首页 > 最新文献

Communications Physics最新文献

英文 中文
Single-antenna super-resolution positioning with nonseparable toroidal pulses 利用非分离环形脉冲进行单天线超分辨率定位
IF 5.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-10-29 DOI: 10.1038/s42005-024-01850-z
Ren Wang, Pan-Yi Bao, Xiaoyu Feng, Junpu Wu, Bing-Zhong Wang, Yijie Shen
The fundamental principle of satellite/node-based positioning involves triangulating the receiver’s coordinates through the intersection of spatial distances. Advancements in hybrid wireless networks have yielded high-precision positioning at decimeter-level (wavelength-level), approaching the resolution limits in free space. Here we present a 3D super-resolution positioning paradigm in free space by utilizing a kind of topologically structured pulses, toroidal electromagnetic pulses. We demonstrate that the space-time nonseparability and skyrmion topology inherent in toroidal pulses can be harnessed to achieve freespace microwave 3D positioning with super-resolution accuracy, reaching the centimeter level, using a single emitting antenna. This work opens up avenues for exploring the potential applications of topological electromagnetic pulses including but not limited to positioning, imaging and sensing technologies. This paper presents a positioning paradigm in free space by utilizing toroidal electromagnetic pulses. The space-time nonseparability and skyrmion topology inherent in toroidal pulses are harnessed to achieve freespace microwave 3D positioning with super-resolution accuracy, reaching the centimeter level, using a single emitting antenna.
卫星/节点定位的基本原理是通过空间距离的交叉对接收器的坐标进行三角测量。混合无线网络的进步已经实现了分米级(波长级)的高精度定位,接近自由空间的分辨率极限。在这里,我们利用一种拓扑结构脉冲--环形电磁脉冲,提出了一种自由空间三维超分辨率定位范例。我们证明,利用环形脉冲固有的时空不可分离性和天体拓扑结构,可以实现自由空间微波三维定位,其超分辨率精度可以达到厘米级,只需使用一个发射天线。这项工作为探索拓扑电磁脉冲的潜在应用开辟了道路,包括但不限于定位、成像和传感技术。本文提出了一种利用环形电磁脉冲在自由空间进行定位的范例。利用环形电磁脉冲固有的时空不可分离性和天磁拓扑结构,可实现自由空间微波三维定位,其超高分辨精度可达到厘米级,只需使用一个发射天线。
{"title":"Single-antenna super-resolution positioning with nonseparable toroidal pulses","authors":"Ren Wang, Pan-Yi Bao, Xiaoyu Feng, Junpu Wu, Bing-Zhong Wang, Yijie Shen","doi":"10.1038/s42005-024-01850-z","DOIUrl":"10.1038/s42005-024-01850-z","url":null,"abstract":"The fundamental principle of satellite/node-based positioning involves triangulating the receiver’s coordinates through the intersection of spatial distances. Advancements in hybrid wireless networks have yielded high-precision positioning at decimeter-level (wavelength-level), approaching the resolution limits in free space. Here we present a 3D super-resolution positioning paradigm in free space by utilizing a kind of topologically structured pulses, toroidal electromagnetic pulses. We demonstrate that the space-time nonseparability and skyrmion topology inherent in toroidal pulses can be harnessed to achieve freespace microwave 3D positioning with super-resolution accuracy, reaching the centimeter level, using a single emitting antenna. This work opens up avenues for exploring the potential applications of topological electromagnetic pulses including but not limited to positioning, imaging and sensing technologies. This paper presents a positioning paradigm in free space by utilizing toroidal electromagnetic pulses. The space-time nonseparability and skyrmion topology inherent in toroidal pulses are harnessed to achieve freespace microwave 3D positioning with super-resolution accuracy, reaching the centimeter level, using a single emitting antenna.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-6"},"PeriodicalIF":5.4,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01850-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142555536","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Kekulé-modulated topological bulk cavity for intrinsic lateral beam shifting of high-purity linear-polarized light emission 用于高纯度线偏振光发射本征侧向光束偏移的凯库雷调制拓扑体腔
IF 5.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-10-28 DOI: 10.1038/s42005-024-01842-z
Zichen Li, Bofeng Zhu, Ying Li, Yihao Yang, Yidong Chong, Qi Jie Wang, Hongsheng Chen, Song Han
Beam shaping and polarization manipulation are of great importance for the design of microcavity lasers. Recently, topological photonic cavities have emerged as excellent platforms for surface-emitting lasers. In this class of lasers, beam engineering has not thus far been extensively studied. Here, we demonstrate how to achieve an intrinsic lateral shift of the beam emitted by a topological laser. This is achieved by designing a Kekulé-modulated topological bulk cavity, in which the continuous Kekulé modulation partially lifts a set of fourfold-degenerate Dirac cones into two twofold degeneracies. The resulting photonic cavity supports a range of interesting beam emission profiles, including vector beams with polarization winding, and laterally-shifted linearly-polarized Gaussian beams. It is possible to achieve lateral beam shifts in opposite directions and orthogonal polarizations for the degenerate photonic p-/d-orbitals, a feature that may be useful for photonic sensing applications. Topological phenomena in photonics have been found of great importance in realizing advanced semiconductor laser. Here the authors demonstrate the manipulation of the light emission profiles from a Kekulé-modulated topological bulk cavity in a topological-protection manner, where the achieved lateral beam shifts in light polarizations could be useful for the laser design and photonic sensing applications.
