首页 > 最新文献

Communications Physics最新文献

英文 中文
Readout error mitigated quantum state tomography tested on superconducting qubits 在超导量子比特上测试了读出误差减弱量子态层析技术
IF 5.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-09-06 DOI: 10.1038/s42005-024-01790-8
Adrian Skasberg Aasen, Andras Di Giovanni, Hannes Rotzinger, Alexey V. Ustinov, Martin Gärttner
Quantum technologies rely heavily on accurate control and reliable readout of quantum systems. Current experiments are limited by numerous sources of noise that can only be partially captured by simple analytical models and additional characterization of the noise sources is required. We test the ability of readout error mitigation to correct noise found in systems composed of quantum two-level objects (qubits). To probe the limit of such methods, we designed a beyond-classical readout error mitigation protocol based on quantum state tomography (QST), which estimates the density matrix of a quantum system, and quantum detector tomography (QDT), which characterizes the measurement procedure. By treating readout error mitigation in the context of state tomography the method becomes largely readout mode-, architecture-, noise source-, and quantum state-independent. We implement this method on a superconducting qubit and evaluate the increase in reconstruction fidelity for QST. We characterize the performance of the method by varying important noise sources, such as suboptimal readout signal amplification, insufficient resonator photon population, off-resonant qubit drive, and effectively shortened T1 and T2 coherence. As a result, we identified noise sources for which readout error mitigation worked well, and observed decreases in readout infidelity by a factor of up to 30. Significant efforts have been dedicated to mitigate gate errors in quantum devices, while comparatively little attention has been given to the increasing issue of readout errors. The authors present an explicit protocol for comprehensive readout error mitigation with quantum state tomography, and demonstrate its applicability experimentally on a superconducting qubit device.
量子技术在很大程度上依赖于量子系统的精确控制和可靠读出。目前的实验受到众多噪声源的限制,而这些噪声源只能通过简单的分析模型来部分捕捉,因此需要对噪声源进行额外的表征。我们测试了在由量子两级对象(量子比特)组成的系统中,读出误差缓解技术纠正噪声的能力。为了探究此类方法的极限,我们设计了一种基于量子态层析成像(QST)和量子探测器层析成像(QDT)的超经典读出误差缓解协议,前者可估算量子系统的密度矩阵,后者可描述测量过程。通过在状态层析成像的背景下处理读出误差缓解,该方法在很大程度上变得与读出模式、架构、噪声源和量子态无关。我们在超导量子比特上实现了这种方法,并评估了 QST 重建保真度的提高。我们通过改变重要的噪声源(如次优读出信号放大、谐振器光子群不足、非共振量子比特驱动以及有效缩短的 T1 和 T2 相干性)来鉴定该方法的性能。因此,我们确定了读出误差缓解效果良好的噪声源,并观察到读出不忠实度降低了多达 30 倍。
{"title":"Readout error mitigated quantum state tomography tested on superconducting qubits","authors":"Adrian Skasberg Aasen, Andras Di Giovanni, Hannes Rotzinger, Alexey V. Ustinov, Martin Gärttner","doi":"10.1038/s42005-024-01790-8","DOIUrl":"10.1038/s42005-024-01790-8","url":null,"abstract":"Quantum technologies rely heavily on accurate control and reliable readout of quantum systems. Current experiments are limited by numerous sources of noise that can only be partially captured by simple analytical models and additional characterization of the noise sources is required. We test the ability of readout error mitigation to correct noise found in systems composed of quantum two-level objects (qubits). To probe the limit of such methods, we designed a beyond-classical readout error mitigation protocol based on quantum state tomography (QST), which estimates the density matrix of a quantum system, and quantum detector tomography (QDT), which characterizes the measurement procedure. By treating readout error mitigation in the context of state tomography the method becomes largely readout mode-, architecture-, noise source-, and quantum state-independent. We implement this method on a superconducting qubit and evaluate the increase in reconstruction fidelity for QST. We characterize the performance of the method by varying important noise sources, such as suboptimal readout signal amplification, insufficient resonator photon population, off-resonant qubit drive, and effectively shortened T1 and T2 coherence. As a result, we identified noise sources for which readout error mitigation worked well, and observed decreases in readout infidelity by a factor of up to 30. Significant efforts have been dedicated to mitigate gate errors in quantum devices, while comparatively little attention has been given to the increasing issue of readout errors. The authors present an explicit protocol for comprehensive readout error mitigation with quantum state tomography, and demonstrate its applicability experimentally on a superconducting qubit device.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01790-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142182134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inference through innovation processes tested in the authorship attribution task 在作者归属任务中测试创新过程的推理能力
IF 5.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-09-06 DOI: 10.1038/s42005-024-01714-6
Giulio Tani Raffaelli, Margherita Lalli, Francesca Tria
Urn models for innovation capture fundamental empirical laws shared by several real-world processes. The so-called urn model with triggering includes, as particular cases, the urn representation of the two-parameter Poisson-Dirichlet process and the Dirichlet process, seminal in Bayesian non-parametric inference. In this work, we leverage this connection to introduce a general approach for quantifying closeness between symbolic sequences and test it within the framework of the authorship attribution problem. The method demonstrates high accuracy when compared to other related methods in different scenarios, featuring a substantial gain in computational efficiency and theoretical transparency. Beyond the practical convenience, this work demonstrates how the recently established connection between urn models and non-parametric Bayesian inference can pave the way for designing more efficient inference methods. In particular, the hybrid approach that we propose allows us to relax the exchangeability hypothesis, which can be particularly relevant for systems exhibiting complex correlation patterns and non-stationary dynamics. A class of urn-based models accounts for stochastic regularities observed in systems that exhibit innovation in diverse forms and temporal scales, from the appearance of new organisms to the evolution of language to daily new experiences. The authors investigate the predictive power of those models in inference problems, addressing the authorship attribution task as a case study.
