首页 > 最新文献

Comprehensive Physiology最新文献

英文 中文
Pathophysiology of Acute Kidney Injury in Critical Illness: A Narrative Review. 危重疾病急性肾损伤的病理生理学:述评。
IF 5.8 2区 医学 Q1 PHYSIOLOGY Pub Date : 2022-09-08 DOI: 10.1002/cphy.c210028
Luis A Juncos, Patrick M Wieruszewski, Kianoush Kashani

Acute kidney injury (AKI) is a syndrome that entails a rapid decline in kidney function with or without injury. The consequences of AKI among acutely ill patients are dire and lead to higher mortality, morbidity, and healthcare cost. To prevent AKI and its short and long-term repercussions, understanding its pathophysiology is essential. Depending on the baseline kidney histology and function reserves, the number of kidney insults, and the intensity of each insult, the clinical presentation of AKI may differ. While many factors are capable of inducing renal injury, they can be categorized into a few processes. The three primary processes reported in the literature are hemodynamic changes, inflammatory reactions, and nephrotoxicity. The majority of patients with AKI will suffer from more than one during their development and/or progression of AKI. Moreover, the development of one usually leads to the instigation of another. Thus, the interactions and progression between these mechanisms may determine the severity and duration of the AKI. Other factors such as organ crosstalk and how our concurrent therapies interact with these mechanisms complicate the pathophysiology of the progression of the AKI even further. In this narrative review article, we describe these three main pathophysiological processes that lead to the development and progression of AKI. © 2022 American Physiological Society. Compr Physiol 12: 1-14, 2022.

急性肾损伤(AKI)是一种伴有或不伴有损伤的肾功能迅速下降的综合征。急性AKI患者的后果是可怕的,导致更高的死亡率、发病率和医疗费用。为了预防AKI及其短期和长期的影响,了解其病理生理学是必不可少的。根据肾脏的基本组织学和功能储备、肾脏损伤的数量和每次损伤的强度,AKI的临床表现可能不同。虽然许多因素都能引起肾损伤,但它们可以分为几个过程。文献报道的三个主要过程是血流动力学改变、炎症反应和肾毒性。在AKI的发展和/或进展过程中,大多数AKI患者会遭受不止一种的痛苦。此外,一个人的发展通常会导致另一个人的煽动。因此,这些机制之间的相互作用和进展可能决定AKI的严重程度和持续时间。其他因素,如器官串扰以及我们的同步治疗如何与这些机制相互作用,使AKI进展的病理生理学进一步复杂化。在这篇叙述性综述文章中,我们描述了导致AKI发生和发展的三个主要病理生理过程。©2022美国生理学会。中国生物医学工程学报(英文版),2016。
{"title":"Pathophysiology of Acute Kidney Injury in Critical Illness: A Narrative Review.","authors":"Luis A Juncos,&nbsp;Patrick M Wieruszewski,&nbsp;Kianoush Kashani","doi":"10.1002/cphy.c210028","DOIUrl":"https://doi.org/10.1002/cphy.c210028","url":null,"abstract":"<p><p>Acute kidney injury (AKI) is a syndrome that entails a rapid decline in kidney function with or without injury. The consequences of AKI among acutely ill patients are dire and lead to higher mortality, morbidity, and healthcare cost. To prevent AKI and its short and long-term repercussions, understanding its pathophysiology is essential. Depending on the baseline kidney histology and function reserves, the number of kidney insults, and the intensity of each insult, the clinical presentation of AKI may differ. While many factors are capable of inducing renal injury, they can be categorized into a few processes. The three primary processes reported in the literature are hemodynamic changes, inflammatory reactions, and nephrotoxicity. The majority of patients with AKI will suffer from more than one during their development and/or progression of AKI. Moreover, the development of one usually leads to the instigation of another. Thus, the interactions and progression between these mechanisms may determine the severity and duration of the AKI. Other factors such as organ crosstalk and how our concurrent therapies interact with these mechanisms complicate the pathophysiology of the progression of the AKI even further. In this narrative review article, we describe these three main pathophysiological processes that lead to the development and progression of AKI. © 2022 American Physiological Society. Compr Physiol 12: 1-14, 2022.</p>","PeriodicalId":10573,"journal":{"name":"Comprehensive Physiology","volume":"12 4","pages":"3767-3780"},"PeriodicalIF":5.8,"publicationDate":"2022-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9894743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Serotonin and Pulmonary Hypertension; Sex and Drugs and ROCK and Rho. 羟色胺与肺动脉高压;性与药物以及 ROCK 与 Rho。
IF 5.8 2区 医学 Q1 PHYSIOLOGY Pub Date : 2022-08-29 DOI: 10.1002/cphy.c220004
Margaret R MacLean, Barry Fanburg, Nicolas Hill, Howard M Lazarus, Thomas F Pack, Michelle Palacios, Krishna C Penumatsa, Stephen A Wring