光束整形和偏振控制对于微腔激光器的设计非常重要。最近,拓扑光子空腔已成为表面发射激光器的绝佳平台。在这类激光器中,光束工程迄今尚未得到广泛研究。在这里,我们展示了如何实现拓扑激光器发射光束的内在横向移动。这是通过设计一个凯库勒调制的拓扑体腔实现的,其中连续的凯库勒调制将一组四倍退化的狄拉克锥部分提升为两个两倍退化的狄拉克锥。由此产生的光子腔支持一系列有趣的光束发射剖面,包括偏振缠绕的矢量光束和横向偏移的线性偏振高斯光束。对于退化的光子 p-d 轨道,有可能实现方向相反的横向光束偏移和正交偏振,这一特性可能有助于光子传感应用。光子学中的拓扑现象对于实现先进的半导体激光器具有重要意义。在此,作者展示了以拓扑保护方式操纵凯库雷调制拓扑体腔的光发射曲线,所实现的光偏振横向光束偏移可能对激光设计和光子传感应用有用。
{"title":"Kekulé-modulated topological bulk cavity for intrinsic lateral beam shifting of high-purity linear-polarized light emission","authors":"Zichen Li, Bofeng Zhu, Ying Li, Yihao Yang, Yidong Chong, Qi Jie Wang, Hongsheng Chen, Song Han","doi":"10.1038/s42005-024-01842-z","DOIUrl":"10.1038/s42005-024-01842-z","url":null,"abstract":"Beam shaping and polarization manipulation are of great importance for the design of microcavity lasers. Recently, topological photonic cavities have emerged as excellent platforms for surface-emitting lasers. In this class of lasers, beam engineering has not thus far been extensively studied. Here, we demonstrate how to achieve an intrinsic lateral shift of the beam emitted by a topological laser. This is achieved by designing a Kekulé-modulated topological bulk cavity, in which the continuous Kekulé modulation partially lifts a set of fourfold-degenerate Dirac cones into two twofold degeneracies. The resulting photonic cavity supports a range of interesting beam emission profiles, including vector beams with polarization winding, and laterally-shifted linearly-polarized Gaussian beams. It is possible to achieve lateral beam shifts in opposite directions and orthogonal polarizations for the degenerate photonic p-/d-orbitals, a feature that may be useful for photonic sensing applications. Topological phenomena in photonics have been found of great importance in realizing advanced semiconductor laser. Here the authors demonstrate the manipulation of the light emission profiles from a Kekulé-modulated topological bulk cavity in a topological-protection manner, where the achieved lateral beam shifts in light polarizations could be useful for the laser design and photonic sensing applications.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-6"},"PeriodicalIF":5.4,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01842-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142525745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Above-threshold ionization with X-ray free-electron lasers 利用 X 射线自由电子激光器进行阈值以上电离
IF 5.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-10-28 DOI: 10.1038/s42005-024-01836-x
Spencer Walker, Alexandra S. Landsman
This study delves into the relatively uncharted territory of Above Threshold Ionization in atoms, triggered by intense X-ray radiation fields. At these frequencies, the energy of a single photon far exceeds the ionization potential of valence electrons in atoms and molecules. The conditions we examine are similar to those achievable with current or future free-electron laser facilities. Under such high-energy scenarios, the onset of strong field ionization requires a shift away from the traditional quasi-classical approach. Here, we present an analytical model to characterize how the field-free ionization potential, ponderomotive energy, and photon energy govern the transition to this regime, all accounted for by means of the Keldysh and Reiss parameters. We show that both of these parameters are needed to capture the onset of strong-field behavior due to both bound state and continuum state properties. At higher X-ray intensities, we find that ionization rates deviate from the linear intensity scaling expected from lowest order perturbative processes, corresponding to channel closure and higher-order photon absorption processes. This study explores Above Threshold Ionization in atoms induced by intense X-ray radiation fields, where photon energy surpasses the ionization potential of valence electrons. The authors demonstrate that both the Keldysh and Reiss parameters are essential to capture the onset of strong-field behavior, revealing deviations from weak-field intensity scaling at higher X-ray intensities.
