首页 > 最新文献

Communications Physics最新文献

英文 中文
Author Correction: Exceptional classifications of non-Hermitian systems 作者更正:非赫米提系统的异常分类
IF 5.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-10-16 DOI: 10.1038/s42005-024-01822-3
Jung-Wan Ryu, Jae-Ho Han, Chang-Hwan Yi, Moon Jip Park, Hee Chul Park
{"title":"Author Correction: Exceptional classifications of non-Hermitian systems","authors":"Jung-Wan Ryu, Jae-Ho Han, Chang-Hwan Yi, Moon Jip Park, Hee Chul Park","doi":"10.1038/s42005-024-01822-3","DOIUrl":"10.1038/s42005-024-01822-3","url":null,"abstract":"","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-1"},"PeriodicalIF":5.4,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01822-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142443614","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Observation of parity-time symmetry for evanescent waves 观测蒸发波的奇偶时对称性
IF 5.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-10-16 DOI: 10.1038/s42005-024-01816-1
Zhaoxian Chen, Huan He, Huanan Li, Meijie Li, Jun-long Kou, Yan-qing Lu, Jingjun Xu, Andrea Alù
Parity-time (PT) symmetry has enabled the demonstration of fascinating wave phenomena in non-Hermitian systems characterized by precisely balanced gain and loss. Until now, the exploration and observation of PT symmetry in scattering settings have largely been limited to propagating waves. Here, we demonstrate a versatile coupled-resonator acoustic waveguide (CRAW) system that enables the observation of PT-symmetric scattering responses for evanescent waves within a bandgap. By examining the generalized scattering matrix in the evanescent wave regime, we observe hallmark PT-symmetric phenomena—including phase transitions at an exceptional point, anisotropic transmission resonances, and laser-absorber modes—in systems that do not require balanced distributions of gain and loss. Owing to the peculiar energy transfer features of evanescent waves, our results not only demonstrate a distinct pathway for observing PT symmetry, but also enable strategies for exotic energy tunneling mechanisms, paving fresh directions for wave engineering grounded in non-Hermitian physics. Non-Hermitian physics and parity-time (PT) symmetry are of broad interest in classical wave systems. This work demonstrates evanescent wave manipulation and scattering control based on PT symmetry in a versatile coupled-resonator acoustic waveguide (CRAW) system, which not only extends the framework of non-Hermitian physics but also offers strategies for near-field manipulation and control.
奇偶时(PT)对称性使我们能够在增益和损耗精确平衡的非赫米提系统中展示迷人的波现象。迄今为止,在散射环境中对 PT 对称性的探索和观察主要局限于传播波。在这里,我们展示了一种多功能耦合谐振器声波导体(CRAW)系统,它可以观测带隙内蒸发波的 PT 对称散射响应。通过研究蒸发波制度下的广义散射矩阵,我们在不需要增益和损耗平衡分布的系统中观察到了标志性的 PT 对称现象--包括特殊点的相变、各向异性传输共振和激光吸收器模式。由于蒸发波具有奇特的能量转移特征,我们的研究结果不仅展示了观察 PT 对称性的独特途径,还为奇特的能量隧道机制提供了策略,为基于非赫米提物理学的波工程学铺平了新的道路。非赫米提物理学和奇偶时(PT)对称性在经典波系统中具有广泛的意义。这项研究在多功能耦合谐振器声波导(CRAW)系统中展示了基于 PT 对称性的蒸发波操纵和散射控制,不仅扩展了非赫米提物理学的框架,还提供了近场操纵和控制策略。
{"title":"Observation of parity-time symmetry for evanescent waves","authors":"Zhaoxian Chen, Huan He, Huanan Li, Meijie Li, Jun-long Kou, Yan-qing Lu, Jingjun Xu, Andrea Alù","doi":"10.1038/s42005-024-01816-1","DOIUrl":"10.1038/s42005-024-01816-1","url":null,"abstract":"Parity-time (PT) symmetry has enabled the demonstration of fascinating wave phenomena in non-Hermitian systems characterized by precisely balanced gain and loss. Until now, the exploration and observation of PT symmetry in scattering settings have largely been limited to propagating waves. Here, we demonstrate a versatile coupled-resonator acoustic waveguide (CRAW) system that enables the observation of PT-symmetric scattering responses for evanescent waves within a bandgap. By examining the generalized scattering matrix in the evanescent wave regime, we observe hallmark PT-symmetric phenomena—including phase transitions at an exceptional point, anisotropic transmission resonances, and laser-absorber modes—in systems that do not require balanced distributions of gain and loss. Owing to the peculiar energy transfer features of evanescent waves, our results not only demonstrate a distinct pathway for observing PT symmetry, but also enable strategies for exotic energy tunneling mechanisms, paving fresh directions for wave engineering grounded in non-Hermitian physics. Non-Hermitian physics and parity-time (PT) symmetry are of broad interest in classical wave systems. This work demonstrates evanescent wave manipulation and scattering control based on PT symmetry in a versatile coupled-resonator acoustic waveguide (CRAW) system, which not only extends the framework of non-Hermitian physics but also offers strategies for near-field manipulation and control.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-8"},"PeriodicalIF":5.4,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01816-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142443620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Physics informed data-driven near-wall modelling for lattice Boltzmann simulation of high Reynolds number turbulent flows 高雷诺数湍流的晶格玻尔兹曼模拟的物理数据驱动近壁建模
