Ying He, Qing Fang, Zheng Zhang, Tielin Dai, Kang Wu, Ligang Liu, Xiao-Ming Fu
We propose a novel method for generating symmetric piecewise developable approximations for shapes in approximately global reflectional or rotational symmetry. Given a shape and its symmetry constraint, the algorithm contains two crucial steps: (i) a symmetric deformation to achieve a nearly developable model and (ii) a symmetric segmentation aided by the deformed shape. The key to the deformation step is the use of the symmetric implicit neural representations of the shape and the deformation field. A new mesh extraction from the implicit function is introduced to construct a strictly symmetric mesh for the subsequent segmentation. The symmetry constraint is carefully integrated into the partition to achieve the symmetric piecewise developable approximation. We demonstrate the effectiveness of our algorithm over various meshes.
{"title":"Symmetric Piecewise Developable Approximations","authors":"Ying He, Qing Fang, Zheng Zhang, Tielin Dai, Kang Wu, Ligang Liu, Xiao-Ming Fu","doi":"10.1111/cgf.15242","DOIUrl":"https://doi.org/10.1111/cgf.15242","url":null,"abstract":"<p>We propose a novel method for generating symmetric piecewise developable approximations for shapes in approximately global reflectional or rotational symmetry. Given a shape and its symmetry constraint, the algorithm contains two crucial steps: (i) a symmetric deformation to achieve a nearly developable model and (ii) a symmetric segmentation aided by the deformed shape. The key to the deformation step is the use of the symmetric implicit neural representations of the shape and the deformation field. A new mesh extraction from the implicit function is introduced to construct a strictly symmetric mesh for the subsequent segmentation. The symmetry constraint is carefully integrated into the partition to achieve the symmetric piecewise developable approximation. We demonstrate the effectiveness of our algorithm over various meshes.</p>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"43 7","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. Li, Z. Wen, L. Zhang, J. Hu, F. Hou, Z. Zhang, Y. He
The 3D Gaussian Splatting technique has significantly advanced the construction of radiance fields from multi-view images, enabling real-time rendering. While point-based rasterization effectively reduces computational demands for rendering, it often struggles to accurately reconstruct the geometry of the target object, especially under strong lighting conditions. Strong lighting can cause significant color variations on the object's surface when viewed from different directions, complicating the reconstruction process. To address this challenge, we introduce an approach that combines octree-based implicit surface representations with Gaussian Splatting. Initially, it reconstructs a signed distance field (SDF) and a radiance field through volume rendering, encoding them in a low-resolution octree. This initial SDF represents the coarse geometry of the target object. Subsequently, it introduces 3D Gaussians as additional degrees of freedom, which are guided by the initial SDF. In the third stage, the optimized Gaussians enhance the accuracy of the SDF, enabling the recovery of finer geometric details compared to the initial SDF. Finally, the refined SDF is used to further optimize the 3D Gaussians via splatting, eliminating those that contribute little to the visual appearance. Experimental results show that our method, which leverages the distribution of 3D Gaussians with SDFs, reconstructs more accurate geometry, particularly in images with specular highlights caused by strong lighting. The source code can be downloaded from https://github.com/LaoChui999/GS-Octree.