这项研究深入探讨了由强 X 射线辐射场引发的原子阈值以上电离这一相对未知的领域。在这些频率下,单个光子的能量远远超过了原子和分子中价电子的电离势。我们所研究的条件与当前或未来的自由电子激光设备所能达到的条件类似。在这种高能情况下,强场电离的发生需要摆脱传统的准经典方法。在此,我们提出了一个分析模型,以描述无场电离势、思索动能和光子能量如何支配向这一机制的过渡,所有这些都通过凯尔迪什参数和雷斯参数来说明。我们发现,由于束缚态和连续态的特性,需要这两个参数来捕捉强场行为的发生。在更高的 X 射线强度下,我们发现电离率偏离了最低阶扰动过程所预期的线性强度比例,这与通道关闭和高阶光子吸收过程相对应。这项研究探讨了强 X 射线辐射场诱导的原子阈值以上电离,在这种情况下,光子能量超过了价电子的电离势。作者证明了凯尔迪什参数和雷斯参数对于捕捉强场行为的发生至关重要,揭示了在较高 X 射线强度下与弱场强度缩放的偏差。
{"title":"Above-threshold ionization with X-ray free-electron lasers","authors":"Spencer Walker, Alexandra S. Landsman","doi":"10.1038/s42005-024-01836-x","DOIUrl":"10.1038/s42005-024-01836-x","url":null,"abstract":"This study delves into the relatively uncharted territory of Above Threshold Ionization in atoms, triggered by intense X-ray radiation fields. At these frequencies, the energy of a single photon far exceeds the ionization potential of valence electrons in atoms and molecules. The conditions we examine are similar to those achievable with current or future free-electron laser facilities. Under such high-energy scenarios, the onset of strong field ionization requires a shift away from the traditional quasi-classical approach. Here, we present an analytical model to characterize how the field-free ionization potential, ponderomotive energy, and photon energy govern the transition to this regime, all accounted for by means of the Keldysh and Reiss parameters. We show that both of these parameters are needed to capture the onset of strong-field behavior due to both bound state and continuum state properties. At higher X-ray intensities, we find that ionization rates deviate from the linear intensity scaling expected from lowest order perturbative processes, corresponding to channel closure and higher-order photon absorption processes. This study explores Above Threshold Ionization in atoms induced by intense X-ray radiation fields, where photon energy surpasses the ionization potential of valence electrons. The authors demonstrate that both the Keldysh and Reiss parameters are essential to capture the onset of strong-field behavior, revealing deviations from weak-field intensity scaling at higher X-ray intensities.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-16"},"PeriodicalIF":5.4,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01836-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142525697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Long-range phase coherence and tunable second order φ0-Josephson effect in a Dirac semimetal 1T-PtTe2 狄拉克半金属 1T-PtTe2 中的长程相干性和可调二阶 φ0-Josephson 效应
IF 5.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-10-28 DOI: 10.1038/s42005-024-01825-0
Pranava K. Sivakumar, Mostafa T. Ahari, Jae-Keun Kim, Yufeng Wu, Anvesh Dixit, George J. de Coster, Avanindra K. Pandeya, Matthew J. Gilbert, Stuart S. P. Parkin
Superconducting diode effects have recently attracted much attention for their potential applications in superconducting logic circuits. Several pathways have been proposed to give rise to non-reciprocal critical currents in various superconductors and Josephson junctions. In this work, we establish the presence of a large Josephson diode effect in a type-II Dirac semimetal 1T-PtTe2 facilitated by its helical spin-momentum locking and distinguish it from extrinsic geometric effects. The magnitude of the Josephson diode effect is shown to be directly correlated to the large second-harmonic component of the supercurrent. We denote such junctions, where the relative phase between the two harmonics can be tuned by a magnetic field, as ‘tunable second order φ0-junctions’. The direct correspondence between the second harmonic supercurrents and the diode effect in 1T-PtTe2 junctions at relatively low magnetic fields makes it an ideal platform to study the Josephson diode effect and Cooper quartet transport in Josephson junctions. This work reports on the observation of a large Josephson diode effect in a type-II Dirac semimetal 1T-PtTe2. The magnitude of the Josephson diode effect is found to be related to an asymmetry of the critical supercurrent which is modeled as a phase shift between the first and second harmonic terms of the current-phase relationship and can be tuned by an external magnetic field.
超导二极管效应最近因其在超导逻辑电路中的潜在应用而备受关注。在各种超导体和约瑟夫森结中,已经提出了几种产生非互易临界电流的途径。在这项研究中,我们证实了在 II 型狄拉克半金属 1T-PtTe2 中存在由其螺旋自旋动量锁定促进的巨大约瑟夫森二极管效应,并将其与外在几何效应区分开来。约瑟夫森二极管效应的大小与超电流的大二次谐波分量直接相关。我们将这样的结称为 "可调谐二阶φ0 结",其中两个谐波之间的相对相位可通过磁场进行调谐。在相对较低的磁场下,1T-PtTe2 结中的二次谐波超电流与二极管效应之间的直接对应关系,使其成为研究约瑟夫森二极管效应和约瑟夫森结中库珀四元组输运的理想平台。这项研究报告了在 II 型狄拉克半金属 1T-PtTe2 中观察到的巨大约瑟夫森二极管效应。研究发现,约瑟夫森二极管效应的大小与临界超电流的不对称有关,而临界超电流被模拟为电流相位关系中一次谐波项和二次谐波项之间的相移,并可通过外部磁场进行调节。