IF 5.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-10-15 DOI: 10.1038/s42005-024-01832-1
Xiao Xue, Shuo Wang, Hua-Dong Yao, Lars Davidson, Peter V. Coveney
Data-driven approaches offer novel opportunities for improving the performance of turbulent flow simulations, which are critical to wide-ranging applications from wind farms and aerodynamic designs to weather and climate forecasting. However, current methods for these simulations often require large amounts of data and computational resources. While data-driven methods have been extensively applied to the continuum Navier-Stokes equations, limited work has been done to integrate these methods with the highly scalable lattice Boltzmann method. Here, we present a physics-informed neural network framework for improving lattice Boltzmann-based simulations of near-wall turbulent flow. Using a small amount of data and integrating physical constraints, our model accurately predicts flow behaviour at a wide range of friction Reynolds numbers up to 1.0 × 106. In contradistinction with other models that use direct numerical simulation datasets, this approach reduces data requirements by three orders of magnitude and allows for sparse grid configurations. Our work broadens the scope of lattice Boltzmann applications, enabling efficient large-scale simulations of turbulent flow in diverse contexts. The authors provide a data-driven near-wall modelling framework for the lattice Boltzmann method using IDDES data. Their model can predict flows with friction Reynolds numbers up to 1,000,000 and effectively handle sparse near-wall grids.
数据驱动方法为提高湍流模拟性能提供了新的机遇,而湍流模拟对于从风电场、空气动力学设计到天气和气候预报等广泛应用至关重要。然而,目前的模拟方法往往需要大量数据和计算资源。虽然数据驱动方法已被广泛应用于连续纳维-斯托克斯方程,但将这些方法与高度可扩展的格子玻尔兹曼方法相结合的工作还很有限。在此,我们提出了一种物理信息神经网络框架,用于改进基于格子玻尔兹曼法的近壁湍流模拟。利用少量数据并结合物理约束条件,我们的模型可以准确预测摩擦雷诺数(最高可达 1.0 × 106)范围内的流动行为。与其他使用直接数值模拟数据集的模型不同,这种方法将数据要求降低了三个数量级,并允许稀疏网格配置。我们的工作拓宽了格子玻尔兹曼的应用范围,使在不同环境下对湍流进行高效的大规模模拟成为可能。作者利用 IDDES 数据为晶格玻尔兹曼方法提供了一个数据驱动的近壁建模框架。他们的模型可以预测摩擦雷诺数高达 1,000,000 的流动,并能有效处理稀疏的近壁网格。
{"title":"Physics informed data-driven near-wall modelling for lattice Boltzmann simulation of high Reynolds number turbulent flows","authors":"Xiao Xue, Shuo Wang, Hua-Dong Yao, Lars Davidson, Peter V. Coveney","doi":"10.1038/s42005-024-01832-1","DOIUrl":"10.1038/s42005-024-01832-1","url":null,"abstract":"Data-driven approaches offer novel opportunities for improving the performance of turbulent flow simulations, which are critical to wide-ranging applications from wind farms and aerodynamic designs to weather and climate forecasting. However, current methods for these simulations often require large amounts of data and computational resources. While data-driven methods have been extensively applied to the continuum Navier-Stokes equations, limited work has been done to integrate these methods with the highly scalable lattice Boltzmann method. Here, we present a physics-informed neural network framework for improving lattice Boltzmann-based simulations of near-wall turbulent flow. Using a small amount of data and integrating physical constraints, our model accurately predicts flow behaviour at a wide range of friction Reynolds numbers up to 1.0 × 106. In contradistinction with other models that use direct numerical simulation datasets, this approach reduces data requirements by three orders of magnitude and allows for sparse grid configurations. Our work broadens the scope of lattice Boltzmann applications, enabling efficient large-scale simulations of turbulent flow in diverse contexts. The authors provide a data-driven near-wall modelling framework for the lattice Boltzmann method using IDDES data. Their model can predict flows with friction Reynolds numbers up to 1,000,000 and effectively handle sparse near-wall grids.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-8"},"PeriodicalIF":5.4,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01832-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142443634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Harnessing synergy of spin and orbital currents in heavy metal/ferromagnet multilayers 在重金属/铁磁体多层膜中利用自旋和轨道电流的协同作用
IF 5.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-10-14 DOI: 10.1038/s42005-024-01829-w