{"title":"GS-Octree: Octree-based 3D Gaussian Splatting for Robust Object-level 3D Reconstruction Under Strong Lighting","authors":"J. Li, Z. Wen, L. Zhang, J. Hu, F. Hou, Z. Zhang, Y. He","doi":"10.1111/cgf.15206","DOIUrl":"https://doi.org/10.1111/cgf.15206","url":null,"abstract":"<p>The 3D Gaussian Splatting technique has significantly advanced the construction of radiance fields from multi-view images, enabling real-time rendering. While point-based rasterization effectively reduces computational demands for rendering, it often struggles to accurately reconstruct the geometry of the target object, especially under strong lighting conditions. Strong lighting can cause significant color variations on the object's surface when viewed from different directions, complicating the reconstruction process. To address this challenge, we introduce an approach that combines octree-based implicit surface representations with Gaussian Splatting. Initially, it reconstructs a signed distance field (SDF) and a radiance field through volume rendering, encoding them in a low-resolution octree. This initial SDF represents the coarse geometry of the target object. Subsequently, it introduces 3D Gaussians as additional degrees of freedom, which are guided by the initial SDF. In the third stage, the optimized Gaussians enhance the accuracy of the SDF, enabling the recovery of finer geometric details compared to the initial SDF. Finally, the refined SDF is used to further optimize the 3D Gaussians via splatting, eliminating those that contribute little to the visual appearance. Experimental results show that our method, which leverages the distribution of 3D Gaussians with SDFs, reconstructs more accurate geometry, particularly in images with specular highlights caused by strong lighting. The source code can be downloaded from https://github.com/LaoChui999/GS-Octree.</p>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"43 7","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We propose a novel ray reordering technique designed to accelerate the ray tracing process by encoding and sorting rays prior to traversal. Our method, called “hierarchy cut code”, involves encoding rays based on the cuts of the hierarchical acceleration structure, rather than relying solely on spatial coordinates. This approach allows for a more effective adaptation to the acceleration structure, resulting in a more reliable and efficient encoding outcome. Furthermore, our research identifies “bounding drift” as a major obstacle in achieving better acceleration effects using longer sorting keys in existing reordering methods. Fortunately, our hierarchy cut code successfully overcomes this issue, providing improved performance in ray tracing. Experimental results demonstrate the effectiveness of our approach, showing up to a 1.81 times faster secondary ray tracing compared to existing methods. These promising results highlight the potential for further enhancement in the acceleration effect of reordering techniques, warranting further exploration and research in this exciting field.
{"title":"Faster Ray Tracing through Hierarchy Cut Code","authors":"WeiLai Xiang, FengQi Liu, Zaonan Tan, Dan Li, PengZhan Xu, MeiZhi Liu, QiLong Kou","doi":"10.1111/cgf.15226","DOIUrl":"https://doi.org/10.1111/cgf.15226","url":null,"abstract":"<p>We propose a novel ray reordering technique designed to accelerate the ray tracing process by encoding and sorting rays prior to traversal. Our method, called “hierarchy cut code”, involves encoding rays based on the cuts of the hierarchical acceleration structure, rather than relying solely on spatial coordinates. This approach allows for a more effective adaptation to the acceleration structure, resulting in a more reliable and efficient encoding outcome. Furthermore, our research identifies “bounding drift” as a major obstacle in achieving better acceleration effects using longer sorting keys in existing reordering methods. Fortunately, our hierarchy cut code successfully overcomes this issue, providing improved performance in ray tracing. Experimental results demonstrate the effectiveness of our approach, showing up to a 1.81 times faster secondary ray tracing compared to existing methods. These promising results highlight the potential for further enhancement in the acceleration effect of reordering techniques, warranting further exploration and research in this exciting field.</p>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"43 7","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lifespan face age transformation aims to generate facial images that accurately depict an individual's appearance at different age stages. This task is highly challenging due to the need for reasonable changes in facial features while preserving identity characteristics. Existing methods tend to synthesize unsatisfactory results, such as entangled facial attributes and low identity preservation, especially when dealing with large age gaps. Furthermore, over-manipulating the style vector may deviate it from the latent space and damage image quality. To address these issues, this paper introduces a novel nonlinear regression model-Disentangled Lifespan face Aging (DL-Aging) to achieve high-quality age transformation images. Specifically, we propose an age modulation encoder to extract age-related multi-scale facial features as key and value, and use the reconstructed style vector of the image as the query. The multi-head cross-attention in the W+ space is utilized to update the query for aging image reconstruction iteratively. This nonlinear transformation enables the model to learn a more disentangled mode of transformation, which is crucial for alleviating facial attribute entanglement. Additionally, we introduce a W+ space age regularization term to prevent excessive manipulation of the style vector and ensure it remains within the W+ space during transformation, thereby improving generation quality and aging accuracy. Extensive qualitative and quantitative experiments demonstrate that the proposed DL-Aging outperforms state-of-the-art methods regarding aging accuracy, image quality, attribute disentanglement, and identity preservation, especially for large age gaps.