{"title":"Long-range phase coherence and tunable second order φ0-Josephson effect in a Dirac semimetal 1T-PtTe2","authors":"Pranava K. Sivakumar, Mostafa T. Ahari, Jae-Keun Kim, Yufeng Wu, Anvesh Dixit, George J. de Coster, Avanindra K. Pandeya, Matthew J. Gilbert, Stuart S. P. Parkin","doi":"10.1038/s42005-024-01825-0","DOIUrl":"10.1038/s42005-024-01825-0","url":null,"abstract":"Superconducting diode effects have recently attracted much attention for their potential applications in superconducting logic circuits. Several pathways have been proposed to give rise to non-reciprocal critical currents in various superconductors and Josephson junctions. In this work, we establish the presence of a large Josephson diode effect in a type-II Dirac semimetal 1T-PtTe2 facilitated by its helical spin-momentum locking and distinguish it from extrinsic geometric effects. The magnitude of the Josephson diode effect is shown to be directly correlated to the large second-harmonic component of the supercurrent. We denote such junctions, where the relative phase between the two harmonics can be tuned by a magnetic field, as ‘tunable second order φ0-junctions’. The direct correspondence between the second harmonic supercurrents and the diode effect in 1T-PtTe2 junctions at relatively low magnetic fields makes it an ideal platform to study the Josephson diode effect and Cooper quartet transport in Josephson junctions. This work reports on the observation of a large Josephson diode effect in a type-II Dirac semimetal 1T-PtTe2. The magnitude of the Josephson diode effect is found to be related to an asymmetry of the critical supercurrent which is modeled as a phase shift between the first and second harmonic terms of the current-phase relationship and can be tuned by an external magnetic field.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-12"},"PeriodicalIF":5.4,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01825-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142525708","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preparing remote states for genuine quantum networks 为真正的量子网络准备远程状态
IF 5.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-10-27 DOI: 10.1038/s42005-024-01844-x
Shih-Hsuan Chen, Chan Hsu, Yu-Chien Kao, Bing-Yuan Lee, Yuan-Sung Liu, Yueh-Nan Chen, Che-Ming Li
Quantum networks typically comprise quantum channels, repeaters, and end nodes. Remote state preparation (RSP) allows one end node to prepare the states of the other end nodes remotely. While quantum discord has recently been recognized as necessary for RSP, it does not guarantee the practical implementation of RSP in quantum networks surpasses any classical method. Herein, we theoretically introduce and experimentally study a quantum resource that we call the RSP capability. This resource validates all the static and dynamic elements required to enable genuine quantum networks where the RSP’s implementation can outperform any classical emulation of entanglement- and qubit-unitaries-free strategies, including the static resources of Einstein-Podolsky-Rosen pairs and the dynamic resources of quantum channels and repeaters. Our experiment measures the RSP capability to demonstrate the transition between classical and nonclassical RSP depending on the photon-pair qualities. It shows that quantum discord does not confirm a nonclassical RSP, but the RSP capability does. These results help reveal the quantum advantages that emerge when networking RSP is in play. The authors introduce and experimentally study a quantum resource called the remote state preparation capability. This resource validates all static and dynamic elements required to enable quantum networks where the implementation of remote state preparation can outperform any classical emulation of entanglement- and qubit-unitaries-free strategies.
量子网络通常由量子通道、中继器和终端节点组成。远程状态准备(RSP)允许一个终端节点远程准备其他终端节点的状态。虽然量子不和谐最近被认为是 RSP 的必要条件,但它并不能保证 RSP 在量子网络中的实际应用超越任何经典方法。在这里,我们从理论上介绍并实验研究了一种量子资源,我们称之为 RSP 能力。这种资源验证了实现真正量子网络所需的所有静态和动态元素,在这种网络中,RSP 的实现可以超越任何无纠缠和无量子比特单元策略的经典模拟,包括爱因斯坦-波多尔斯基-罗森对的静态资源以及量子信道和中继器的动态资源。我们的实验测量了 RSP 能力,展示了经典和非经典 RSP 之间的过渡,这取决于光子对的质量。实验表明,量子不和谐并不能证实非经典 RSP,但 RSP 能力却能。这些结果有助于揭示联网 RSP 发挥作用时出现的量子优势。作者介绍并实验研究了一种名为远程状态准备能力的量子资源。这种资源验证了实现量子网络所需的所有静态和动态元素,在量子网络中,远程状态准备的实现优于任何无纠缠和无比特单元策略的经典模拟。
{"title":"Preparing remote states for genuine quantum networks","authors":"Shih-Hsuan Chen, Chan Hsu, Yu-Chien Kao, Bing-Yuan Lee, Yuan-Sung Liu, Yueh-Nan Chen, Che-Ming Li","doi":"10.1038/s42005-024-01844-x","DOIUrl":"10.1038/s42005-024-01844-x","url":null,"abstract":"Quantum networks typically comprise quantum channels, repeaters, and end nodes. Remote state preparation (RSP) allows one end node to prepare the states of the other end nodes remotely. While quantum discord has recently been recognized as necessary for RSP, it does not guarantee the practical implementation of RSP in quantum networks surpasses any classical method. Herein, we theoretically introduce and experimentally study a quantum resource that we call the RSP capability. This resource validates all the static and dynamic elements required to enable genuine quantum networks where the RSP’s implementation can outperform any classical emulation of entanglement- and qubit-unitaries-free strategies, including the static resources of Einstein-Podolsky-Rosen pairs and the dynamic resources of quantum channels and repeaters. Our experiment measures the RSP capability to demonstrate the transition between classical and nonclassical RSP depending on the photon-pair qualities. It shows that quantum discord does not confirm a nonclassical RSP, but the RSP capability does. These results help reveal the quantum advantages that emerge when networking RSP is in play. The authors introduce and experimentally study a quantum resource called the remote state preparation capability. This resource validates all static and dynamic elements required to enable quantum networks where the implementation of remote state preparation can outperform any classical emulation of entanglement- and qubit-unitaries-free strategies.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-10"},"PeriodicalIF":5.4,"publicationDate":"2024-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01844-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142525719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Morphodynamics of interface between dissimilar cell aggregations 不同细胞聚集界面的形态动力学
