primary signal for nonequilibrium systems, along with dynamics of the mean. While universal speed limits for the mean have actively been studied recently, constraints for the speed of the fluctuation have been elusive. Here, we develop a theory concerning rigorous limits to the rate of fluctuation growth. We find a principle that the speed of an observable’s fluctuation is upper bounded by the fluctuation of an appropriate observable describing velocity, which also indicates a tradeoff relation between the changes for the mean and fluctuation. We demonstrate the advantages of our inequalities for processes with non-negligible dispersion of observables, quantum work extraction, and the entanglement growth in free fermionic systems. Our results open an avenue toward a quantitative theory of fluctuation dynamics in various non-equilibrium systems encompassing quantum many-body systems and nonlinear population dynamics. Fluctuation dynamics of an observable offers a primary signal for understanding non-equilibrium statistical mechanics. Here, the author derives a principle that the speed of an observable’s fluctuation is upper bounded by the fluctuation of an observable describing velocity, which is valid for various non-equilibrium systems from quantum many-body systems to nonlinear population dynamics.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-11"},"PeriodicalIF":5.4,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01851-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142588289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}