创新的瓮模型捕捉了现实世界中若干过程所共有的基本经验法则。所谓带触发的瓮模型包括双参数泊松-狄利克特过程和狄利克特过程的瓮表示,作为特殊案例,它们在贝叶斯非参数推理中具有开创性意义。在这项工作中,我们利用这种联系引入了一种量化符号序列之间接近性的通用方法,并在作者归属问题的框架内对其进行了测试。与不同场景下的其他相关方法相比,该方法具有很高的准确性,在计算效率和理论透明度方面都有很大的提高。除了实际便利之外,这项工作还证明了最近建立的瓮模型和非参数贝叶斯推理之间的联系如何为设计更高效的推理方法铺平道路。特别是,我们提出的混合方法允许我们放宽可交换性假设,这对于表现出复杂相关模式和非平稳动态的系统尤为重要。
{"title":"Inference through innovation processes tested in the authorship attribution task","authors":"Giulio Tani Raffaelli, Margherita Lalli, Francesca Tria","doi":"10.1038/s42005-024-01714-6","DOIUrl":"10.1038/s42005-024-01714-6","url":null,"abstract":"Urn models for innovation capture fundamental empirical laws shared by several real-world processes. The so-called urn model with triggering includes, as particular cases, the urn representation of the two-parameter Poisson-Dirichlet process and the Dirichlet process, seminal in Bayesian non-parametric inference. In this work, we leverage this connection to introduce a general approach for quantifying closeness between symbolic sequences and test it within the framework of the authorship attribution problem. The method demonstrates high accuracy when compared to other related methods in different scenarios, featuring a substantial gain in computational efficiency and theoretical transparency. Beyond the practical convenience, this work demonstrates how the recently established connection between urn models and non-parametric Bayesian inference can pave the way for designing more efficient inference methods. In particular, the hybrid approach that we propose allows us to relax the exchangeability hypothesis, which can be particularly relevant for systems exhibiting complex correlation patterns and non-stationary dynamics. A class of urn-based models accounts for stochastic regularities observed in systems that exhibit innovation in diverse forms and temporal scales, from the appearance of new organisms to the evolution of language to daily new experiences. The authors investigate the predictive power of those models in inference problems, addressing the authorship attribution task as a case study.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01714-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142182132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transport of topological defects in a biphasic mixture of active and passive nematic fluids 拓扑缺陷在主动和被动向列流体双相混合物中的迁移
IF 5.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-09-06 DOI: 10.1038/s42005-024-01792-6
K. V. S. Chaithanya, Aleksandra Ardaševa, Oliver J. Meacock, William M. Durham, Sumesh P. Thampi, Amin Doostmohammadi
Collectively moving cellular systems often contain a proportion of dead cells or non-motile genotypes. When mixed, nematically aligning motile and non-motile agents are known to segregate spontaneously. However, the role that topological defects and active stresses play in shaping the distribution of the two phases remains unresolved. In this study, we investigate the behaviour of a two-dimensional binary mixture of active and passive nematic fluids to understand how topological defects are transported between the two phases and, ultimately, how this leads to the segregation of topological charges. When the activity of the motile phase is large, and the tension at the interface of motile and non-motile phases is weak, we find that the active phase tends to accumulate  +1/2 defects and expel  −1/2 defects so that the motile phase develops a net positive charge. Conversely, when the activity of the motile phase is comparatively small and interfacial tension is strong, the opposite occurs so that the active phase develops a net negative charge. We then use these simulations to develop a physical intuition of the underlying processes that drive the charge segregation. Lastly, we quantify the sensitivity of this process on the other model parameters, by exploring the effect that anchoring strength, orientational elasticity, friction, and volume fraction of the motile phase have on topological charge segregation. As  +1/2 and  −1/2 defects have very different effects on interface morphology and fluid transport, this study offers new insights into the spontaneous pattern formation that occurs when motile and non-motile cells interact. Collectively moving cellular systems often contain both motile and non-motile genotypes, and when mixed, these agents segregate spontaneously. The study reveals that the segregation of topological charges between these agents depends on activity and interfacial tension, with high activity and low tension favoring a positively charged motile phase.