Yumin Yang, Zhicheng Xie, Zhiyuan Zhao, Na Lei, Jianhua Zhao, Dahai Wei
Spin-orbitronics, exploiting electron spin and/or orbital angular momentum, offers a powerful route to energy-efficient spintronic applications. Recent research on orbital currents in light metals broadens the scope of spin-orbit torque (SOT). However, distinguishing and manipulating orbital torque in heavy metal/ferromagnet (HM/FM) remains a challenge, limiting the promising synergy of spin and orbital currents. Here, we design a HM/FM/FMSOC heterostructure and experimentally separate orbital torque contribution from spin torque by utilizing the distinct diffusion length of spin and orbital currents. Furthermore, we achieve the synergy of spin and orbital torques by controlling their relative strength, and obtain a 110% improvement in torque efficiency compared to the representative Pt/Co bilayer. Our findings not only contribute to a deeper understanding of SOT mechanisms and orbital current transport in HM/FM multilayers, but also highlight the promising prospect of orbital and spin torque synergy for optimizing the efficiency of next-generation spintronic devices. Eliminating the interference of spin current to distinguish and manipulate orbital torque in heavy metal/ferromagnet (HM/FM) heterojunction remains a challenge. Here, the authors design a HM/FM/FMSOC multilayer to separate orbital torque contribution and harness the synergy of spin and orbital currents for enhanced spin-orbit torque.
自旋轨道电子学利用电子自旋和/或轨道角动量,为高能效自旋电子学应用提供了一条强大的途径。最近对轻金属中轨道电流的研究拓宽了自旋轨道力矩(SOT)的范围。然而,在重金属/铁磁体(HM/FM)中区分和操纵轨道力矩仍然是一个挑战,限制了自旋和轨道电流的协同作用。在这里,我们设计了一种 HM/FM/FMSOC 异质结构,并利用自旋电流和轨道电流不同的扩散长度,通过实验将轨道转矩贡献从自旋转矩中分离出来。此外,我们还通过控制自旋扭矩和轨道扭矩的相对强度来实现它们的协同作用,与具有代表性的铂/钴双层结构相比,扭矩效率提高了 110%。我们的发现不仅有助于加深对 HM/FM 多层中的 SOT 机制和轨道电流传输的理解,还凸显了轨道扭矩和自旋扭矩协同作用在优化下一代自旋电子器件效率方面的广阔前景。消除自旋电流的干扰以区分和操纵重金属/铁磁体(HM/FM)异质结中的轨道力矩仍然是一项挑战。在此,作者设计了一种 HM/FM/FMSOC 多层,以分离轨道力矩的贡献,并利用自旋和轨道电流的协同作用来增强自旋轨道力矩。
{"title":"Harnessing synergy of spin and orbital currents in heavy metal/ferromagnet multilayers","authors":"Yumin Yang, Zhicheng Xie, Zhiyuan Zhao, Na Lei, Jianhua Zhao, Dahai Wei","doi":"10.1038/s42005-024-01829-w","DOIUrl":"10.1038/s42005-024-01829-w","url":null,"abstract":"Spin-orbitronics, exploiting electron spin and/or orbital angular momentum, offers a powerful route to energy-efficient spintronic applications. Recent research on orbital currents in light metals broadens the scope of spin-orbit torque (SOT). However, distinguishing and manipulating orbital torque in heavy metal/ferromagnet (HM/FM) remains a challenge, limiting the promising synergy of spin and orbital currents. Here, we design a HM/FM/FMSOC heterostructure and experimentally separate orbital torque contribution from spin torque by utilizing the distinct diffusion length of spin and orbital currents. Furthermore, we achieve the synergy of spin and orbital torques by controlling their relative strength, and obtain a 110% improvement in torque efficiency compared to the representative Pt/Co bilayer. Our findings not only contribute to a deeper understanding of SOT mechanisms and orbital current transport in HM/FM multilayers, but also highlight the promising prospect of orbital and spin torque synergy for optimizing the efficiency of next-generation spintronic devices. Eliminating the interference of spin current to distinguish and manipulate orbital torque in heavy metal/ferromagnet (HM/FM) heterojunction remains a challenge. Here, the authors design a HM/FM/FMSOC multilayer to separate orbital torque contribution and harness the synergy of spin and orbital currents for enhanced spin-orbit torque.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-8"},"PeriodicalIF":5.4,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01829-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142443633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quasi-two-dimensional pseudo-sessile drops 准二维伪塞滴
IF 5.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-10-14 DOI: 10.1038/s42005-024-01831-2
Tytti Kärki, Into Pääkkönen, Nikos Kyriakopoulos, Jaakko V. I. Timonen