Serotonin is often referred to as a "happy hormone" as it maintains good mood, well-being, and happiness. It is involved in communication between nerve cells and plays a role in sleeping and digestion. However, too much serotonin can have pathogenic effects and serotonin synthesis is elevated in pulmonary artery endothelial cells from patients with pulmonary arterial hypertension (PAH). PAH is characterized by elevated pulmonary pressures, right ventricular failure, inflammation, and pulmonary vascular remodeling; serotonin has been shown to be associated with these pathologies. The rate-limiting enzyme in the synthesis of serotonin in the periphery of the body is tryptophan hydroxylase 1 (TPH1). TPH1 expression and serotonin synthesis are elevated in pulmonary artery endothelial cells in patients with PAH. The serotonin synthesized in the pulmonary arterial endothelium can act on the adjacent pulmonary arterial smooth muscle cells (PASMCs), adventitial macrophages, and fibroblasts, in a paracrine fashion. In humans, serotonin enters PASMCs cells via the serotonin transporter (SERT) and it can cooperate with the 5-HT1B receptor on the plasma membrane; this activates both contractile and proliferative signaling pathways. The "serotonin hypothesis of pulmonary hypertension" arose when serotonin was associated with PAH induced by diet pills such as fenfluramine, aminorex, and chlorphentermine; these act as indirect serotonergic agonists causing the release of serotonin from platelets and cells through the SERT. Here the role of serotonin in PAH is reviewed. Targeting serotonin synthesis or signaling is a promising novel alternative approach which may lead to novel therapies for PAH. © 2022 American Physiological Society. Compr Physiol 12: 1-16, 2022.

羟色胺通常被称为 "快乐激素",因为它能保持良好的情绪、幸福和快乐。它参与神经细胞之间的交流,并在睡眠和消化中发挥作用。然而,过多的血清素会产生致病作用,肺动脉高压(PAH)患者的肺动脉内皮细胞中的血清素合成会升高。肺动脉高压的特点是肺压升高、右心室衰竭、炎症和肺血管重塑;血清素已被证明与这些病症有关。在人体外周合成血清素的限速酶是色氨酸羟化酶 1(TPH1)。在 PAH 患者的肺动脉内皮细胞中,TPH1 的表达和血清素的合成都会升高。肺动脉内皮细胞合成的血清素可通过旁分泌方式作用于邻近的肺动脉平滑肌细胞(PASMC)、临近的巨噬细胞和成纤维细胞。在人体中,血清素通过血清素转运体(SERT)进入 PASMCs 细胞,并与质膜上的 5-HT1B 受体合作,从而激活收缩和增殖信号通路。5-羟色胺与芬氟拉明、阿米诺雷克斯和氯苯特明等减肥药诱发的 PAH 有关,从而提出了 "5-羟色胺肺动脉高压假说";这些减肥药是间接的 5-羟色胺能激动剂,可通过 SERT 从血小板和细胞中释放 5-羟色胺。在此回顾一下血清素在 PAH 中的作用。以血清素合成或信号传导为靶点是一种很有前景的新型替代方法,可为 PAH 带来新型疗法。© 2022 美国生理学会。Compr Physiol 12: 1-16, 2022.
{"title":"Serotonin and Pulmonary Hypertension; Sex and Drugs and ROCK and Rho.","authors":"Margaret R MacLean, Barry Fanburg, Nicolas Hill, Howard M Lazarus, Thomas F Pack, Michelle Palacios, Krishna C Penumatsa, Stephen A Wring","doi":"10.1002/cphy.c220004","DOIUrl":"10.1002/cphy.c220004","url":null,"abstract":"<p><p>Serotonin is often referred to as a \"happy hormone\" as it maintains good mood, well-being, and happiness. It is involved in communication between nerve cells and plays a role in sleeping and digestion. However, too much serotonin can have pathogenic effects and serotonin synthesis is elevated in pulmonary artery endothelial cells from patients with pulmonary arterial hypertension (PAH). PAH is characterized by elevated pulmonary pressures, right ventricular failure, inflammation, and pulmonary vascular remodeling; serotonin has been shown to be associated with these pathologies. The rate-limiting enzyme in the synthesis of serotonin in the periphery of the body is tryptophan hydroxylase 1 (TPH1). TPH1 expression and serotonin synthesis are elevated in pulmonary artery endothelial cells in patients with PAH. The serotonin synthesized in the pulmonary arterial endothelium can act on the adjacent pulmonary arterial smooth muscle cells (PASMCs), adventitial macrophages, and fibroblasts, in a paracrine fashion. In humans, serotonin enters PASMCs cells via the serotonin transporter (SERT) and it can cooperate with the 5-HT1B receptor on the plasma membrane; this activates both contractile and proliferative signaling pathways. The \"serotonin hypothesis of pulmonary hypertension\" arose when serotonin was associated with PAH induced by diet pills such as fenfluramine, aminorex, and chlorphentermine; these act as indirect serotonergic agonists causing the release of serotonin from platelets and cells through the SERT. Here the role of serotonin in PAH is reviewed. Targeting serotonin synthesis or signaling is a promising novel alternative approach which may lead to novel therapies for PAH. © 2022 American Physiological Society. Compr Physiol 12: 1-16, 2022.</p>","PeriodicalId":10573,"journal":{"name":"Comprehensive Physiology","volume":"12 4","pages":"4103-4118"},"PeriodicalIF":5.8,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9837544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Endothelial Glycocalyx. 内皮Glycocalyx。
IF 5.8 2区 医学 Q1 PHYSIOLOGY Pub Date : 2022-08-23 DOI: 10.1002/cphy.c210029
Christopher A Foote, Rogerio N Soares, Francisco I Ramirez-Perez, Thaysa Ghiarone, Annayya Aroor, Camila Manrique-Acevedo, Jaume Padilla, Luis Martinez-Lemus