集体运动的细胞系统往往含有一定比例的死细胞或非运动基因型。众所周知,当线粒体混合时,运动和非运动因子会自发分离。然而,拓扑缺陷和活性应力在形成两相分布中所起的作用仍未得到解决。在本研究中,我们研究了活性和被动向列流体的二维二元混合物的行为,以了解拓扑缺陷如何在两相之间传输,以及最终如何导致拓扑电荷的分离。当运动相的活性较大,而运动相和非运动相界面的张力较弱时,我们发现活性相倾向于积聚+1/2缺陷并排出-1/2缺陷,从而使运动相产生净正电荷。相反,当运动相的活性相对较小,而界面张力较强时,则会出现相反的情况,从而使活动相产生净负电荷。然后,我们利用这些模拟对驱动电荷分离的基本过程形成物理直觉。最后,我们通过探索锚定强度、定向弹性、摩擦力和运动相的体积分数对拓扑电荷分离的影响,量化了这一过程对其他模型参数的敏感性。由于+1/2和-1/2缺陷对界面形态和流体传输的影响截然不同,这项研究为运动细胞和非运动细胞相互作用时的自发模式形成提供了新的见解。
{"title":"Transport of topological defects in a biphasic mixture of active and passive nematic fluids","authors":"K. V. S. Chaithanya, Aleksandra Ardaševa, Oliver J. Meacock, William M. Durham, Sumesh P. Thampi, Amin Doostmohammadi","doi":"10.1038/s42005-024-01792-6","DOIUrl":"10.1038/s42005-024-01792-6","url":null,"abstract":"Collectively moving cellular systems often contain a proportion of dead cells or non-motile genotypes. When mixed, nematically aligning motile and non-motile agents are known to segregate spontaneously. However, the role that topological defects and active stresses play in shaping the distribution of the two phases remains unresolved. In this study, we investigate the behaviour of a two-dimensional binary mixture of active and passive nematic fluids to understand how topological defects are transported between the two phases and, ultimately, how this leads to the segregation of topological charges. When the activity of the motile phase is large, and the tension at the interface of motile and non-motile phases is weak, we find that the active phase tends to accumulate  +1/2 defects and expel  −1/2 defects so that the motile phase develops a net positive charge. Conversely, when the activity of the motile phase is comparatively small and interfacial tension is strong, the opposite occurs so that the active phase develops a net negative charge. We then use these simulations to develop a physical intuition of the underlying processes that drive the charge segregation. Lastly, we quantify the sensitivity of this process on the other model parameters, by exploring the effect that anchoring strength, orientational elasticity, friction, and volume fraction of the motile phase have on topological charge segregation. As  +1/2 and  −1/2 defects have very different effects on interface morphology and fluid transport, this study offers new insights into the spontaneous pattern formation that occurs when motile and non-motile cells interact. Collectively moving cellular systems often contain both motile and non-motile genotypes, and when mixed, these agents segregate spontaneously. The study reveals that the segregation of topological charges between these agents depends on activity and interfacial tension, with high activity and low tension favoring a positively charged motile phase.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01792-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142182133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Boundary-localized many-body bound states in the continuum 连续体中的边界局部多体束缚态
IF 5.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-09-05 DOI: 10.1038/s42005-024-01777-5
Na Sun, Weixuan Zhang, Hao Yuan, Xiangdong Zhang
Bound states in the continuum (BICs), referring to spatially localized bound states with energies falling within the range of extended modes, have been extensively investigated in single-particle systems, leading to diverse applications in photonics, acoustics, and other classical-wave systems. Recently, there has been theoretical interest in exploring many-body BICs in interacting quantum systems, which necessitate the careful design of impurity potentials or spatial profiles of interaction. Here, we propose a type of many-body BICs localized at boundaries, which can be purely induced by the uniform onsite interaction without requiring any specific design of impurity potential or nonlocal interaction. We numerically show that three or more interacting bosons can concentrate on the boundary of a homogeneous one-dimensional lattice, which is absent at single- and two-particle counterparts. Moreover, the eigenenergy of multi-boson bound states can embed within the continuous energy spectra of extended scattering states, thereby giving rise to interaction-induced boundary many-body BICs. Furthermore, by mapping Fock states of three and four bosons to nonlinear circuit networks, we experimentally simulate boundary many-body BICs. Our findings enrich the comprehension of correlated BICs beyond the single-particle level, and have the potential to inspire future investigations on exploring many-body BICs. Bound states in the continuum (BICs) have been extensively investigated in single-particle systems, leading to diverse applications in photonics, acoustics, and other classical-wave systems. Here, the authors propose a type of interaction-induced many-body BICs at boundaries and experimentally simulate these boundary many-body BICs using nonlinear circuit networks.