Sessile drops are ubiquitous and important in technological applications. While dynamics of liquid drops have been studied under confinement, the possibility of creating sessile drops with reduced dimensionality has not been explored. Here, we demonstrate a quasi-two-dimensional (Q2D) analogy for axisymmetric sessile three-dimensional (3D) drops. The Q2D drops are created by confining liquids between parallel vertical walls, forming low aspect ratio capillary bridges deformed by gravity. Stationary Q2D drops adopt projected shapes analogous to 3D sessile drops, ranging from circular drops to puddles. When moving, the Q2D drops exhibit capillary and fluid mechanical behaviours conceptually analogous to 3D drops, including impacts and sliding. The Q2D drops also exhibit more complex phenomena such as levitation, various instabilities and pattern formation when subjected to external electric, magnetic and flow fields. The 3D-Q2D analogy suggests that the diverse and often complicated phenomena observed in 3D drops can be studied in the simplified Q2D geometry. Additionally, the Q2D confinement analogy allows exploring phenomena arising from the reduced dimensionality and the altered boundary conditions. Axisymmetric sessile liquid drops are everywhere around us and important in numerous technological applications. Here the authors experimentally prepare quasi-two-dimensional sessile drops and show that they display many similar features as the traditional axisymmetric sessile drops, including analogous equilibrium shape, dynamics, and instabilities.
无梗液滴无处不在,在技术应用中非常重要。虽然人们已经研究过液滴在限制条件下的动力学,但还没有探索过制造尺寸更小的无柄液滴的可能性。在这里,我们展示了轴对称无梗三维(3D)液滴的准二维(Q2D)类比。Q2D 液滴是通过将液体封闭在平行的垂直壁之间,形成受重力影响变形的低纵横比毛细管桥而产生的。静止的 Q2D 液滴采用类似于三维无梗液滴的投影形状,从圆形液滴到水坑不等。移动时,Q2D 液滴表现出与三维液滴概念类似的毛细管和流体机械行为,包括撞击和滑动。当受到外部电场、磁场和流场作用时,Q2D 液滴还表现出更复杂的现象,如悬浮、各种不稳定性和图案形成。三维-二维类比表明,在三维液滴中观察到的各种复杂现象可以在简化的二维几何中进行研究。此外,通过 Q2D 限制类比,还可以探索因尺寸减小和边界条件改变而产生的现象。轴对称无梗液滴在我们身边随处可见,在众多技术应用中也非常重要。作者在此通过实验制备了准二维无梗液滴,并证明它们显示出与传统轴对称无梗液滴相似的许多特征,包括类似的平衡形状、动力学和不稳定性。
{"title":"Quasi-two-dimensional pseudo-sessile drops","authors":"Tytti Kärki, Into Pääkkönen, Nikos Kyriakopoulos, Jaakko V. I. Timonen","doi":"10.1038/s42005-024-01831-2","DOIUrl":"10.1038/s42005-024-01831-2","url":null,"abstract":"Sessile drops are ubiquitous and important in technological applications. While dynamics of liquid drops have been studied under confinement, the possibility of creating sessile drops with reduced dimensionality has not been explored. Here, we demonstrate a quasi-two-dimensional (Q2D) analogy for axisymmetric sessile three-dimensional (3D) drops. The Q2D drops are created by confining liquids between parallel vertical walls, forming low aspect ratio capillary bridges deformed by gravity. Stationary Q2D drops adopt projected shapes analogous to 3D sessile drops, ranging from circular drops to puddles. When moving, the Q2D drops exhibit capillary and fluid mechanical behaviours conceptually analogous to 3D drops, including impacts and sliding. The Q2D drops also exhibit more complex phenomena such as levitation, various instabilities and pattern formation when subjected to external electric, magnetic and flow fields. The 3D-Q2D analogy suggests that the diverse and often complicated phenomena observed in 3D drops can be studied in the simplified Q2D geometry. Additionally, the Q2D confinement analogy allows exploring phenomena arising from the reduced dimensionality and the altered boundary conditions. Axisymmetric sessile liquid drops are everywhere around us and important in numerous technological applications. Here the authors experimentally prepare quasi-two-dimensional sessile drops and show that they display many similar features as the traditional axisymmetric sessile drops, including analogous equilibrium shape, dynamics, and instabilities.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-9"},"PeriodicalIF":5.4,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01831-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142443610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantum anomaly detection in the latent space of proton collision events at the LHC 大型强子对撞机质子碰撞事件潜空间的量子异常探测
IF 5.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-10-14 DOI: 10.1038/s42005-024-01811-6
Vasilis Belis, Kinga Anna Woźniak, Ema Puljak, Panagiotis Barkoutsos, Günther Dissertori, Michele Grossi, Maurizio Pierini, Florentin Reiter, Ivano Tavernelli, Sofia Vallecorsa
The ongoing quest to discover new phenomena at the LHC necessitates the continuous development of algorithms and technologies. Established approaches like machine learning, along with emerging technologies such as quantum computing show promise in the enhancement of experimental capabilities. In this work, we propose a strategy for anomaly detection tasks at the LHC based on unsupervised quantum machine learning, and demonstrate its effectiveness in identifying new phenomena. The designed quantum models-an unsupervised kernel machine and two clustering algorithms-are trained to detect new-physics events using a latent representation of LHC data, generated by an autoencoder designed to accommodate current quantum hardware limitations on problem size. For kernel-based anomaly detection, we implement an instance of the model on a quantum computer, and we identify a regime where it significantly outperforms its classical counterparts. We show that the observed performance enhancement is related to the quantum resources utilised by the model. The ongoing quest in particle physics to discover fundamentally new phenomena necessitates the continuous development of algorithms and technologies. The authors propose a methodology based on quantum machine learning that can identify new phenomena in proton collision experiments, showing that it can outperform its classical counterparts when sufficient quantum computing resources are utilized.