IF 5.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-10-26 DOI: 10.1038/s42005-024-01840-1
Cheng-Lin Lv, Zhong-Yi Li, Shi-Da Wang, Bo Li
Tissue interfaces are essential for development and their disruption often leads to diseases such as tumor invasion. Here, we combine experiments, theoretical modeling, and numerical simulations to quantify the morphodynamics of interface in a biphasic system composed of Madin Darby canine kidney (MDCK) and mouse myoblast (C2C12) cells. We show that cellular activity regulates the interface morphodynamics and drives wave propagation along the interface. Based on the dispersion relationship, we identify that the wave dynamics results from the activity-mediated instability of the interface and coherent flow. It is found that the topological defects accumulate around and destabilize the interface and +1/2 topological defects are more likely to aggregate in MDCK cell clusters. A biphasic active nematic theory is employed to reproduce our experimental observations and decipher the underlying mechanisms. These findings provide physical insights into the interfacial evolution that could be implicated in tissue morphogenesis and tumor invasion. Interfaces are ubiquitous in living systems and play pivotal roles in physiological and pathological processes. The authors combine experiments and numerical simulations to investigate morphodynamics of the interface between dissimilar cell aggregations.
组织界面对发育至关重要,其破坏往往会导致肿瘤侵袭等疾病。在这里,我们结合实验、理论建模和数值模拟,量化了由马汀达比犬肾(MDCK)和小鼠成肌细胞(C2C12)组成的双相系统中的界面形态动力学。我们的研究表明,细胞活动调节界面形态动力学,并驱动波沿界面传播。根据弥散关系,我们确定波的动力学是由活动介导的界面不稳定性和相干流产生的。研究发现,拓扑缺陷在界面周围聚集并破坏了界面的稳定性,+1/2 拓扑缺陷更有可能聚集在 MDCK 细胞簇中。我们采用双相活性向列理论来重现我们的实验观察结果并破译其潜在机制。这些发现为可能与组织形态发生和肿瘤侵袭有关的界面演化提供了物理见解。界面在生命系统中无处不在,在生理和病理过程中发挥着关键作用。作者结合实验和数值模拟,研究了不同细胞聚集体之间界面的形态动力学。
{"title":"Morphodynamics of interface between dissimilar cell aggregations","authors":"Cheng-Lin Lv, Zhong-Yi Li, Shi-Da Wang, Bo Li","doi":"10.1038/s42005-024-01840-1","DOIUrl":"10.1038/s42005-024-01840-1","url":null,"abstract":"Tissue interfaces are essential for development and their disruption often leads to diseases such as tumor invasion. Here, we combine experiments, theoretical modeling, and numerical simulations to quantify the morphodynamics of interface in a biphasic system composed of Madin Darby canine kidney (MDCK) and mouse myoblast (C2C12) cells. We show that cellular activity regulates the interface morphodynamics and drives wave propagation along the interface. Based on the dispersion relationship, we identify that the wave dynamics results from the activity-mediated instability of the interface and coherent flow. It is found that the topological defects accumulate around and destabilize the interface and +1/2 topological defects are more likely to aggregate in MDCK cell clusters. A biphasic active nematic theory is employed to reproduce our experimental observations and decipher the underlying mechanisms. These findings provide physical insights into the interfacial evolution that could be implicated in tissue morphogenesis and tumor invasion. Interfaces are ubiquitous in living systems and play pivotal roles in physiological and pathological processes. The authors combine experiments and numerical simulations to investigate morphodynamics of the interface between dissimilar cell aggregations.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-11"},"PeriodicalIF":5.4,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01840-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142525742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Double exchange interaction in Mn-based topological kagome ferrimagnet 锰基拓扑卡戈梅铁磁体中的双交换相互作用。
IF 5.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-10-26 DOI: 10.1038/s42005-024-01838-9
Jiameng Wang, Arthur Ernst, Victor N. Antonov, Qi Jiang, Haoji Qian, Deyang Wang, Jiefeng Cao, Fangyuan Zhu, Shan Qiao, Mao Ye
Recently discovered Mn-based kagome materials, such as RMn6Sn6 (R = rare-earth element), exhibit the coexistence of topological electronic states and long-range magnetic order, offering a platform for studying quantum phenomena. However, understanding the electronic and magnetic properties of these materials remains incomplete. Here, we investigate the electronic structure and magnetic properties of GdMn6Sn6 using x-ray magnetic circular dichroism, photoemission spectroscopy, and theoretical calculations. We observe localized electronic states from spin frustration in the Mn-based kagome lattice and induced magnetic moments in the nonmagnetic element Sn experimentally, which originate from the Sn- $$p$$ and Mn- $$d$$ orbital hybridization. Our calculations also reveal ferromagnetic coupling within the kagome Mn-Mn layer, driven by double exchange interaction. This work provides insights into the mechanisms of magnetic interaction and magnetic tuning in the exploration of topological quantum materials. Mn-based kagome materials like RMn6Sn6 (R = rare-earth element) exhibit topological states and long-range magnetic order. This work demonstrates the ferrimagnetic structure in GdMn6Sn6, revealing induced magnetic moments in nonmagnetic Sn, and Mn-Mn double exchange interaction mediated by Sn atoms.