连续体中的束缚态(BIC)是指能量在扩展模式范围内的空间局部束缚态,在单粒子系统中已被广泛研究,并在光子学、声学和其他经典波系统中得到了多种应用。最近,理论界对探索相互作用量子系统中的多体 BIC 产生了浓厚的兴趣,这就需要精心设计杂质势或相互作用的空间轮廓。在这里,我们提出了一种在边界局部的多体 BIC,它可以纯粹由均匀的场内相互作用诱发,而不需要任何特定的杂质势或非局域相互作用设计。我们用数值方法证明,三个或更多相互作用玻色子可以集中在均质一维晶格的边界上,而这在单粒子和双粒子对应物上是不存在的。此外,多玻色子束缚态的特征能可以嵌入扩展散射态的连续能谱中,从而产生相互作用诱导的边界多体 BIC。此外,通过将三玻色子和四玻色子的 Fock 状态映射到非线性电路网络,我们在实验中模拟了边界多体 BIC。我们的发现丰富了对单粒子层面之外的相关BIC的理解,并有可能启发未来探索多体BIC的研究。连续体中的边界态(BICs)已在单粒子系统中得到广泛研究,并在光子学、声学和其他经典波系统中得到多种应用。在此,作者提出了一种相互作用诱导的边界多体 BIC,并利用非线性电路网络对这些边界多体 BIC 进行了实验模拟。
{"title":"Boundary-localized many-body bound states in the continuum","authors":"Na Sun, Weixuan Zhang, Hao Yuan, Xiangdong Zhang","doi":"10.1038/s42005-024-01777-5","DOIUrl":"10.1038/s42005-024-01777-5","url":null,"abstract":"Bound states in the continuum (BICs), referring to spatially localized bound states with energies falling within the range of extended modes, have been extensively investigated in single-particle systems, leading to diverse applications in photonics, acoustics, and other classical-wave systems. Recently, there has been theoretical interest in exploring many-body BICs in interacting quantum systems, which necessitate the careful design of impurity potentials or spatial profiles of interaction. Here, we propose a type of many-body BICs localized at boundaries, which can be purely induced by the uniform onsite interaction without requiring any specific design of impurity potential or nonlocal interaction. We numerically show that three or more interacting bosons can concentrate on the boundary of a homogeneous one-dimensional lattice, which is absent at single- and two-particle counterparts. Moreover, the eigenenergy of multi-boson bound states can embed within the continuous energy spectra of extended scattering states, thereby giving rise to interaction-induced boundary many-body BICs. Furthermore, by mapping Fock states of three and four bosons to nonlinear circuit networks, we experimentally simulate boundary many-body BICs. Our findings enrich the comprehension of correlated BICs beyond the single-particle level, and have the potential to inspire future investigations on exploring many-body BICs. Bound states in the continuum (BICs) have been extensively investigated in single-particle systems, leading to diverse applications in photonics, acoustics, and other classical-wave systems. Here, the authors propose a type of interaction-induced many-body BICs at boundaries and experimentally simulate these boundary many-body BICs using nonlinear circuit networks.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01777-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142137880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental probe of point gap topology from non-Hermitian Fermi-arcs 非ermitian费米弧点隙拓扑的实验探索
IF 5.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-09-04 DOI: 10.1038/s42005-024-01789-1
Riyi Zheng, Jing Lin, Jialuo Liang, Kun Ding, Jiuyang Lu, Weiyin Deng, Manzhu Ke, Xueqin Huang, Zhengyou Liu
The gap in spectra of a physical system is fundamental in physics, while gap topology further restricts possible occurrent gaps of topological boundary states. The emergence of non-Hermiticity unveils a unique gap type known as the point gap, which forecasts the wavefunction localization, known as the non-Hermitian skin effect. Therefore, experimentally identifying the point gap in the complex frequency plane through a real operating frequency can become a tool for the systematic investigation of skin effects. Here, we utilize a Weyl phononic crystal to demonstrate that the point gap constituted by bulk and Fermi-arc surface states can be observed experimentally by a real-space field mapping technique. The identified point gaps forecast various skin effects and their evolutions. We further experimentally demonstrate the hinge skin effect in a parallelogram structure. Our work provides a feasible recipe to explore point gap topology experimentally in a variety of systems and certainly stimulates the research on skin effects in three-dimensional systems. Point gap is signature of non-Hermitian systems, but the experimental identification of nontrivial point gaps is elusive. Here, the authors use a Weyl phononic crystal to demonstrate that the point gap constituted by bulk and Fermi-arc surface states can be observed experimentally by a real-space field mapping technique and discover various skin effects and their evolutions.
物理系统光谱中的间隙是物理学的基础,而间隙拓扑则进一步限制了拓扑边界态可能出现的间隙。非赫米提性的出现揭示了一种称为点间隙的独特间隙类型,它预示着波函数的局部化,即所谓的非赫米提趋肤效应。因此,通过实际工作频率在复频平面上实验性地识别点间隙,可以成为系统研究趋肤效应的工具。在这里,我们利用韦尔声波晶体证明,通过实空间场映射技术,可以在实验中观察到由体态和费米弧面态构成的点隙。确定的点隙预报了各种集肤效应及其演变。我们进一步通过实验证明了平行四边形结构中的铰链集肤效应。我们的工作为在各种系统中实验性地探索点间隙拓扑提供了可行的方法,必将激发对三维系统集肤效应的研究。点间隙是非全息系统的特征,但非微观点间隙的实验识别却难以捉摸。在此,作者利用韦尔声波晶体证明,可以通过实空间场映射技术在实验中观察到由体态和费米弧表面态构成的点隙,并发现各种趋肤效应及其演变。
{"title":"Experimental probe of point gap topology from non-Hermitian Fermi-arcs","authors":"Riyi Zheng, Jing Lin, Jialuo Liang, Kun Ding, Jiuyang Lu, Weiyin Deng, Manzhu Ke, Xueqin Huang, Zhengyou Liu","doi":"10.1038/s42005-024-01789-1","DOIUrl":"10.1038/s42005-024-01789-1","url":null,"abstract":"The gap in spectra of a physical system is fundamental in physics, while gap topology further restricts possible occurrent gaps of topological boundary states. The emergence of non-Hermiticity unveils a unique gap type known as the point gap, which forecasts the wavefunction localization, known as the non-Hermitian skin effect. Therefore, experimentally identifying the point gap in the complex frequency plane through a real operating frequency can become a tool for the systematic investigation of skin effects. Here, we utilize a Weyl phononic crystal to demonstrate that the point gap constituted by bulk and Fermi-arc surface states can be observed experimentally by a real-space field mapping technique. The identified point gaps forecast various skin effects and their evolutions. We further experimentally demonstrate the hinge skin effect in a parallelogram structure. Our work provides a feasible recipe to explore point gap topology experimentally in a variety of systems and certainly stimulates the research on skin effects in three-dimensional systems. Point gap is signature of non-Hermitian systems, but the experimental identification of nontrivial point gaps is elusive. Here, the authors use a Weyl phononic crystal to demonstrate that the point gap constituted by bulk and Fermi-arc surface states can be observed experimentally by a real-space field mapping technique and discover various skin effects and their evolutions.