要在大型强子对撞机上发现新现象,就必须不断开发算法和技术。机器学习等成熟方法以及量子计算等新兴技术在增强实验能力方面大有可为。在这项工作中,我们提出了一种基于无监督量子机器学习的大型强子对撞机异常检测任务策略,并展示了它在识别新现象方面的有效性。所设计的量子模型--一个无监督内核机器和两个聚类算法--经过训练,可使用大型强子对撞机数据的潜在表示来检测新物理事件,该表示由自动编码器生成,旨在适应当前量子硬件对问题大小的限制。对于基于内核的异常检测,我们在量子计算机上实现了该模型的一个实例,并确定了该模型显著优于经典模型的机制。我们证明,观察到的性能提升与模型利用的量子资源有关。粒子物理学不断探索发现新现象,这就要求不断开发算法和技术。作者提出了一种基于量子机器学习的方法,该方法可以识别质子碰撞实验中的新现象,并表明当利用足够的量子计算资源时,该方法的性能可以超越经典方法。
{"title":"Quantum anomaly detection in the latent space of proton collision events at the LHC","authors":"Vasilis Belis, Kinga Anna Woźniak, Ema Puljak, Panagiotis Barkoutsos, Günther Dissertori, Michele Grossi, Maurizio Pierini, Florentin Reiter, Ivano Tavernelli, Sofia Vallecorsa","doi":"10.1038/s42005-024-01811-6","DOIUrl":"10.1038/s42005-024-01811-6","url":null,"abstract":"The ongoing quest to discover new phenomena at the LHC necessitates the continuous development of algorithms and technologies. Established approaches like machine learning, along with emerging technologies such as quantum computing show promise in the enhancement of experimental capabilities. In this work, we propose a strategy for anomaly detection tasks at the LHC based on unsupervised quantum machine learning, and demonstrate its effectiveness in identifying new phenomena. The designed quantum models-an unsupervised kernel machine and two clustering algorithms-are trained to detect new-physics events using a latent representation of LHC data, generated by an autoencoder designed to accommodate current quantum hardware limitations on problem size. For kernel-based anomaly detection, we implement an instance of the model on a quantum computer, and we identify a regime where it significantly outperforms its classical counterparts. We show that the observed performance enhancement is related to the quantum resources utilised by the model. The ongoing quest in particle physics to discover fundamentally new phenomena necessitates the continuous development of algorithms and technologies. The authors propose a methodology based on quantum machine learning that can identify new phenomena in proton collision experiments, showing that it can outperform its classical counterparts when sufficient quantum computing resources are utilized.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-11"},"PeriodicalIF":5.4,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01811-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142443629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Network mutual information measures for graph similarity 图相似性的网络互信息度量
IF 5.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-10-14 DOI: 10.1038/s42005-024-01830-3
Helcio Felippe, Federico Battiston, Alec Kirkley
A wide range of tasks in network analysis, such as clustering network populations or identifying anomalies in temporal graph streams, require a measure of the similarity between two graphs. To provide a meaningful data summary for downstream scientific analyses, the graph similarity measures used for these tasks must be principled, interpretable, and capable of distinguishing meaningful overlapping network structure from statistical noise at different scales of interest. Here we derive a family of graph mutual information measures that satisfy these criteria and are constructed using only fundamental information theoretic principles. Our measures capture the information shared among networks according to different encodings of their structural information, with our mesoscale mutual information measure allowing for network comparison under any specified network coarse-graining. We test our measures in a range of applications on real and synthetic network data, finding that they effectively highlight intuitive aspects of network similarity across scales in a variety of systems. Graph similarity measures are essential for downstream tasks including clustering, embedding, and regression with populations of networks. Here the authors derive a family of graph mutual information measures that allow for a principled, interpretable, and efficient comparison of networks at multiple scales.