{"title":"Disentangled Lifespan Synthesis via Transformer-Based Nonlinear Regression","authors":"Mingyuan Li, Yingchun Guo","doi":"10.1111/cgf.15229","DOIUrl":"https://doi.org/10.1111/cgf.15229","url":null,"abstract":"<p>Lifespan face age transformation aims to generate facial images that accurately depict an individual's appearance at different age stages. This task is highly challenging due to the need for reasonable changes in facial features while preserving identity characteristics. Existing methods tend to synthesize unsatisfactory results, such as entangled facial attributes and low identity preservation, especially when dealing with large age gaps. Furthermore, over-manipulating the style vector may deviate it from the latent space and damage image quality. To address these issues, this paper introduces a novel nonlinear regression model-<b>D</b>isentangled <b>L</b>ifespan face <b>Aging</b> (DL-Aging) to achieve high-quality age transformation images. Specifically, we propose an age modulation encoder to extract age-related multi-scale facial features as key and value, and use the reconstructed style vector of the image as the query. The multi-head cross-attention in the W<sup>+</sup> space is utilized to update the query for aging image reconstruction iteratively. This nonlinear transformation enables the model to learn a more disentangled mode of transformation, which is crucial for alleviating facial attribute entanglement. Additionally, we introduce a W<sup>+</sup> space age regularization term to prevent excessive manipulation of the style vector and ensure it remains within the W<sup>+</sup> space during transformation, thereby improving generation quality and aging accuracy. Extensive qualitative and quantitative experiments demonstrate that the proposed DL-Aging outperforms state-of-the-art methods regarding aging accuracy, image quality, attribute disentanglement, and identity preservation, especially for large age gaps.</p>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"43 7","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Existing image dehazing methods have made remarkable progress. However, they generally perform poorly on images with dense haze, and often suffer from unsatisfactory results with detail degradation or color distortion. In this paper, we propose a density-aware diffusion model (DADM) for image dehazing. Guided by the haze density, our DADM can handle images with dense haze and complex environments. Specifically, we introduce a density-aware dehazing network (DADNet) in the reverse diffusion process, which can help DADM gradually recover a clear haze-free image from a haze image. To improve the performance of the network, we design a cross-feature density extraction module (CDEModule) to extract the haze density for the image and a density-guided feature fusion block (DFFBlock) to learn the effective contextual features. Furthermore, we introduce an indirect sampling strategy in the test sampling process, which not only suppresses the accumulation of errors but also ensures the stability of the results. Extensive experiments on popular benchmarks validate the superior performance of the proposed method. The code is released in https://github.com/benchacha/DADM.
{"title":"Density-Aware Diffusion Model for Efficient Image Dehazing","authors":"Ling Zhang, Wenxu Bai, Chunxia Xiao","doi":"10.1111/cgf.15221","DOIUrl":"https://doi.org/10.1111/cgf.15221","url":null,"abstract":"<p>Existing image dehazing methods have made remarkable progress. However, they generally perform poorly on images with dense haze, and often suffer from unsatisfactory results with detail degradation or color distortion. In this paper, we propose a density-aware diffusion model (DADM) for image dehazing. Guided by the haze density, our DADM can handle images with dense haze and complex environments. Specifically, we introduce a density-aware dehazing network (DADNet) in the reverse diffusion process, which can help DADM gradually recover a clear haze-free image from a haze image. To improve the performance of the network, we design a cross-feature density extraction module (CDEModule) to extract the haze density for the image and a density-guided feature fusion block (DFFBlock) to learn the effective contextual features. Furthermore, we introduce an indirect sampling strategy in the test sampling process, which not only suppresses the accumulation of errors but also ensures the stability of the results. Extensive experiments on popular benchmarks validate the superior performance of the proposed method. The code is released in https://github.com/benchacha/DADM.</p>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"43 7","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Image triangulation methods, which decompose an image into a series of triangles, are fundamental in artistic creation and image processing. This paper introduces a novel framework that integrates cubic Bézier curves into image triangulation, enabling the precise reconstruction of curved image features. Our developed framework constructs a well-structured curved triangle mesh, effectively preventing overlaps between curves. A refined energy function, grounded in differentiable rendering, establishes a direct link between mesh geometry and rendering effects and is instrumental in guiding the curved mesh generation. Additionally, we derive an explicit gradient formula with respect to mesh parameters, facilitating the adaptive and efficient optimization of these parameters to fully leverage the capabilities of cubic Bézier curves. Through experimental and comparative analyses with state-of-the-art methods, our approach demonstrates a significant enhancement in both numerical accuracy and visual quality.