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01789-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142130458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Visualizing plasmons and ultrafast kinetic instabilities in laser-driven solids using X-ray scattering 利用 X 射线散射观察激光驱动固体中的质子和超快动力学不稳定性
IF 5.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-09-03 DOI: 10.1038/s42005-024-01776-6
Paweł Ordyna, Carsten Bähtz, Erik Brambrink, Michael Bussmann, Alejandro Laso Garcia, Marco Garten, Lennart Gaus, Sebastian Göde, Jörg Grenzer, Christian Gutt, Hauke Höppner, Lingen Huang, Uwe Hübner, Oliver Humphries, Brian Edward Marré, Josefine Metzkes-Ng, Thomas Miethlinger, Motoaki Nakatsutsumi, Özgül Öztürk, Xiayun Pan, Franziska Paschke-Brühl, Alexander Pelka, Irene Prencipe, Thomas R. Preston, Lisa Randolph, Hans-Peter Schlenvoigt, Jan-Patrick Schwinkendorf, Michal Šmíd, Sebastian Starke, Radka Štefaníková, Erik Thiessenhusen, Toma Toncian, Karl Zeil, Ulrich Schramm, Thomas E. Cowan, Thomas Kluge
Ultra-intense lasers that ionize atoms and accelerate electrons in solids to near the speed of light can lead to kinetic instabilities that alter the laser absorption and subsequent electron transport, isochoric heating, and ion acceleration. These instabilities can be difficult to characterize, but X-ray scattering at keV photon energies allows for their visualization with femtosecond temporal resolution on the few nanometer mesoscale. Here, we perform such experiment on laser-driven flat silicon membranes that shows the development of structure with a dominant scale of 60 nm in the plane of the laser axis and laser polarization, and 95 nm in the vertical direction with a growth rate faster than 0.1 fs−1. Combining the XFEL experiments with simulations provides a complete picture of the structural evolution of ultra-fast laser-induced plasma density development, indicating the excitation of plasmons and a filamentation instability. Particle-in-cell simulations confirm that these signals are due to an oblique two-stream filamentation instability. These findings provide new insight into ultra-fast instability and heating processes in solids under extreme conditions at the nanometer level with possible implications for laser particle acceleration, inertial confinement fusion, and laboratory astrophysics. Ultrafast relativistic plasma instabilities accompany and influence laser matter interactions that accelerate particlebeams with potential applications in e.g radiotherapy or fussion fast ignition scenarios. Here, the authors use Small Angle X-ray Scattering to observe such instabilities on a femtosecond, tens of nanometer scale in solids, and draw conclusions on the underlying plasma dynamics.
超强激光可将固体中的原子电离和电子加速到接近光速,从而导致动力学不稳定性,改变激光吸收和随后的电子传输、等速加热和离子加速。这些不稳定性可能难以表征,但在 keV 光子能量下的 X 射线散射可以在几纳米的中尺度上以飞秒级的时间分辨率将其可视化。在这里,我们在激光驱动的平面硅膜上进行了这样的实验,结果表明,在激光轴和激光偏振平面上,结构的主要尺度为 60 纳米,在垂直方向上为 95 纳米,其增长速度快于 0.1 fs-1。将 XFEL 实验与模拟相结合,可以全面了解超快激光诱导等离子体密度发展的结构演变,表明等离子体的激发和丝状不稳定性。粒子间模拟证实,这些信号是由斜双流丝状不稳定性引起的。这些发现为纳米级极端条件下固体中的超快不稳定性和加热过程提供了新的视角,可能对激光粒子加速、惯性约束聚变和实验室天体物理学产生影响。超快相对论等离子体不稳定性伴随并影响着激光物质相互作用,从而加速粒子束,并有可能应用于放射治疗或冲击快速点火等场景。在这里,作者利用小角 X 射线散射观测了固体中飞秒级、数十纳米级的不稳定性,并得出了有关潜在等离子体动力学的结论。
{"title":"Visualizing plasmons and ultrafast kinetic instabilities in laser-driven solids using X-ray scattering","authors":"Paweł Ordyna, Carsten Bähtz, Erik Brambrink, Michael Bussmann, Alejandro Laso Garcia, Marco Garten, Lennart Gaus, Sebastian Göde, Jörg Grenzer, Christian Gutt, Hauke Höppner, Lingen Huang, Uwe Hübner, Oliver Humphries, Brian Edward Marré, Josefine Metzkes-Ng, Thomas Miethlinger, Motoaki Nakatsutsumi, Özgül Öztürk, Xiayun Pan, Franziska Paschke-Brühl, Alexander Pelka, Irene Prencipe, Thomas R. Preston, Lisa Randolph, Hans-Peter Schlenvoigt, Jan-Patrick Schwinkendorf, Michal Šmíd, Sebastian Starke, Radka Štefaníková, Erik Thiessenhusen, Toma Toncian, Karl Zeil, Ulrich Schramm, Thomas E. Cowan, Thomas Kluge","doi":"10.1038/s42005-024-01776-6","DOIUrl":"10.1038/s42005-024-01776-6","url":null,"abstract":"Ultra-intense lasers that ionize atoms and accelerate electrons in solids to near the speed of light can lead to kinetic instabilities that alter the laser absorption and subsequent electron transport, isochoric heating, and ion acceleration. These instabilities can be difficult to characterize, but X-ray scattering at keV photon energies allows for their visualization with femtosecond temporal resolution on the few nanometer mesoscale. Here, we perform such experiment on laser-driven flat silicon membranes that shows the development of structure with a dominant scale of 60 nm in the plane of the laser axis and laser polarization, and 95 nm in the vertical direction with a growth rate faster than 0.1 fs−1. Combining the XFEL experiments with simulations provides a complete picture of the structural evolution of ultra-fast laser-induced plasma density development, indicating the excitation of plasmons and a filamentation instability. Particle-in-cell simulations confirm that these signals are due to an oblique two-stream filamentation instability. These findings provide new insight into ultra-fast instability and heating processes in solids under extreme conditions at the nanometer level with possible implications for laser particle acceleration, inertial confinement fusion, and laboratory astrophysics. Ultrafast relativistic plasma instabilities accompany and influence laser matter interactions that accelerate particlebeams with potential applications in e.g radiotherapy or fussion fast ignition scenarios. Here, the authors use Small Angle X-ray Scattering to observe such instabilities on a femtosecond, tens of nanometer scale in solids, and draw conclusions on the underlying plasma dynamics.