The glycocalyx is a polysaccharide structure that protrudes from the body of a cell. It is primarily conformed of glycoproteins and proteoglycans, which provide communication, electrostatic charge, ionic buffering, permeability, and mechanosensation-mechanotransduction capabilities to cells. In blood vessels, the endothelial glycocalyx that projects into the vascular lumen separates the vascular wall from the circulating blood. Such a physical location allows a number of its components, including sialic acid, glypican-1, heparan sulfate, and hyaluronan, to participate in the mechanosensation-mechanotransduction of blood flow-dependent shear stress, which results in the synthesis of nitric oxide and flow-mediated vasodilation. The endothelial glycocalyx also participates in the regulation of vascular permeability and the modulation of inflammatory responses, including the processes of leukocyte rolling and extravasation. Its structural architecture and negative charge work to prevent macromolecules greater than approximately 70 kDa and cationic molecules from binding and flowing out of the vasculature. This also prevents the extravasation of pathogens such as bacteria and virus, as well as that of tumor cells. Due to its constant exposure to shear and circulating enzymes such as neuraminidase, heparanase, hyaluronidase, and matrix metalloproteinases, the endothelial glycocalyx is in a continuous process of degradation and renovation. A balance favoring degradation is associated with a variety of pathologies including atherosclerosis, hypertension, vascular aging, metastatic cancer, and diabetic vasculopathies. Consequently, ongoing research efforts are focused on deciphering the mechanisms that promote glycocalyx degradation or limit its syntheses, as well as on therapeutic approaches to improve glycocalyx integrity with the goal of reducing vascular disease. © 2022 American Physiological Society. Compr Physiol 12: 1-31, 2022.

糖萼是一种多糖结构,从细胞体中突出。它主要由糖蛋白和蛋白聚糖组成,它们为细胞提供通讯、静电电荷、离子缓冲、渗透性和机械感觉-机械转导能力。在血管中,伸入血管腔的内皮糖萼将血管壁与循环血液分开。这样的物理位置允许它的许多成分,包括唾液酸、甘聚糖-1、硫酸肝素和透明质酸,参与血流依赖的剪切应力的机械感觉-机械转导,从而导致一氧化氮的合成和血流介导的血管舒张。内皮糖萼还参与血管通透性的调节和炎症反应的调节,包括白细胞滚动和外渗的过程。它的结构和负电荷阻止大于约70 kDa的大分子和阳离子分子结合并流出血管系统。这也可以防止细菌和病毒等病原体以及肿瘤细胞的外渗。由于其不断暴露于剪切和循环酶,如神经氨酸酶、肝素酶、透明质酸酶和基质金属蛋白酶,内皮糖萼处于持续的降解和更新过程中。有利于降解的平衡与多种病理有关,包括动脉粥样硬化、高血压、血管老化、转移性癌症和糖尿病血管病变。因此,正在进行的研究工作集中在解读促进糖萼降解或限制其合成的机制,以及改善糖萼完整性的治疗方法,以减少血管疾病。©2022美国生理学会。中国生物医学工程学报(英文版),2016。
{"title":"Endothelial Glycocalyx.","authors":"Christopher A Foote,&nbsp;Rogerio N Soares,&nbsp;Francisco I Ramirez-Perez,&nbsp;Thaysa Ghiarone,&nbsp;Annayya Aroor,&nbsp;Camila Manrique-Acevedo,&nbsp;Jaume Padilla,&nbsp;Luis Martinez-Lemus","doi":"10.1002/cphy.c210029","DOIUrl":"https://doi.org/10.1002/cphy.c210029","url":null,"abstract":"<p><p>The glycocalyx is a polysaccharide structure that protrudes from the body of a cell. It is primarily conformed of glycoproteins and proteoglycans, which provide communication, electrostatic charge, ionic buffering, permeability, and mechanosensation-mechanotransduction capabilities to cells. In blood vessels, the endothelial glycocalyx that projects into the vascular lumen separates the vascular wall from the circulating blood. Such a physical location allows a number of its components, including sialic acid, glypican-1, heparan sulfate, and hyaluronan, to participate in the mechanosensation-mechanotransduction of blood flow-dependent shear stress, which results in the synthesis of nitric oxide and flow-mediated vasodilation. The endothelial glycocalyx also participates in the regulation of vascular permeability and the modulation of inflammatory responses, including the processes of leukocyte rolling and extravasation. Its structural architecture and negative charge work to prevent macromolecules greater than approximately 70 kDa and cationic molecules from binding and flowing out of the vasculature. This also prevents the extravasation of pathogens such as bacteria and virus, as well as that of tumor cells. Due to its constant exposure to shear and circulating enzymes such as neuraminidase, heparanase, hyaluronidase, and matrix metalloproteinases, the endothelial glycocalyx is in a continuous process of degradation and renovation. A balance favoring degradation is associated with a variety of pathologies including atherosclerosis, hypertension, vascular aging, metastatic cancer, and diabetic vasculopathies. Consequently, ongoing research efforts are focused on deciphering the mechanisms that promote glycocalyx degradation or limit its syntheses, as well as on therapeutic approaches to improve glycocalyx integrity with the goal of reducing vascular disease. © 2022 American Physiological Society. Compr Physiol 12: 1-31, 2022.</p>","PeriodicalId":10573,"journal":{"name":"Comprehensive Physiology","volume":"12 4","pages":"3781-3811"},"PeriodicalIF":5.8,"publicationDate":"2022-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10214841/pdf/nihms-1893394.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10044604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Control of Breathing in Ectothermic Vertebrates. 恒温脊椎动物的呼吸控制。
IF 5.8 2区 医学 Q1 PHYSIOLOGY Pub Date : 2022-08-23 DOI: 10.1002/cphy.c210041
William K Milsom, Kathleen M Gilmour, Steve Perry, Luciane H Gargaglioni, Michael S Hedrick, Richard Kinkead, Tobias Wang