最近发现的锰基卡戈米材料,如 RMn6Sn6(R = 稀土元素),表现出拓扑电子态与长程磁序共存的特性,为研究量子现象提供了一个平台。然而,对这些材料的电子和磁性能的了解仍不全面。在这里,我们利用 X 射线磁圆二色性、光发射光谱和理论计算研究了 GdMn6Sn6 的电子结构和磁性能。我们通过实验观察到锰基卡戈米晶格中自旋挫折产生的局部电子态,以及非磁性元素 Sn 中的诱导磁矩,这些磁矩来自 Sn- p 和 Mn- d 轨道杂化。我们的计算还揭示了卡戈米锰锰层内由双交换相互作用驱动的铁磁耦合。这项工作为探索拓扑量子材料中的磁相互作用和磁调谐机制提供了见解。
{"title":"Double exchange interaction in Mn-based topological kagome ferrimagnet","authors":"Jiameng Wang, Arthur Ernst, Victor N. Antonov, Qi Jiang, Haoji Qian, Deyang Wang, Jiefeng Cao, Fangyuan Zhu, Shan Qiao, Mao Ye","doi":"10.1038/s42005-024-01838-9","DOIUrl":"10.1038/s42005-024-01838-9","url":null,"abstract":"Recently discovered Mn-based kagome materials, such as RMn6Sn6 (R = rare-earth element), exhibit the coexistence of topological electronic states and long-range magnetic order, offering a platform for studying quantum phenomena. However, understanding the electronic and magnetic properties of these materials remains incomplete. Here, we investigate the electronic structure and magnetic properties of GdMn6Sn6 using x-ray magnetic circular dichroism, photoemission spectroscopy, and theoretical calculations. We observe localized electronic states from spin frustration in the Mn-based kagome lattice and induced magnetic moments in the nonmagnetic element Sn experimentally, which originate from the Sn- $$p$$ and Mn- $$d$$ orbital hybridization. Our calculations also reveal ferromagnetic coupling within the kagome Mn-Mn layer, driven by double exchange interaction. This work provides insights into the mechanisms of magnetic interaction and magnetic tuning in the exploration of topological quantum materials. Mn-based kagome materials like RMn6Sn6 (R = rare-earth element) exhibit topological states and long-range magnetic order. This work demonstrates the ferrimagnetic structure in GdMn6Sn6, revealing induced magnetic moments in nonmagnetic Sn, and Mn-Mn double exchange interaction mediated by Sn atoms.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-8"},"PeriodicalIF":5.4,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11512815/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142521251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Laser-induced reconfigurable wavefront control with a structured Ge2Sb2Te5-based metasurface 利用基于 Ge2Sb2Te5 的结构化元表面实现激光诱导的可重构波前控制
IF 5.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-10-25 DOI: 10.1038/s42005-024-01846-9
Sha Hu, Chao Wang, Shuo Du, Zhuoxuan Han, Nannan Hu, Changzhi Gu
Phase change materials have been widely exploited in active metasurfaces due to their large index contrast. Despite recent advances in phase-change metasurfaces, it remains a challenge to integrate diverse reconfigurable optical functionalities into a single metasurface. Here, we demonstrate an effective strategy to realize reconfigurable wavefront control by combining a Ge2Sb2Te5-rod array with laser writing technology. Through arbitrarily modifying the position and power of laser source, the laser writing process helps to realize site-selective and multi-level phase change of Ge2Sb2Te5 rods. Due to multi-level switching for optical properties of Ge2Sb2Te5 material, the Ge2Sb2Te5-rod array offers complete phase control and high amplitude modulation. Subsequently, various optical devices are designed in numerical simulation, including a phase-only hologram, dynamic meta-deflectors, a grayscale image and a perfect absorber. The structured Ge2Sb2Te5-based metasurface with the combination of laser writing technology offers an effective way to explore various types of optical functionalities in the same device. A tunable metasurface exhibiting dynamically optical functionalities is highly desired in practice. Here, the authors demonstrate a dynamically reconfigurable metasurface by combining the Ge2Sb2Te5-rod array with laser engineering technology, for which various optical functionalities can be randomly and reversibly written and erased.