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01776-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142130460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Non-equilibrium formation and relaxation of magnetic flux ropes at kinetic scales 磁通量绳在动力学尺度上的非平衡形成和弛豫
IF 5.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-09-03 DOI: 10.1038/s42005-024-01784-6
Young Dae Yoon, Modhuchandra Laishram, Thomas Earle Moore, Gunsu S. Yun
Magnetic flux ropes are pivotal structures and building blocks in astrophysical and laboratory plasmas, and various equilibrium models have thus been studied in the past. However, flux ropes in general form at non-equilibrium, and their pathway from formation to relaxation is a crucial process that determines their eventual properties. Here we show that any localized current parallel to a background magnetic field will evolve into a flux rope via non-equilibrium processes. The detailed kinetic dynamics are exhaustively explained through single-particle and Vlasov analyses and verified through particle-in-cell simulations. This process is consistent with many proposed mechanisms of flux rope generation such as magnetic reconnection. A spacecraft observation of an example flux rope is also presented; by invoking the non-equilibrium process, its structure and properties can be explicated down to all six components of the temperature tensor. Flux ropes are fundamental structures that govern much of the dynamics in astrophysical and space plasmas. The authors show how out-of-equilibrium processes can form small-scale flux ropes and compare them to simulations and spacecraft observations.
磁通索是天体物理和实验室等离子体中的关键结构和构件,因此过去曾对各种平衡模型进行过研究。然而,磁通索一般是在非平衡状态下形成的,它们从形成到弛豫的过程是决定其最终性质的关键过程。在这里,我们证明了任何与背景磁场平行的局部电流都会通过非平衡过程演变成磁通索。我们通过单粒子和弗拉索夫分析详尽地解释了详细的动力学过程,并通过粒子间模拟进行了验证。这一过程与许多提出的磁通绳产生机制(如磁重联)相一致。此外,还介绍了航天器观测到的一个通量绳示例;通过引用非平衡过程,其结构和特性可以解释到温度张量的所有六个分量。通量绳是支配天体物理和空间等离子体大部分动力学的基本结构。作者展示了非平衡过程如何形成小尺度通量绳,并将其与模拟和航天器观测结果进行了比较。
{"title":"Non-equilibrium formation and relaxation of magnetic flux ropes at kinetic scales","authors":"Young Dae Yoon, Modhuchandra Laishram, Thomas Earle Moore, Gunsu S. Yun","doi":"10.1038/s42005-024-01784-6","DOIUrl":"10.1038/s42005-024-01784-6","url":null,"abstract":"Magnetic flux ropes are pivotal structures and building blocks in astrophysical and laboratory plasmas, and various equilibrium models have thus been studied in the past. However, flux ropes in general form at non-equilibrium, and their pathway from formation to relaxation is a crucial process that determines their eventual properties. Here we show that any localized current parallel to a background magnetic field will evolve into a flux rope via non-equilibrium processes. The detailed kinetic dynamics are exhaustively explained through single-particle and Vlasov analyses and verified through particle-in-cell simulations. This process is consistent with many proposed mechanisms of flux rope generation such as magnetic reconnection. A spacecraft observation of an example flux rope is also presented; by invoking the non-equilibrium process, its structure and properties can be explicated down to all six components of the temperature tensor. Flux ropes are fundamental structures that govern much of the dynamics in astrophysical and space plasmas. The authors show how out-of-equilibrium processes can form small-scale flux ropes and compare them to simulations and spacecraft observations.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01784-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142130473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unforeseen advantage of looser focusing in vacuum laser acceleration 真空激光加速时聚焦较松的意外优势
IF 5.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-09-02 DOI: 10.1038/s42005-024-01781-9
Aitor De Andres, Shikha Bhadoria, Javier Tello Marmolejo, Alexander Muschet, Peter Fischer, Hamid Reza Barzegar, Thomas Blackburn, Arkady Gonoskov, Dag Hanstorp, Mattias Marklund, Laszlo Veisz
Acceleration of electrons in vacuum directly by intense laser fields holds great promise for the generation of high-charge, ultrashort, relativistic electron bunches. While the energy gain is expected to be higher with tighter focusing, this does not account for the reduced acceleration range, which is limited by diffraction. Here, we present the results of an experimental investigation that exposed nanotips to relativistic few-cycle laser pulses. We demonstrate the vacuum laser acceleration of electron beams with 100s pC charge and 15 MeV energy. Two different focusing geometries, with normalized vector potential a0 of 9.8 and 3.8, produced comparable overall charge and electron spectra, despite a factor of almost ten difference in peak intensity. Our results are in good agreement with 3D particle-in-cell simulations, which indicate the importance of dephasing. Accelerating electrons in vacuum by intense laser fields is a promising yet experimentally challenging field. Here, the authors demonstrate acceleration of 100’s of pC of 15 MeV electrons by shining few-cycle laser pulses on nanotips and further investigate the process by using different focusing geometries that leads to unexpected results.