The ectothermic vertebrates are a diverse group that includes the Fishes (Agnatha, Chondrichthyes, and Osteichthyes), and the stem Tetrapods (Amphibians and Reptiles). From an evolutionary perspective, it is within this group that we see the origin of air-breathing and the transition from the use of water to air as a respiratory medium. This is accompanied by a switch from gills to lungs as the major respiratory organ and from oxygen to carbon dioxide as the primary respiratory stimulant. This transition first required the evolution of bimodal breathing (gas exchange with both water and air), the differential regulation of O2 and CO2 at multiple sites, periodic or intermittent ventilation, and unsteady states with wide oscillations in arterial blood gases. It also required changes in respiratory pump muscles (from buccopharyngeal muscles innervated by cranial nerves to axial muscles innervated by spinal nerves). The question of the extent to which common mechanisms of respiratory control accompany this progression is an intriguing one. While the ventilatory control systems seen in all extant vertebrates have been derived from common ancestors, the trends seen in respiratory control in the living members of each vertebrate class reflect both shared-derived features (ancestral traits) as well as unique specializations. In this overview article, we provide a comprehensive survey of the diversity that is seen in the afferent inputs (chemo and mechanoreceptor), the central respiratory rhythm generators, and the efferent outputs (drive to the respiratory pumps and valves) in this group. © 2022 American Physiological Society. Compr Physiol 12: 1-120, 2022.

恒温脊椎动物是一个多样化的群体,包括鱼类(Agnatha, chondrichth纲和osteichth纲)和干四足动物(两栖动物和爬行动物)。从进化的角度来看,正是在这个群体中,我们看到了空气呼吸的起源,以及从使用水到空气作为呼吸媒介的转变。这伴随着从鳃到肺作为主要呼吸器官的转变,以及从氧气到二氧化碳作为主要呼吸刺激物的转变。这种转变首先需要进化出双峰呼吸(与水和空气的气体交换),在多个部位对O2和CO2的差异调节,周期性或间歇性通气,以及动脉血气广泛振荡的不稳定状态。它还需要呼吸泵肌的改变(从由颅神经支配的咽肌到由脊神经支配的轴肌)。呼吸控制的共同机制在多大程度上伴随这一进展是一个有趣的问题。虽然所有现存脊椎动物的呼吸控制系统都来自于共同的祖先,但在每一类脊椎动物的现存成员中,呼吸控制的趋势既反映了共同的衍生特征(祖先特征),也反映了独特的特化。在这篇综述文章中,我们提供了一个全面的多样性调查,在传入输入(化学和机械受体),中枢呼吸节律发生器,和传出输出(驱动呼吸泵和阀)在这一组中看到。©2022美国生理学会。中国生物医学工程学报(英文版),2016。
{"title":"Control of Breathing in Ectothermic Vertebrates.","authors":"William K Milsom,&nbsp;Kathleen M Gilmour,&nbsp;Steve Perry,&nbsp;Luciane H Gargaglioni,&nbsp;Michael S Hedrick,&nbsp;Richard Kinkead,&nbsp;Tobias Wang","doi":"10.1002/cphy.c210041","DOIUrl":"https://doi.org/10.1002/cphy.c210041","url":null,"abstract":"<p><p>The ectothermic vertebrates are a diverse group that includes the Fishes (Agnatha, Chondrichthyes, and Osteichthyes), and the stem Tetrapods (Amphibians and Reptiles). From an evolutionary perspective, it is within this group that we see the origin of air-breathing and the transition from the use of water to air as a respiratory medium. This is accompanied by a switch from gills to lungs as the major respiratory organ and from oxygen to carbon dioxide as the primary respiratory stimulant. This transition first required the evolution of bimodal breathing (gas exchange with both water and air), the differential regulation of O<sub>2</sub> and CO<sub>2</sub> at multiple sites, periodic or intermittent ventilation, and unsteady states with wide oscillations in arterial blood gases. It also required changes in respiratory pump muscles (from buccopharyngeal muscles innervated by cranial nerves to axial muscles innervated by spinal nerves). The question of the extent to which common mechanisms of respiratory control accompany this progression is an intriguing one. While the ventilatory control systems seen in all extant vertebrates have been derived from common ancestors, the trends seen in respiratory control in the living members of each vertebrate class reflect both shared-derived features (ancestral traits) as well as unique specializations. In this overview article, we provide a comprehensive survey of the diversity that is seen in the afferent inputs (chemo and mechanoreceptor), the central respiratory rhythm generators, and the efferent outputs (drive to the respiratory pumps and valves) in this group. © 2022 American Physiological Society. Compr Physiol 12: 1-120, 2022.</p>","PeriodicalId":10573,"journal":{"name":"Comprehensive Physiology","volume":"12 4","pages":"3869-3988"},"PeriodicalIF":5.8,"publicationDate":"2022-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9837536","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Respiratory Tract Deposition of E-Cigarette Particles. 电子烟微粒的呼吸道沉积。
IF 5.8 2区 医学 Q1 PHYSIOLOGY Pub Date : 2022-08-12 DOI: 10.1002/cphy.c210038
William D Bennett, Phillip W Clapp, Landon T Holbrook, Kirby L Zeman