{"title":"Curved Image Triangulation Based on Differentiable Rendering","authors":"Wanyi Wang, Zhonggui Chen, Lincong Fang, Juan Cao","doi":"10.1111/cgf.15232","DOIUrl":"https://doi.org/10.1111/cgf.15232","url":null,"abstract":"<p>Image triangulation methods, which decompose an image into a series of triangles, are fundamental in artistic creation and image processing. This paper introduces a novel framework that integrates cubic Bézier curves into image triangulation, enabling the precise reconstruction of curved image features. Our developed framework constructs a well-structured curved triangle mesh, effectively preventing overlaps between curves. A refined energy function, grounded in differentiable rendering, establishes a direct link between mesh geometry and rendering effects and is instrumental in guiding the curved mesh generation. Additionally, we derive an explicit gradient formula with respect to mesh parameters, facilitating the adaptive and efficient optimization of these parameters to fully leverage the capabilities of cubic Bézier curves. Through experimental and comparative analyses with state-of-the-art methods, our approach demonstrates a significant enhancement in both numerical accuracy and visual quality.</p>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"43 7","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Neural surface reconstruction methods have demonstrated their ability to recover 3D surfaces from multiple images. However, current approaches struggle to rapidly achieve high-fidelity surface reconstructions. In this work, we propose TaNSR, which inherits the speed advantages of multi-resolution hash encodings and extends its representation capabilities. To reduce training time, we propose an efficient numerical gradient computation method that significantly reduces additional memory access overhead. To further improve reconstruction quality and expedite training, we propose a feature aggregation strategy in volume rendering. Building on this, we introduce an adaptively weighted aggregation function to ensure the network can accurately reconstruct the surface of objects and recover more geometric details. Experiments on multiple datasets indicate that TaNSR significantly reduces training time while achieving better reconstruction accuracy compared to state-of-the-art nerual implicit methods.
{"title":"TaNSR:Efficient 3D Reconstruction with Tetrahedral Difference and Feature Aggregation","authors":"Zhaohan Lv, Xingcan Bao, Yong Tang, Jing Zhao","doi":"10.1111/cgf.15207","DOIUrl":"https://doi.org/10.1111/cgf.15207","url":null,"abstract":"<p>Neural surface reconstruction methods have demonstrated their ability to recover 3D surfaces from multiple images. However, current approaches struggle to rapidly achieve high-fidelity surface reconstructions. In this work, we propose TaNSR, which inherits the speed advantages of multi-resolution hash encodings and extends its representation capabilities. To reduce training time, we propose an efficient numerical gradient computation method that significantly reduces additional memory access overhead. To further improve reconstruction quality and expedite training, we propose a feature aggregation strategy in volume rendering. Building on this, we introduce an adaptively weighted aggregation function to ensure the network can accurately reconstruct the surface of objects and recover more geometric details. Experiments on multiple datasets indicate that TaNSR significantly reduces training time while achieving better reconstruction accuracy compared to state-of-the-art nerual implicit methods.</p>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"43 7","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Editing anime images via probabilities of attribute tags allows controlling the degree of the manipulation in an intuitive and convenient manner. Existing methods fall short in the progressive modification and preservation of unintended regions in the input image. We propose a controllable anime image editing framework based on adjusting the tag probabilities, in which a probability encoding network (PEN) is developed to encode the probabilities into features that capture continuous characteristic of the probabilities. Thus, the encoded features are able to direct the generative process of a pre-trained diffusion model and facilitate the linear manipulation. We also introduce a local editing module that automatically identifies the intended regions and constrains the edits to be applied to those regions only, which preserves the others unchanged. Comprehensive comparisons with existing methods indicate the effectiveness of our framework in both one-shot and linear editing modes. Results in additional applications further demonstrate the generalization ability of our approach.