相变材料因其指数对比度大而被广泛应用于有源元表面。尽管最近在相变元表面方面取得了进展,但将多种可重构光学功能集成到单一元表面中仍然是一项挑战。在这里,我们展示了一种通过将 Ge2Sb2Te5-rod 阵列与激光写入技术相结合来实现可重构波前控制的有效策略。通过任意改变激光源的位置和功率,激光写入过程有助于实现 Ge2Sb2Te5 棒的位点选择性和多级相变。由于 Ge2Sb2Te5 材料光学特性的多级切换,Ge2Sb2Te5 棒阵列可提供完整的相位控制和高振幅调制。随后,在数值模拟中设计了各种光学器件,包括纯相位全息图、动态元偏转器、灰度图像和完美吸收器。基于 Ge2Sb2Te5 的结构化元表面与激光写入技术相结合,为在同一器件中探索各种光学功能提供了有效途径。在实践中,人们非常需要一种具有动态光学功能的可调谐元表面。在此,作者通过将 Ge2Sb2Te5-rod 阵列与激光工程技术结合,展示了一种可动态重新配置的元表面,可以随机、可逆地写入和擦除各种光学功能。
{"title":"Laser-induced reconfigurable wavefront control with a structured Ge2Sb2Te5-based metasurface","authors":"Sha Hu, Chao Wang, Shuo Du, Zhuoxuan Han, Nannan Hu, Changzhi Gu","doi":"10.1038/s42005-024-01846-9","DOIUrl":"10.1038/s42005-024-01846-9","url":null,"abstract":"Phase change materials have been widely exploited in active metasurfaces due to their large index contrast. Despite recent advances in phase-change metasurfaces, it remains a challenge to integrate diverse reconfigurable optical functionalities into a single metasurface. Here, we demonstrate an effective strategy to realize reconfigurable wavefront control by combining a Ge2Sb2Te5-rod array with laser writing technology. Through arbitrarily modifying the position and power of laser source, the laser writing process helps to realize site-selective and multi-level phase change of Ge2Sb2Te5 rods. Due to multi-level switching for optical properties of Ge2Sb2Te5 material, the Ge2Sb2Te5-rod array offers complete phase control and high amplitude modulation. Subsequently, various optical devices are designed in numerical simulation, including a phase-only hologram, dynamic meta-deflectors, a grayscale image and a perfect absorber. The structured Ge2Sb2Te5-based metasurface with the combination of laser writing technology offers an effective way to explore various types of optical functionalities in the same device. A tunable metasurface exhibiting dynamically optical functionalities is highly desired in practice. Here, the authors demonstrate a dynamically reconfigurable metasurface by combining the Ge2Sb2Te5-rod array with laser engineering technology, for which various optical functionalities can be randomly and reversibly written and erased.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-6"},"PeriodicalIF":5.4,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01846-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142525740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Generalization of neural network models for complex network dynamics 复杂网络动态神经网络模型的泛化
IF 5.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-10-25 DOI: 10.1038/s42005-024-01837-w
Vaiva Vasiliauskaite, Nino Antulov-Fantulin
Differential equations are a ubiquitous tool to study dynamics, ranging from physical systems to complex systems, where a large number of agents interact through a graph. Data-driven approximations of differential equations present a promising alternative to traditional methods for uncovering a model of dynamical systems, especially in complex systems that lack explicit first principles. A recently employed machine learning tool for studying dynamics is neural networks, which can be used for solution finding or discovery of differential equations. However, deploying deep learning models in unfamiliar settings-such as predicting dynamics in unobserved state space regions or on novel graphs-can lead to spurious results. Focusing on complex systems whose dynamics are described with a system of first-order differential equations coupled through a graph, we study generalization of neural network predictions in settings where statistical properties of test data and training data are different. We find that neural networks can accurately predict dynamics beyond the immediate training setting within the domain of the training data. To identify when a model is unable to generalize to novel settings, we propose a statistical significance test. Deep learning is a promising alternative to traditional methods for discovering governing equations, such as variational and perturbation methods, or data-driven approaches like symbolic regression. This paper explores the generalization of neural approximations of dynamics on complex networks to novel, unobserved settings and proposes a statistical testing framework to quantify confidence in the inferred predictions.