Total and regional deposition of inhaled electronic cigarette (E-cig) particles in the respiratory tract (RT) depends on both physical properties of the inhaled particles and biological factors of users, for example, breathing pattern or puff profile, airway anatomy, and regional ventilation. Accurate particle sizing of E-cig aerosols is essential for predicting particle deposition in the RT. Studies using a variety of sizing methods have shown mass median aerodynamic diameters ranging from 0.2 to 1.2 um and secondary count diameters in the ultrafine range (<0.1 μm). Incorporating these particle sizes into a multiple-path particle dosimetry (MPPD) model shows 10% to 45% total lung deposition by mass and 30% to 80% for ultrafine particles depending on the breathing patterns. These predictions are consistent with experimental measures of deposition fraction of submicron and ultrafine particles. While box-mod-type E-cig devices allow for full "direct-lung" inhalations of aerosol, the more recent pod-based, and disposable E-cigs (e.g., JUUL, Puff Bar, Stig) deliver the aerosol as a "mouth-to-lung" puff, or bolus, that is inhaled early in the breath followed to various degrees by further inhalation of ambient air. Measurement of realistic ventilation patterns associated with these various devices may further improve deposition predictions. Finally, while in vivo measures of RT deposition present a challenge, a recent methodology to radiolabel E-cig particles may allow for such measurements by gamma scintigraphy. Supported by NIH/NHLBI R01HL139369. © 2022 American Physiological Society. Compr Physiol 12: 1-10, year.

吸入电子烟(e - cigg)颗粒在呼吸道(RT)中的总沉积和局部沉积取决于吸入颗粒的物理特性和使用者的生物因素,例如呼吸方式或抽吸轮廓、气道解剖结构和局部通气。电子烟气溶胶的精确粒度对于预测rt中的颗粒沉积至关重要。使用各种粒度方法的研究表明,质量的空气动力学直径中位数范围为0.2至1.2微米,次级计数直径在超细范围内(
{"title":"Respiratory Tract Deposition of E-Cigarette Particles.","authors":"William D Bennett,&nbsp;Phillip W Clapp,&nbsp;Landon T Holbrook,&nbsp;Kirby L Zeman","doi":"10.1002/cphy.c210038","DOIUrl":"https://doi.org/10.1002/cphy.c210038","url":null,"abstract":"<p><p>Total and regional deposition of inhaled electronic cigarette (E-cig) particles in the respiratory tract (RT) depends on both physical properties of the inhaled particles and biological factors of users, for example, breathing pattern or puff profile, airway anatomy, and regional ventilation. Accurate particle sizing of E-cig aerosols is essential for predicting particle deposition in the RT. Studies using a variety of sizing methods have shown mass median aerodynamic diameters ranging from 0.2 to 1.2 um and secondary count diameters in the ultrafine range (<0.1 μm). Incorporating these particle sizes into a multiple-path particle dosimetry (MPPD) model shows 10% to 45% total lung deposition by mass and 30% to 80% for ultrafine particles depending on the breathing patterns. These predictions are consistent with experimental measures of deposition fraction of submicron and ultrafine particles. While box-mod-type E-cig devices allow for full \"direct-lung\" inhalations of aerosol, the more recent pod-based, and disposable E-cigs (e.g., JUUL, Puff Bar, Stig) deliver the aerosol as a \"mouth-to-lung\" puff, or bolus, that is inhaled early in the breath followed to various degrees by further inhalation of ambient air. Measurement of realistic ventilation patterns associated with these various devices may further improve deposition predictions. Finally, while in vivo measures of RT deposition present a challenge, a recent methodology to radiolabel E-cig particles may allow for such measurements by gamma scintigraphy. Supported by NIH/NHLBI R01HL139369. © 2022 American Physiological Society. Compr Physiol 12: 1-10, year.</p>","PeriodicalId":10573,"journal":{"name":"Comprehensive Physiology","volume":"12 4","pages":"3823-3832"},"PeriodicalIF":5.8,"publicationDate":"2022-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9894733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Cell-To-Cell Communication in the Resistance Vasculature. 抵抗血管系统中的细胞间通讯。
IF 5.8 2区 医学 Q1 PHYSIOLOGY Pub Date : 2022-08-12 DOI: 10.1002/cphy.c210040
D Ryan King, Meghan W Sedovy, Xinyan Eaton, Luke S Dunaway, Miranda E Good, Brant E Isakson, Scott R Johnstone