{"title":"Controllable Anime Image Editing via Probability of Attribute Tags","authors":"Zhenghao Song, Haoran Mo, Chengying Gao","doi":"10.1111/cgf.15245","DOIUrl":"https://doi.org/10.1111/cgf.15245","url":null,"abstract":"<p>Editing anime images via probabilities of attribute tags allows controlling the degree of the manipulation in an intuitive and convenient manner. Existing methods fall short in the progressive modification and preservation of unintended regions in the input image. We propose a controllable anime image editing framework based on adjusting the tag probabilities, in which a probability encoding network (PEN) is developed to encode the probabilities into features that capture continuous characteristic of the probabilities. Thus, the encoded features are able to direct the generative process of a pre-trained diffusion model and facilitate the linear manipulation. We also introduce a local editing module that automatically identifies the intended regions and constrains the edits to be applied to those regions only, which preserves the others unchanged. Comprehensive comparisons with existing methods indicate the effectiveness of our framework in both one-shot and linear editing modes. Results in additional applications further demonstrate the generalization ability of our approach.</p>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"43 7","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Restoring the appearance of the model is a crucial step for achieving realistic 3D reconstruction. High-fidelity textures can also conceal some geometric defects. Since the estimated camera parameters and reconstructed geometry usually contain errors, subsequent texture mapping often suffers from undesirable visual artifacts such as blurring, ghosting, and visual seams. In particular, significant misalignment between the reconstructed model and the registered images will lead to texturing the mesh with inconsistent image regions. However, eliminating various artifacts to generate high-quality textures remains a challenge. In this paper, we address this issue by designing a texture optimization method to generate seamless and aligned textures for 3D reconstruction. The main idea is to detect misalignment regions between images and geometry and exclude them from texture mapping. To handle the texture holes caused by these excluded regions, a cross-patch texture hole-filling method is proposed, which can also synthesize plausible textures for invisible faces. Moreover, for better stitching of the textures from different views, an improved camera pose optimization is present by introducing color adjustment and boundary point sampling. Experimental results show that the proposed method can eliminate the artifacts caused by inaccurate input data robustly and produce high-quality texture results compared with state-of-the-art methods.