微分方程是研究从物理系统到复杂系统等各种动力学的普遍工具。数据驱动的微分方程近似是一种很有前途的替代传统方法,可用于揭示动态系统模型,尤其是在缺乏明确第一原理的复杂系统中。最近用于研究动力学的一种机器学习工具是神经网络,它可用于微分方程的求解或发现。然而,在不熟悉的环境中部署深度学习模型,如预测未观察状态空间区域或新图形上的动态,可能会导致虚假结果。我们以复杂系统为重点,研究了在测试数据和训练数据的统计属性不同的情况下,神经网络预测的泛化。我们发现,在训练数据的范围内,神经网络可以准确预测直接训练环境之外的动态。为了确定模型何时无法泛化到新环境中,我们提出了一种统计显著性检验方法。深度学习是发现控制方程的传统方法(如变分法和扰动法)或数据驱动方法(如符号回归法)的一种有前途的替代方法。本文探讨了复杂网络动力学的神经近似如何泛化到新的、未观察到的环境中,并提出了一个统计检验框架来量化推断预测的置信度。
{"title":"Generalization of neural network models for complex network dynamics","authors":"Vaiva Vasiliauskaite, Nino Antulov-Fantulin","doi":"10.1038/s42005-024-01837-w","DOIUrl":"10.1038/s42005-024-01837-w","url":null,"abstract":"Differential equations are a ubiquitous tool to study dynamics, ranging from physical systems to complex systems, where a large number of agents interact through a graph. Data-driven approximations of differential equations present a promising alternative to traditional methods for uncovering a model of dynamical systems, especially in complex systems that lack explicit first principles. A recently employed machine learning tool for studying dynamics is neural networks, which can be used for solution finding or discovery of differential equations. However, deploying deep learning models in unfamiliar settings-such as predicting dynamics in unobserved state space regions or on novel graphs-can lead to spurious results. Focusing on complex systems whose dynamics are described with a system of first-order differential equations coupled through a graph, we study generalization of neural network predictions in settings where statistical properties of test data and training data are different. We find that neural networks can accurately predict dynamics beyond the immediate training setting within the domain of the training data. To identify when a model is unable to generalize to novel settings, we propose a statistical significance test. Deep learning is a promising alternative to traditional methods for discovering governing equations, such as variational and perturbation methods, or data-driven approaches like symbolic regression. This paper explores the generalization of neural approximations of dynamics on complex networks to novel, unobserved settings and proposes a statistical testing framework to quantify confidence in the inferred predictions.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-10"},"PeriodicalIF":5.4,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01837-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142525722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
All-microwave Lamb shift engineering for a fixed frequency multi-level superconducting qubit 固定频率多电平超导量子比特的全微波 Lamb 移位工程
IF 5.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-10-25 DOI: 10.1038/s42005-024-01841-0
Byoung-moo Ann, Gary A. Steele
It is known that the electromagnetic vacuum is responsible for the Lamb shift, which is a crucial phenomenon in quantum electrodynamics (QED). In circuit QED, the readout or bus resonators that are dispersively coupled can result in a significant Lamb shift of the qubit. However, previous approaches or proposals for controlling the Lamb shift in circuit QED demand overheads in circuit designs or non-perturbative renormalization of the system’s eigenbases, which can impose formidable limitations. In this work, we propose and demonstrate an all-microwave method for controlling the Lamb shift of fixed-frequency transmons. We employ the drive-induced longitudinal coupling between the transmon and resonator. By simply using an off-resonant monochromatic drive near the resonator frequency, we can control the net Lamb shift up to  ±30 MHz and engineer it to zero with the drive-induced longitudinal coupling without facing the aforementioned challenges. Our work establishes an efficient way of engineering the fundamental effects of the electromagnetic vacuum and provides greater flexibility in non-parametric frequency controls of multilevel systems. Engineering the Lamb shifts of superconducting qubits opens new opportunities in resonant frequency tunings and other applications. Here, the authors devise and demonstrate an all-microwave approach that can be utilized with fixed-frequency superconducting qubits.
众所周知,电磁真空造成了量子电动力学(QED)中的一个重要现象--兰姆位移。在电路 QED 中,色散耦合的读出或总线谐振器会导致量子比特发生显著的 Lamb 偏移。然而,以往在电路 QED 中控制兰姆位移的方法或建议需要电路设计的开销或系统特征基的非微扰重规范化,这可能会带来巨大的限制。在这项工作中,我们提出并演示了一种全微波方法,用于控制固定频率跨子的兰姆位移。我们采用了跨子和谐振器之间的驱动诱导纵向耦合。只需在谐振器频率附近使用非谐振单色驱动器,我们就能控制高达±30 MHz的净兰姆偏移,并利用驱动器诱导的纵向耦合将其设计为零,而无需面对上述挑战。我们的工作确立了一种有效的电磁真空基本效应工程方法,并为多级系统的非参数频率控制提供了更大的灵活性。超导量子比特的 Lamb shifts 工程为谐振频率调谐和其他应用带来了新的机遇。在此,作者设计并演示了一种可用于固定频率超导量子比特的全微波方法。
{"title":"All-microwave Lamb shift engineering for a fixed frequency multi-level superconducting qubit","authors":"Byoung-moo Ann, Gary A. Steele","doi":"10.1038/s42005-024-01841-0","DOIUrl":"10.1038/s42005-024-01841-0","url":null,"abstract":"It is known that the electromagnetic vacuum is responsible for the Lamb shift, which is a crucial phenomenon in quantum electrodynamics (QED). In circuit QED, the readout or bus resonators that are dispersively coupled can result in a significant Lamb shift of the qubit. However, previous approaches or proposals for controlling the Lamb shift in circuit QED demand overheads in circuit designs or non-perturbative renormalization of the system’s eigenbases, which can impose formidable limitations. In this work, we propose and demonstrate an all-microwave method for controlling the Lamb shift of fixed-frequency transmons. We employ the drive-induced longitudinal coupling between the transmon and resonator. By simply using an off-resonant monochromatic drive near the resonator frequency, we can control the net Lamb shift up to  ±30 MHz and engineer it to zero with the drive-induced longitudinal coupling without facing the aforementioned challenges. Our work establishes an efficient way of engineering the fundamental effects of the electromagnetic vacuum and provides greater flexibility in non-parametric frequency controls of multilevel systems. Engineering the Lamb shifts of superconducting qubits opens new opportunities in resonant frequency tunings and other applications. Here, the authors devise and demonstrate an all-microwave approach that can be utilized with fixed-frequency superconducting qubits.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-6"},"PeriodicalIF":5.4,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01841-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142525700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Communications Physics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1