The arterial vasculature can be divided into large conduit arteries, intermediate contractile arteries, resistance arteries, arterioles, and capillaries. Resistance arteries and arterioles primarily function to control systemic blood pressure. The resistance arteries are composed of a layer of endothelial cells oriented parallel to the direction of blood flow, which are separated by a matrix layer termed the internal elastic lamina from several layers of smooth muscle cells oriented perpendicular to the direction of blood flow. Cells within the vessel walls communicate in a homocellular and heterocellular fashion to govern luminal diameter, arterial resistance, and blood pressure. At rest, potassium currents govern the basal state of endothelial and smooth muscle cells. Multiple stimuli can elicit rises in intracellular calcium levels in either endothelial cells or smooth muscle cells, sourced from intracellular stores such as the endoplasmic reticulum or the extracellular space. In general, activation of endothelial cells results in the production of a vasodilatory signal, usually in the form of nitric oxide or endothelial-derived hyperpolarization. Conversely, activation of smooth muscle cells results in a vasoconstriction response through smooth muscle cell contraction. © 2022 American Physiological Society. Compr Physiol 12: 1-35, 2022.

动脉血管系统可分为大导管动脉、中间收缩动脉、阻力动脉、小动脉和毛细血管。抵抗动脉和小动脉的主要功能是控制全身血压。阻力动脉由一层平行于血流方向的内皮细胞组成,由一层称为内部弹性层的基质层与垂直于血流方向的平滑肌细胞层隔开。血管壁内的细胞以同细胞和异细胞的方式进行交流,控制管腔直径、动脉阻力和血压。在休息时,钾电流控制内皮细胞和平滑肌细胞的基础状态。多种刺激可引起内皮细胞或平滑肌细胞内钙水平升高,钙来源于内质网或细胞外空间等细胞内储存。一般来说,内皮细胞的激活导致血管舒张信号的产生,通常以一氧化氮或内皮源性超极化的形式出现。相反,平滑肌细胞的激活通过平滑肌细胞收缩导致血管收缩反应。©2022美国生理学会。中国生物医学工程学报(英文版),2016。
{"title":"Cell-To-Cell Communication in the Resistance Vasculature.","authors":"D Ryan King,&nbsp;Meghan W Sedovy,&nbsp;Xinyan Eaton,&nbsp;Luke S Dunaway,&nbsp;Miranda E Good,&nbsp;Brant E Isakson,&nbsp;Scott R Johnstone","doi":"10.1002/cphy.c210040","DOIUrl":"https://doi.org/10.1002/cphy.c210040","url":null,"abstract":"<p><p>The arterial vasculature can be divided into large conduit arteries, intermediate contractile arteries, resistance arteries, arterioles, and capillaries. Resistance arteries and arterioles primarily function to control systemic blood pressure. The resistance arteries are composed of a layer of endothelial cells oriented parallel to the direction of blood flow, which are separated by a matrix layer termed the internal elastic lamina from several layers of smooth muscle cells oriented perpendicular to the direction of blood flow. Cells within the vessel walls communicate in a homocellular and heterocellular fashion to govern luminal diameter, arterial resistance, and blood pressure. At rest, potassium currents govern the basal state of endothelial and smooth muscle cells. Multiple stimuli can elicit rises in intracellular calcium levels in either endothelial cells or smooth muscle cells, sourced from intracellular stores such as the endoplasmic reticulum or the extracellular space. In general, activation of endothelial cells results in the production of a vasodilatory signal, usually in the form of nitric oxide or endothelial-derived hyperpolarization. Conversely, activation of smooth muscle cells results in a vasoconstriction response through smooth muscle cell contraction. © 2022 American Physiological Society. Compr Physiol 12: 1-35, 2022.</p>","PeriodicalId":10573,"journal":{"name":"Comprehensive Physiology","volume":"12 4","pages":"3833-3867"},"PeriodicalIF":5.8,"publicationDate":"2022-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9842518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Strenuous Endurance Exercise and the Heart: Physiological versus Pathological Adaptations. 剧烈耐力运动与心脏:生理与病理适应。
IF 5.8 2区 医学 Q1 PHYSIOLOGY Pub Date : 2022-08-11 DOI: 10.1002/cphy.c210045
Pedro L Valenzuela, Aaron Baggish, Adrián Castillo-García, Alejandro Santos-Lozano, Araceli Boraita, Alejandro Lucia

Although the benefits of regular physical activity on cardiovascular health are well established, the effects of strenuous endurance exercise (SEE) have been a matter of debate since ancient times. In this article, we aim to provide a balanced overview of what is known about SEE and the heart-from epidemiological evidence to recent cardiac imaging findings. Lifelong SEE is overall cardioprotective, with endurance master athletes showing in fact a youthful heart. Yet, some lines of research remain open, such as the need to elucidate the time-course and potential relevance of transient declines in heart function (or increases in biomarkers of cardiac injury) with SEE. The underlying mechanisms and clinical relevance of SEE-associated atrial fibrillation, myocardial fibrosis, or high coronary artery calcium scores also remain to be elucidated. © 2022 American Physiological Society. Compr Physiol 12:1-19, 2022.