{"title":"Seamless and Aligned Texture Optimization for 3D Reconstruction","authors":"Lei Wang, Linlin Ge, Qitong Zhang, Jieqing Feng","doi":"10.1111/cgf.15205","DOIUrl":"https://doi.org/10.1111/cgf.15205","url":null,"abstract":"<p>Restoring the appearance of the model is a crucial step for achieving realistic 3D reconstruction. High-fidelity textures can also conceal some geometric defects. Since the estimated camera parameters and reconstructed geometry usually contain errors, subsequent texture mapping often suffers from undesirable visual artifacts such as blurring, ghosting, and visual seams. In particular, significant misalignment between the reconstructed model and the registered images will lead to texturing the mesh with inconsistent image regions. However, eliminating various artifacts to generate high-quality textures remains a challenge. In this paper, we address this issue by designing a texture optimization method to generate seamless and aligned textures for 3D reconstruction. The main idea is to detect misalignment regions between images and geometry and exclude them from texture mapping. To handle the texture holes caused by these excluded regions, a cross-patch texture hole-filling method is proposed, which can also synthesize plausible textures for invisible faces. Moreover, for better stitching of the textures from different views, an improved camera pose optimization is present by introducing color adjustment and boundary point sampling. Experimental results show that the proposed method can eliminate the artifacts caused by inaccurate input data robustly and produce high-quality texture results compared with state-of-the-art methods.</p>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"43 7","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Neural rendering bakes global illumination and other computationally costly effects into the weights of a neural network, allowing to efficiently synthesize photorealistic images without relying on path tracing. In neural rendering approaches, G-buffers obtained from rasterization through direct rendering provide information regarding the scene such as position, normal, and textures to the neural network, achieving accurate and stable rendering quality in real-time. However, due to the use of G-buffers, existing methods struggle to accurately render transparency and refraction effects, as G-buffers do not capture any ray information from multiple light ray bounces. This limitation results in blurriness, distortions, and loss of detail in rendered images that contain transparency and refraction, and is particularly notable in scenes with refracted objects that have high-frequency textures. In this work, we propose a neural network architecture to encode critical rendering information, including texture coordinates from refracted rays, and enable reconstruction of high-frequency textures in areas with refraction. Our approach is able to achieve accurate refraction rendering in challenging scenes with a diversity of overlapping transparent objects. Experimental results demonstrate that our method can interactively render high quality refraction effects with global illumination, unlike existing neural rendering approaches. Our code can be found at https://github.com/ziyangz5/CrystalNet
神经渲染将全局光照和其他计算成本高昂的效果融入神经网络的权重中,从而无需依赖路径追踪就能高效合成逼真的图像。在神经渲染方法中,通过直接渲染光栅化获得的 G 缓冲区为神经网络提供了有关场景的信息,如位置、法线和纹理,从而实现了准确、稳定的实时渲染质量。然而,由于使用 G 缓冲区,现有方法难以准确渲染透明和折射效果,因为 G 缓冲区无法捕捉到多条光线反弹时的任何光线信息。这种局限性导致渲染的包含透明和折射效果的图像模糊、失真和细节缺失,在具有高频纹理的折射物体场景中尤为明显。在这项工作中,我们提出了一种神经网络架构,用于编码关键的渲染信息,包括折射光线的纹理坐标,并在有折射的区域重建高频纹理。我们的方法能够在具有各种重叠透明物体的挑战性场景中实现精确的折射渲染。实验结果表明,与现有的神经渲染方法不同,我们的方法可以交互式地渲染具有全局照明的高质量折射效果。我们的代码见 https://github.com/ziyangz5/CrystalNet
{"title":"CrystalNet: Texture-Aware Neural Refraction Baking for Global Illumination","authors":"Z. Zhang, E. Simo-Serra","doi":"10.1111/cgf.15227","DOIUrl":"https://doi.org/10.1111/cgf.15227","url":null,"abstract":"<p>Neural rendering bakes global illumination and other computationally costly effects into the weights of a neural network, allowing to efficiently synthesize photorealistic images without relying on path tracing. In neural rendering approaches, G-buffers obtained from rasterization through direct rendering provide information regarding the scene such as position, normal, and textures to the neural network, achieving accurate and stable rendering quality in real-time. However, due to the use of G-buffers, existing methods struggle to accurately render transparency and refraction effects, as G-buffers do not capture any ray information from multiple light ray bounces. This limitation results in blurriness, distortions, and loss of detail in rendered images that contain transparency and refraction, and is particularly notable in scenes with refracted objects that have high-frequency textures. In this work, we propose a neural network architecture to encode critical rendering information, including texture coordinates from refracted rays, and enable reconstruction of high-frequency textures in areas with refraction. Our approach is able to achieve accurate refraction rendering in challenging scenes with a diversity of overlapping transparent objects. Experimental results demonstrate that our method can interactively render high quality refraction effects with global illumination, unlike existing neural rendering approaches. Our code can be found at https://github.com/ziyangz5/CrystalNet</p>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"43 7","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}