网络分析中的各种任务,如网络群体聚类或识别时间图流中的异常情况,都需要对两个图之间的相似性进行度量。为了给下游科学分析提供有意义的数据摘要,用于这些任务的图相似性度量必须是有原则的、可解释的,并且能够在不同关注尺度上区分有意义的重叠网络结构和统计噪声。在这里,我们推导出了一系列图互信息度量,这些度量满足上述标准,并且只需使用基本信息论原理即可构建。我们的度量根据网络结构信息的不同编码捕捉网络之间的共享信息,我们的中尺度互信息度量允许在任何指定的网络粗粒度下进行网络比较。我们在真实和合成网络数据的一系列应用中测试了我们的测量方法,发现它们能有效突出各种系统中不同尺度网络相似性的直观方面。图相似性度量对于下游任务(包括聚类、嵌入和网络群体回归)至关重要。作者在此推导出了一系列图互信息度量,可对多种尺度的网络进行有原则、可解释和高效的比较。
{"title":"Network mutual information measures for graph similarity","authors":"Helcio Felippe, Federico Battiston, Alec Kirkley","doi":"10.1038/s42005-024-01830-3","DOIUrl":"10.1038/s42005-024-01830-3","url":null,"abstract":"A wide range of tasks in network analysis, such as clustering network populations or identifying anomalies in temporal graph streams, require a measure of the similarity between two graphs. To provide a meaningful data summary for downstream scientific analyses, the graph similarity measures used for these tasks must be principled, interpretable, and capable of distinguishing meaningful overlapping network structure from statistical noise at different scales of interest. Here we derive a family of graph mutual information measures that satisfy these criteria and are constructed using only fundamental information theoretic principles. Our measures capture the information shared among networks according to different encodings of their structural information, with our mesoscale mutual information measure allowing for network comparison under any specified network coarse-graining. We test our measures in a range of applications on real and synthetic network data, finding that they effectively highlight intuitive aspects of network similarity across scales in a variety of systems. Graph similarity measures are essential for downstream tasks including clustering, embedding, and regression with populations of networks. Here the authors derive a family of graph mutual information measures that allow for a principled, interpretable, and efficient comparison of networks at multiple scales.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-12"},"PeriodicalIF":5.4,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01830-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142443623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantum bit with telecom wave-length emission from a simple defect in Si 从硅中的一个简单缺陷发射电信波长的量子位
IF 5.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-10-14 DOI: 10.1038/s42005-024-01834-z
Peter Deák, Song Li, Adam Gali
Defect-related spin-to-photon interfaces in silicon promise the realization of quantum repeaters by combining advanced semiconductor and photonics technologies. Recently, controlled creation/erasure of simple carbon interstitial defects have been successfully realised in silicon. This defect has a stable structure near room temperature and coherently emits in the wave-length where the signal loss is minimal in optical fibres used in communication technologies. Our in-depth theoretical characterization confirms the assignment of the observed emission to the neutral charge state of this defect, as arising due to the recombination of a bound exciton. We also identified a metastable triplet state that could be applied as a quantum memory. Based on the analysis of the electronic structure of the defect and its similarities to a known optically detected magnetic resonance centre in silicon, we propose that a carbon interstitial can act as a quantum bit and may realize a spin-to-photon interface in complementary metal-oxide semiconductor-compatible platforms. This work presents a theoretical investigation of the single carbon interstitial (Ci) defect in silicon as a potential candidate for spin-photon interfaces. Computed charge transition levels and optical properties show good agreement with the experimental results and allow assigning the experimentally observed telecom zero-phonon emission (1448 nm) to the neutral Ci defect.