用强激光场直接加速真空中的电子,为产生高电荷、超短相对论电子束带来了巨大希望。虽然能量增益有望随着更紧密的聚焦而提高,但这并不意味着加速范围的缩小,因为它受到衍射的限制。在此,我们介绍了一项实验研究的结果,该研究将纳米尖端暴露在相对论性几周期激光脉冲下。我们展示了真空激光加速电荷量为 100s pC、能量为 15 MeV 的电子束。尽管峰值强度相差近十倍,但归一化矢量势 a0 为 9.8 和 3.8 的两种不同聚焦几何结构产生的整体电荷和电子能谱具有可比性。我们的结果与三维粒子池模拟结果非常吻合,这表明了去相的重要性。用强激光场加速真空中的电子是一个前景广阔但极具实验挑战性的领域。在这里,作者展示了通过在纳米尖端照射几周期的激光脉冲来加速 100's pC 的 15 MeV 电子,并通过使用不同的聚焦几何结构进一步研究了这一过程,从而得出了意想不到的结果。
{"title":"Unforeseen advantage of looser focusing in vacuum laser acceleration","authors":"Aitor De Andres, Shikha Bhadoria, Javier Tello Marmolejo, Alexander Muschet, Peter Fischer, Hamid Reza Barzegar, Thomas Blackburn, Arkady Gonoskov, Dag Hanstorp, Mattias Marklund, Laszlo Veisz","doi":"10.1038/s42005-024-01781-9","DOIUrl":"10.1038/s42005-024-01781-9","url":null,"abstract":"Acceleration of electrons in vacuum directly by intense laser fields holds great promise for the generation of high-charge, ultrashort, relativistic electron bunches. While the energy gain is expected to be higher with tighter focusing, this does not account for the reduced acceleration range, which is limited by diffraction. Here, we present the results of an experimental investigation that exposed nanotips to relativistic few-cycle laser pulses. We demonstrate the vacuum laser acceleration of electron beams with 100s pC charge and 15 MeV energy. Two different focusing geometries, with normalized vector potential a0 of 9.8 and 3.8, produced comparable overall charge and electron spectra, despite a factor of almost ten difference in peak intensity. Our results are in good agreement with 3D particle-in-cell simulations, which indicate the importance of dephasing. Accelerating electrons in vacuum by intense laser fields is a promising yet experimentally challenging field. Here, the authors demonstrate acceleration of 100’s of pC of 15 MeV electrons by shining few-cycle laser pulses on nanotips and further investigate the process by using different focusing geometries that leads to unexpected results.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01781-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142130457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quasi-Dirac points in electron-energy spectra of crystals 晶体电子能谱中的准迪拉克点
IF 5.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-09-02 DOI: 10.1038/s42005-024-01788-2
Grigorii P. Mikitik
Specific properties, such as surface Fermi arcs, features of quantum oscillations and of various responses to a magnetic field, distinguish Dirac semimetals from ordinary materials. These properties are determined by Dirac points at which a contact of two electron-energy bands occurs and in the vicinity of which these bands disperse linearly in the quasimomentum. This work shows that almost the same properties are inherent in a wider class of materials in which the Dirac spectrum can have a noticeable gap comparable with the Fermi energy. In other words, the degeneracy of the bands at the point and their linear dispersion are not necessary for the existence of these properties. The only sufficient condition is the following: In the vicinity of such a quasi-Dirac point, the two close bands are well described by a two-band model that takes into account the strong spin-orbit interaction. To illustrate the results, the spectrum of ZrTe5 is considered. This spectrum contains a special quasi-Dirac point, similar to that in bismuth. Dirac semimetals are 3D materials where the conduction and valence bands meet at what are called Dirac points. The author shows that almost all the properties inherent in the Dirac semimetals are exhibited by a wider class of materials that need not have the gapless Dirac points.