尽管有规律的体育活动对心血管健康的好处是公认的,但自古以来,剧烈耐力运动(SEE)的影响一直是一个有争议的问题。在这篇文章中,我们旨在从流行病学证据到最近的心脏成像发现,对SEE和心脏的已知情况提供一个平衡的概述。终生的SEE对心脏有全面的保护作用,耐力高的运动员实际上表现出年轻的心脏。然而,一些研究领域仍然开放,例如需要阐明心脏功能的短暂下降(或心脏损伤生物标志物的增加)与SEE的时间过程和潜在相关性。see相关心房颤动、心肌纤维化或高冠状动脉钙评分的潜在机制和临床相关性也有待阐明。©2022美国生理学会。物理学报(英文版),2012。
{"title":"Strenuous Endurance Exercise and the Heart: Physiological versus Pathological Adaptations.","authors":"Pedro L Valenzuela,&nbsp;Aaron Baggish,&nbsp;Adrián Castillo-García,&nbsp;Alejandro Santos-Lozano,&nbsp;Araceli Boraita,&nbsp;Alejandro Lucia","doi":"10.1002/cphy.c210045","DOIUrl":"https://doi.org/10.1002/cphy.c210045","url":null,"abstract":"<p><p>Although the benefits of regular physical activity on cardiovascular health are well established, the effects of strenuous endurance exercise (SEE) have been a matter of debate since ancient times. In this article, we aim to provide a balanced overview of what is known about SEE and the heart-from epidemiological evidence to recent cardiac imaging findings. Lifelong SEE is overall cardioprotective, with endurance master athletes showing in fact a youthful heart. Yet, some lines of research remain open, such as the need to elucidate the time-course and potential relevance of transient declines in heart function (or increases in biomarkers of cardiac injury) with SEE. The underlying mechanisms and clinical relevance of SEE-associated atrial fibrillation, myocardial fibrosis, or high coronary artery calcium scores also remain to be elucidated. © 2022 American Physiological Society. Compr Physiol 12:1-19, 2022.</p>","PeriodicalId":10573,"journal":{"name":"Comprehensive Physiology","volume":"12 4","pages":"4067-4085"},"PeriodicalIF":5.8,"publicationDate":"2022-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9894732","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Connexin-Based Channels in the Liver. 肝脏中基于连接蛋白的通道。
IF 5.8 2区 医学 Q1 PHYSIOLOGY Pub Date : 2022-08-11 DOI: 10.1002/cphy.c220007
Raf Van Campenhout, Kaat Leroy, Axelle Cooreman, Andrés Tabernilla, Bruno Cogliati, Prashant Kadam, Mathieu Vinken

Connexin proteins oligomerize in hexameric structures called connexin hemichannels, which then dock to form gap junctions. Gap junctions direct cell-cell communication by allowing the exchange of small molecules and ions between neighboring cells. In this way, hepatic gap junctions support liver homeostasis. Besides serving as building blocks for gap junctions, connexin hemichannels provide a pathway between the intracellular and the extracellular environment. The activation of connexin hemichannels is associated with acute and chronic liver pathologies. This article discusses the role of gap junctions and connexin hemichannels in the liver. © 2022 American Physiological Society. Compr Physiol 12:1-17, 2022.

连接蛋白寡聚成六聚体结构,称为连接蛋白半通道,然后停靠形成间隙连接。间隙连接通过允许相邻细胞之间的小分子和离子交换来指导细胞间的通讯。通过这种方式,肝间隙连接支持肝脏稳态。除了作为缝隙连接的基石外,连接蛋白半通道还提供了细胞内和细胞外环境之间的途径。连接蛋白半通道的激活与急性和慢性肝脏病变有关。本文讨论了间隙连接和连接蛋白半通道在肝脏中的作用。©2022美国生理学会。物理学报(英文版),2012。
{"title":"Connexin-Based Channels in the Liver.","authors":"Raf Van Campenhout,&nbsp;Kaat Leroy,&nbsp;Axelle Cooreman,&nbsp;Andrés Tabernilla,&nbsp;Bruno Cogliati,&nbsp;Prashant Kadam,&nbsp;Mathieu Vinken","doi":"10.1002/cphy.c220007","DOIUrl":"https://doi.org/10.1002/cphy.c220007","url":null,"abstract":"<p><p>Connexin proteins oligomerize in hexameric structures called connexin hemichannels, which then dock to form gap junctions. Gap junctions direct cell-cell communication by allowing the exchange of small molecules and ions between neighboring cells. In this way, hepatic gap junctions support liver homeostasis. Besides serving as building blocks for gap junctions, connexin hemichannels provide a pathway between the intracellular and the extracellular environment. The activation of connexin hemichannels is associated with acute and chronic liver pathologies. This article discusses the role of gap junctions and connexin hemichannels in the liver. © 2022 American Physiological Society. Compr Physiol 12:1-17, 2022.</p>","PeriodicalId":10573,"journal":{"name":"Comprehensive Physiology","volume":"12 4","pages":"4147-4163"},"PeriodicalIF":5.8,"publicationDate":"2022-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9894730","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Pancreatic Islets as a Target of Adipokines. 胰岛作为脂肪因子的靶点。
IF 5.8 2区 医学 Q1 PHYSIOLOGY Pub Date : 2022-08-11 DOI: 10.1002/cphy.c210044
Moritz Reiterer, Ankit Gilani, James C Lo

Rising rates of obesity are intricately tied to the type 2 diabetes epidemic. The adipose tissues can play a central role in protection against or triggering metabolic diseases through the secretion of adipokines. Many adipokines may improve peripheral insulin sensitivity through a variety of mechanisms, thereby indirectly reducing the strain on beta cells and thus improving their viability and functionality. Such effects will not be the focus of this article. Rather, we will focus on adipocyte-secreted molecules that have a direct effect on pancreatic islets. By their nature, adipokines represent potential druggable targets that can reach the islets and improve beta-cell function or preserve beta cells in the face of metabolic stress. © 2022 American Physiological Society. Compr Physiol 12:1-27, 2022.