硅中与缺陷相关的自旋光子界面有望通过结合先进的半导体和光子技术实现量子中继器。最近,在硅中成功实现了简单碳间隙缺陷的受控创建/测量。这种缺陷在室温附近具有稳定的结构,并在通信技术中使用的光纤信号损失最小的波长上相干发射。我们深入的理论分析证实,所观察到的发射归因于该缺陷的中性电荷态,是由束缚激子的重组引起的。我们还发现了一种可用作量子存储器的瞬变三重态。基于对该缺陷电子结构的分析及其与硅中已知的光学检测磁共振中心的相似性,我们提出碳间隙可以充当量子位,并可能在互补金属氧化物半导体兼容平台中实现自旋到光子的接口。本研究对硅中的单个碳间隙(Ci)缺陷作为自旋光子接口的潜在候选者进行了理论研究。计算的电荷转移水平和光学特性与实验结果显示出良好的一致性,并允许将实验观测到的电信零光子发射(1448 nm)归因于中性 Ci 缺陷。
{"title":"Quantum bit with telecom wave-length emission from a simple defect in Si","authors":"Peter Deák, Song Li, Adam Gali","doi":"10.1038/s42005-024-01834-z","DOIUrl":"10.1038/s42005-024-01834-z","url":null,"abstract":"Defect-related spin-to-photon interfaces in silicon promise the realization of quantum repeaters by combining advanced semiconductor and photonics technologies. Recently, controlled creation/erasure of simple carbon interstitial defects have been successfully realised in silicon. This defect has a stable structure near room temperature and coherently emits in the wave-length where the signal loss is minimal in optical fibres used in communication technologies. Our in-depth theoretical characterization confirms the assignment of the observed emission to the neutral charge state of this defect, as arising due to the recombination of a bound exciton. We also identified a metastable triplet state that could be applied as a quantum memory. Based on the analysis of the electronic structure of the defect and its similarities to a known optically detected magnetic resonance centre in silicon, we propose that a carbon interstitial can act as a quantum bit and may realize a spin-to-photon interface in complementary metal-oxide semiconductor-compatible platforms. This work presents a theoretical investigation of the single carbon interstitial (Ci) defect in silicon as a potential candidate for spin-photon interfaces. Computed charge transition levels and optical properties show good agreement with the experimental results and allow assigning the experimentally observed telecom zero-phonon emission (1448 nm) to the neutral Ci defect.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-6"},"PeriodicalIF":5.4,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01834-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142443619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chiral active systems near a substrate: Emergent damping length controlled by fluid friction 基底附近的手性活性系统:由流体摩擦控制的新兴阻尼长度
IF 5.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-10-13 DOI: 10.1038/s42005-024-01817-0
Joscha Mecke, Yongxiang Gao, Gerhard Gompper, Marisol Ripoll
Chiral active fluids show the emergence of a turbulent behaviour characterised by multiple dynamic vortices whose maximum size varies for each experimental system, depending on conditions not yet identified. We propose and develop an approach to model the effect of friction close to a surface in a particle based hydrodynamic simulation method in two dimensions, in which the friction coefficient can be related to the system parameters and to the emergence of a damping length. This length is system dependent, limits the size of the emergent vortices, and influences other relevant system properties such as the actuated velocity, rotational diffusion, or the cutoff of the energy spectra. Comparison of simulation and experimental results of a large ensemble of rotating colloids sedimented on a surface shows a good agreement, which demonstrates the predictive capabilities of the approach, which can be applied to a wider class of quasi-two-dimensional systems with friction. The dynamics of chiral active fluids is characterised by a multitude of interacting dynamic vortices whose maximum size varies for each system. Here we show how the friction induced by the substrate is related to a damping length which is ultimately responsible of limiting the maximum size of the vortices.