特定的性质,如表面费米弧、量子振荡特征和对磁场的各种反应,将狄拉克半金属与普通材料区分开来。这些特性是由狄拉克点决定的,在狄拉克点上会出现两个电子能带的接触,在其附近这些能带会在准动量中线性发散。这项研究表明,几乎同样的特性也存在于更广泛的材料类别中,在这些材料中,狄拉克谱具有与费米能相当的明显间隙。换句话说,点带的变性及其线性色散并不是这些性质存在的必要条件。唯一的充分条件如下:在这样一个准狄拉克点附近,两个接近的带可以用一个考虑到强自旋轨道相互作用的双带模型很好地描述。为了说明结果,我们考虑了 ZrTe5 的光谱。该光谱包含一个特殊的准狄拉克点,类似于铋的狄拉克点。狄拉克半金属是导带和价带在所谓的狄拉克点相交的三维材料。作者指出,迪拉克半金属的几乎所有固有特性都可以由更广泛的一类材料表现出来,这些材料不需要无间隙的迪拉克点。
{"title":"Quasi-Dirac points in electron-energy spectra of crystals","authors":"Grigorii P. Mikitik","doi":"10.1038/s42005-024-01788-2","DOIUrl":"10.1038/s42005-024-01788-2","url":null,"abstract":"Specific properties, such as surface Fermi arcs, features of quantum oscillations and of various responses to a magnetic field, distinguish Dirac semimetals from ordinary materials. These properties are determined by Dirac points at which a contact of two electron-energy bands occurs and in the vicinity of which these bands disperse linearly in the quasimomentum. This work shows that almost the same properties are inherent in a wider class of materials in which the Dirac spectrum can have a noticeable gap comparable with the Fermi energy. In other words, the degeneracy of the bands at the point and their linear dispersion are not necessary for the existence of these properties. The only sufficient condition is the following: In the vicinity of such a quasi-Dirac point, the two close bands are well described by a two-band model that takes into account the strong spin-orbit interaction. To illustrate the results, the spectrum of ZrTe5 is considered. This spectrum contains a special quasi-Dirac point, similar to that in bismuth. Dirac semimetals are 3D materials where the conduction and valence bands meet at what are called Dirac points. The author shows that almost all the properties inherent in the Dirac semimetals are exhibited by a wider class of materials that need not have the gapless Dirac points.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01788-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142130464","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Generalized Einstein relation for aging processes 老化过程的广义爱因斯坦关系
IF 5.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-09-02 DOI: 10.1038/s42005-024-01791-7
Jing-Dong Bao, Xiang-Rong Wang
Physical aging appears in many systems ranging from glassy/granular materials, blinking quantum dots to laser-cooled atoms. Aging is a process with three fingerprints: (i) slow, non-exponential relaxation, (ii) breaking of time-translation-invariance, and (iii) dynamical scaling. Here, we show that all these features are present in our minimal Langevin model for aging. A natural extension of the Einstein relation, which was expected to be true in an equilibrium state, is conjectured to hold in aging processes where both the damping and the temperature decrease with time in power-law forms. The generalized Einstein relation can be used to tackle the difficult problem of determining non-ergodic behaviours. The model shows a power-law-type diffusion away from the critical point and a logarithmic Sinai-type ultra-slow diffusion at the critical point. Application to granular gases is also discussed. The authors propose a minimal Langevin model with time-dependent noise, diffusion coefficient, and friction coefficient, which is appropriate to describe cooling environments (granular gases, laser cooling). Assuming that the temperature and the friction coefficient decay in a power-law manner, the generalized Einstein relation is analysed.
物理老化出现在许多系统中,从玻璃/粒状材料、闪烁量子点到激光冷却原子。老化是一个具有三个特征的过程:(i) 缓慢的非指数弛豫,(ii) 打破时间平移不变性,以及 (iii) 动态缩放。在这里,我们证明所有这些特征都存在于我们的最小老化 Langevin 模型中。在老化过程中,阻尼和温度都会以幂律形式随时间下降。广义爱因斯坦关系可用于解决确定非啮合行为的难题。该模型显示了远离临界点的幂律型扩散和临界点的对数西奈型超慢扩散。此外,还讨论了该模型在粒状气体中的应用。作者提出了一个具有随时间变化的噪声、扩散系数和摩擦系数的最小朗文模型,该模型适用于描述冷却环境(颗粒气体、激光冷却)。假设温度和摩擦系数以幂律方式衰减,分析了广义爱因斯坦关系。
{"title":"Generalized Einstein relation for aging processes","authors":"Jing-Dong Bao, Xiang-Rong Wang","doi":"10.1038/s42005-024-01791-7","DOIUrl":"10.1038/s42005-024-01791-7","url":null,"abstract":"Physical aging appears in many systems ranging from glassy/granular materials, blinking quantum dots to laser-cooled atoms. Aging is a process with three fingerprints: (i) slow, non-exponential relaxation, (ii) breaking of time-translation-invariance, and (iii) dynamical scaling. Here, we show that all these features are present in our minimal Langevin model for aging. A natural extension of the Einstein relation, which was expected to be true in an equilibrium state, is conjectured to hold in aging processes where both the damping and the temperature decrease with time in power-law forms. The generalized Einstein relation can be used to tackle the difficult problem of determining non-ergodic behaviours. The model shows a power-law-type diffusion away from the critical point and a logarithmic Sinai-type ultra-slow diffusion at the critical point. Application to granular gases is also discussed. The authors propose a minimal Langevin model with time-dependent noise, diffusion coefficient, and friction coefficient, which is appropriate to describe cooling environments (granular gases, laser cooling). Assuming that the temperature and the friction coefficient decay in a power-law manner, the generalized Einstein relation is analysed.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01791-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142130452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Communications Physics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1