肥胖率的上升与2型糖尿病的流行有着复杂的联系。脂肪组织通过分泌脂肪因子在预防或引发代谢性疾病中发挥核心作用。许多脂肪因子可能通过多种机制改善外周胰岛素敏感性,从而间接减少β细胞的压力,从而提高其活力和功能。这类影响将不是本文的重点。相反,我们将重点关注对胰岛有直接影响的脂肪细胞分泌分子。就其性质而言,脂肪因子代表了潜在的可药物靶点,可以到达胰岛,改善β细胞功能或在面对代谢应激时保护β细胞。©2022美国生理学会。物理学报(英文版),2012。
{"title":"Pancreatic Islets as a Target of Adipokines.","authors":"Moritz Reiterer,&nbsp;Ankit Gilani,&nbsp;James C Lo","doi":"10.1002/cphy.c210044","DOIUrl":"https://doi.org/10.1002/cphy.c210044","url":null,"abstract":"<p><p>Rising rates of obesity are intricately tied to the type 2 diabetes epidemic. The adipose tissues can play a central role in protection against or triggering metabolic diseases through the secretion of adipokines. Many adipokines may improve peripheral insulin sensitivity through a variety of mechanisms, thereby indirectly reducing the strain on beta cells and thus improving their viability and functionality. Such effects will not be the focus of this article. Rather, we will focus on adipocyte-secreted molecules that have a direct effect on pancreatic islets. By their nature, adipokines represent potential druggable targets that can reach the islets and improve beta-cell function or preserve beta cells in the face of metabolic stress. © 2022 American Physiological Society. Compr Physiol 12:1-27, 2022.</p>","PeriodicalId":10573,"journal":{"name":"Comprehensive Physiology","volume":"12 3","pages":"4039-4065"},"PeriodicalIF":5.8,"publicationDate":"2022-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10216410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Role of B Lymphocyte Subsets in Adipose Tissue Development, Metabolism, and Aging. B淋巴细胞亚群在脂肪组织发育、代谢和衰老中的作用。
IF 5.8 2区 医学 Q1 PHYSIOLOGY Pub Date : 2022-08-11 DOI: 10.1002/cphy.c220006
Nicole C Fernandez, Kosaku Shinoda

Adipose tissue contains resident B lymphocytes (B cells) with varying immune functions and mechanisms, depending on the adipose depot type and location. The heterogeneity of B cells and their functions affect the immunometabolism of the adipose tissue in aging and age-associated metabolic disorders. B cells exist in categorizations of subsets that have developmental or phenotypic differences with varying functionalities. Subsets can be categorized as either protective or pathogenic depending on their secretion profile or involvement in metabolic maintenance. In this article, we summarized recent finding on the B cell heterogeneity and discuss how we can utilize our current knowledge of adipose resident B lymphocytes for potential treatment for age-associated metabolic disorders. © 2022 American Physiological Society. Compr Physiol 12: 1-13, 2022.

根据脂肪储存的类型和位置,脂肪组织含有具有不同免疫功能和机制的常驻B淋巴细胞(B细胞)。B细胞的异质性及其功能影响衰老和年龄相关代谢紊乱中脂肪组织的免疫代谢。B细胞以亚群的形式存在,这些亚群具有发育或表型差异,具有不同的功能。亚群可分为保护性或致病性,这取决于它们的分泌情况或参与代谢维持。在这篇文章中,我们总结了最近关于B细胞异质性的发现,并讨论了我们如何利用我们目前对脂肪驻留B淋巴细胞的知识来治疗与年龄相关的代谢紊乱。©2022美国生理学会。中国生物医学工程学报(英文版),2016,31(1):1-13。
{"title":"The Role of B Lymphocyte Subsets in Adipose Tissue Development, Metabolism, and Aging.","authors":"Nicole C Fernandez, Kosaku Shinoda","doi":"10.1002/cphy.c220006","DOIUrl":"10.1002/cphy.c220006","url":null,"abstract":"<p><p>Adipose tissue contains resident B lymphocytes (B cells) with varying immune functions and mechanisms, depending on the adipose depot type and location. The heterogeneity of B cells and their functions affect the immunometabolism of the adipose tissue in aging and age-associated metabolic disorders. B cells exist in categorizations of subsets that have developmental or phenotypic differences with varying functionalities. Subsets can be categorized as either protective or pathogenic depending on their secretion profile or involvement in metabolic maintenance. In this article, we summarized recent finding on the B cell heterogeneity and discuss how we can utilize our current knowledge of adipose resident B lymphocytes for potential treatment for age-associated metabolic disorders. © 2022 American Physiological Society. Compr Physiol 12: 1-13, 2022.</p>","PeriodicalId":10573,"journal":{"name":"Comprehensive Physiology","volume":"12 4","pages":"4133-4145"},"PeriodicalIF":5.8,"publicationDate":"2022-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10197905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Comprehensive Physiology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1