手性活性流体会出现以多个动态涡流为特征的湍流行为,这些涡流的最大尺寸因每个实验系统而异,取决于尚未确定的条件。我们提出并开发了一种方法,在基于粒子的二维流体力学模拟方法中模拟靠近表面的摩擦效应,其中摩擦系数可与系统参数和阻尼长度的出现相关联。该长度与系统有关,限制了出现的漩涡的大小,并影响其他相关的系统特性,如驱动速度、旋转扩散或能量谱的截止。对沉积在表面上的大量旋转胶体的模拟和实验结果进行比较后发现,两者的结果非常吻合,这证明了该方法的预测能力,它可以应用于更广泛的具有摩擦力的准二维系统。手性活性流体的动力学特征是存在大量相互作用的动态漩涡,每个系统的最大尺寸各不相同。在这里,我们展示了基底引起的摩擦力与阻尼长度的关系,而阻尼长度最终限制了旋涡的最大尺寸。
{"title":"Chiral active systems near a substrate: Emergent damping length controlled by fluid friction","authors":"Joscha Mecke, Yongxiang Gao, Gerhard Gompper, Marisol Ripoll","doi":"10.1038/s42005-024-01817-0","DOIUrl":"10.1038/s42005-024-01817-0","url":null,"abstract":"Chiral active fluids show the emergence of a turbulent behaviour characterised by multiple dynamic vortices whose maximum size varies for each experimental system, depending on conditions not yet identified. We propose and develop an approach to model the effect of friction close to a surface in a particle based hydrodynamic simulation method in two dimensions, in which the friction coefficient can be related to the system parameters and to the emergence of a damping length. This length is system dependent, limits the size of the emergent vortices, and influences other relevant system properties such as the actuated velocity, rotational diffusion, or the cutoff of the energy spectra. Comparison of simulation and experimental results of a large ensemble of rotating colloids sedimented on a surface shows a good agreement, which demonstrates the predictive capabilities of the approach, which can be applied to a wider class of quasi-two-dimensional systems with friction. The dynamics of chiral active fluids is characterised by a multitude of interacting dynamic vortices whose maximum size varies for each system. Here we show how the friction induced by the substrate is related to a damping length which is ultimately responsible of limiting the maximum size of the vortices.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-10"},"PeriodicalIF":5.4,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01817-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142443639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantifying metadata relevance to network block structure using description length 利用描述长度量化元数据与网络区块结构的相关性
IF 5.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-10-11 DOI: 10.1038/s42005-024-01819-y
Lena Mangold, Camille Roth
Network analysis is often enriched by including an examination of node metadata. In the context of understanding the mesoscale of networks it is often assumed that node groups based on metadata and node groups based on connectivity patterns are intrinsically linked. This assumption is increasingly being challenged, whereby metadata might be entirely unrelated to structure or, similarly, multiple sets of metadata might be relevant to the structure of a network in different ways. We propose the metablox tool to quantify the relationship between a network’s node metadata and its mesoscale structure, measuring the strength of the relationship and the type of structural arrangement exhibited by the metadata. We show on a number of synthetic and empirical networks that our tool distinguishes relevant metadata and allows for this in a comparative setting, demonstrating that it can be used as part of systematic meta analyses for the comparison of networks from different domains. Network data often includes categorical node attributes whose relevance to the network’s structure is often unknown. Here the authors propose the metablox (metadata block structure exploration) tool, to quantify the relationship between categorical node metadata and the block structure of the network, using Stochastic block models and description length.
对节点元数据的研究往往会丰富网络分析的内容。在理解网络中尺度的背景下,人们通常认为基于元数据的节点组和基于连接模式的节点组之间存在内在联系。这一假设正受到越来越多的挑战,因为元数据可能与结构完全无关,或者同样,多组元数据可能以不同的方式与网络结构相关。我们建议使用 metablox 工具来量化网络节点元数据与其中尺度结构之间的关系,测量关系的强度以及元数据所展示的结构排列类型。我们在一些合成网络和经验网络上表明,我们的工具可以区分相关元数据,并允许在比较环境中进行区分,证明它可以作为系统元分析的一部分,用于比较不同领域的网络。网络数据通常包括分类节点属性,而这些属性与网络结构的相关性往往是未知的。在此,作者提出了 metablox(元数据块结构探索)工具,利用随机块模型和描述长度量化分类节点元数据与网络块结构之间的关系。
{"title":"Quantifying metadata relevance to network block structure using description length","authors":"Lena Mangold, Camille Roth","doi":"10.1038/s42005-024-01819-y","DOIUrl":"10.1038/s42005-024-01819-y","url":null,"abstract":"Network analysis is often enriched by including an examination of node metadata. In the context of understanding the mesoscale of networks it is often assumed that node groups based on metadata and node groups based on connectivity patterns are intrinsically linked. This assumption is increasingly being challenged, whereby metadata might be entirely unrelated to structure or, similarly, multiple sets of metadata might be relevant to the structure of a network in different ways. We propose the metablox tool to quantify the relationship between a network’s node metadata and its mesoscale structure, measuring the strength of the relationship and the type of structural arrangement exhibited by the metadata. We show on a number of synthetic and empirical networks that our tool distinguishes relevant metadata and allows for this in a comparative setting, demonstrating that it can be used as part of systematic meta analyses for the comparison of networks from different domains. Network data often includes categorical node attributes whose relevance to the network’s structure is often unknown. Here the authors propose the metablox (metadata block structure exploration) tool, to quantify the relationship between categorical node metadata and the block structure of the network, using Stochastic block models and description length.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-14"},"PeriodicalIF":5.4,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01819-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142443632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Communications Physics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1