F. Stergioudi, Aikaterini Baxevani, C. Florou, N. Michailidis, Evie Nessi, A. Papadopoulos, Panagiotis Seferlis
The corrosion behavior of two stainless steels (316L and 304L) was evaluated using a CO2-loaded aqueous solution of 30 wt.% monoethanolamine (MEA) with a view to simulating corrosion related mechanisms in amine treatment procedures. Corrosion behavior was experimentally evaluated as a function of CO2 loading and solution temperature, using electrochemical techniques (polarization curves, cyclic polarization, and EIS measurement). The results reveal that the aqueous MEA solution containing CO2 creates a favorable environment for the corrosion of both stainless steels. The rate of corrosion is accelerated when the temperature of the loaded MEA solution rises, which was attributed to the thermal degradation of the loaded MEA, thus causing higher kinetics of the cathodic reactions at higher temperatures. More specifically, for the SS 304L the corrosion rate is almost doubled when the solution temperature is increased from 25 °C to 40 °C and is quadrupled when the solution temperature rises to 80 °C. For the SS 316L, the corrosion rate becomes almost threefold and sixfold upon increasing temperature of the load amine solution to 40 °C and 80 °C, respectively. The overall corrosion rate of SS 316L is lower with respect to the SS 304L for the same temperature and loading conditions. The essential dependency of corrosion rate on solution type (unloaded and loaded MEA solution) demonstrates that the corrosion process and reactions are controlled by a diffusion mechanism.
{"title":"Corrosion Behavior of Stainless Steels in CO2 Absorption Process Using Aqueous Solution of Monoethanolamine (MEA)","authors":"F. Stergioudi, Aikaterini Baxevani, C. Florou, N. Michailidis, Evie Nessi, A. Papadopoulos, Panagiotis Seferlis","doi":"10.3390/cmd3030025","DOIUrl":"https://doi.org/10.3390/cmd3030025","url":null,"abstract":"The corrosion behavior of two stainless steels (316L and 304L) was evaluated using a CO2-loaded aqueous solution of 30 wt.% monoethanolamine (MEA) with a view to simulating corrosion related mechanisms in amine treatment procedures. Corrosion behavior was experimentally evaluated as a function of CO2 loading and solution temperature, using electrochemical techniques (polarization curves, cyclic polarization, and EIS measurement). The results reveal that the aqueous MEA solution containing CO2 creates a favorable environment for the corrosion of both stainless steels. The rate of corrosion is accelerated when the temperature of the loaded MEA solution rises, which was attributed to the thermal degradation of the loaded MEA, thus causing higher kinetics of the cathodic reactions at higher temperatures. More specifically, for the SS 304L the corrosion rate is almost doubled when the solution temperature is increased from 25 °C to 40 °C and is quadrupled when the solution temperature rises to 80 °C. For the SS 316L, the corrosion rate becomes almost threefold and sixfold upon increasing temperature of the load amine solution to 40 °C and 80 °C, respectively. The overall corrosion rate of SS 316L is lower with respect to the SS 304L for the same temperature and loading conditions. The essential dependency of corrosion rate on solution type (unloaded and loaded MEA solution) demonstrates that the corrosion process and reactions are controlled by a diffusion mechanism.","PeriodicalId":10693,"journal":{"name":"Corrosion and Materials Degradation","volume":"232 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73505420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Post-tensioning structures with metallic ducts risk corrosion, rupture or collapses due to chloride ingress. The use of tight corrugated polymer ducts combined with electrically isolated anchorages (EIT) changed the situation. Laboratory and many field applications proved the tightness of the duct, showing resistance values higher or much higher than 50 kΩm, the acceptance criteria for a tight duct. The most important fact is that EIT tendons allow quality control and long-term monitoring of the duct tightness. EIT ducts (also with resistance values below the threshold criteria) can be monitored over the whole service life: only a progressive decrease of the measured resistance indicates a corrosion risk for this specific tendon. The most important structural elements can be easily monitored for the first time and damage initiation can be detected early. After a successful use in Europe EIT technology is now expanding progressively in the US.
{"title":"Prevention of Corrosion in Post-Tensioned Structures: Electrically Isolated Tendons","authors":"B. Elsener","doi":"10.3390/cmd3030024","DOIUrl":"https://doi.org/10.3390/cmd3030024","url":null,"abstract":"Post-tensioning structures with metallic ducts risk corrosion, rupture or collapses due to chloride ingress. The use of tight corrugated polymer ducts combined with electrically isolated anchorages (EIT) changed the situation. Laboratory and many field applications proved the tightness of the duct, showing resistance values higher or much higher than 50 kΩm, the acceptance criteria for a tight duct. The most important fact is that EIT tendons allow quality control and long-term monitoring of the duct tightness. EIT ducts (also with resistance values below the threshold criteria) can be monitored over the whole service life: only a progressive decrease of the measured resistance indicates a corrosion risk for this specific tendon. The most important structural elements can be easily monitored for the first time and damage initiation can be detected early. After a successful use in Europe EIT technology is now expanding progressively in the US.","PeriodicalId":10693,"journal":{"name":"Corrosion and Materials Degradation","volume":"56 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84848752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Improved corrosion barrier coatings (CBCs) to protect metals will allow future metal structures to operate for extended periods, ensuring improved safety by reducing environmental pollution and maintenance costs. Many production methods and design of corrosion barrier coatings (CBCs) have been developed. This review focuses only on CBCs made with chemistry techniques. These CBCs can be passive and active with remarkable performance. Today, most of the work focuses on the discovery and application of “smart nanomaterials,” which, if incorporated into “passive CBCs,” will turn them into “active CBCs,” giving them the phenomenon of “self-healing” that extends their service life. Today, many efforts are focused on developing sensors to diagnose corrosion at an early stage and CBCs that self-diagnose the environment and respond on demand. In addition, recent technological developments are reviewed, and a comprehensive strategy is proposed for the faster development of new CBC materials.
{"title":"Corrosion Barrier Coatings: Progress and Perspectives of the Chemical Route","authors":"G. Kordas","doi":"10.3390/cmd3030023","DOIUrl":"https://doi.org/10.3390/cmd3030023","url":null,"abstract":"Improved corrosion barrier coatings (CBCs) to protect metals will allow future metal structures to operate for extended periods, ensuring improved safety by reducing environmental pollution and maintenance costs. Many production methods and design of corrosion barrier coatings (CBCs) have been developed. This review focuses only on CBCs made with chemistry techniques. These CBCs can be passive and active with remarkable performance. Today, most of the work focuses on the discovery and application of “smart nanomaterials,” which, if incorporated into “passive CBCs,” will turn them into “active CBCs,” giving them the phenomenon of “self-healing” that extends their service life. Today, many efforts are focused on developing sensors to diagnose corrosion at an early stage and CBCs that self-diagnose the environment and respond on demand. In addition, recent technological developments are reviewed, and a comprehensive strategy is proposed for the faster development of new CBC materials.","PeriodicalId":10693,"journal":{"name":"Corrosion and Materials Degradation","volume":"262 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79678294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Moore, H. Beushausen, M. Otieno, Joanitta Ndawula, M. Alexander
The splash and spray and tidal zones are generally assumed to be the most severe marine exposure environments with respect to steel reinforcement corrosion in concrete structures. However, it has been observed in several aged marine structures along the Southern African coastlines, that there is usually relatively insignificant reinforcement corrosion damage in the tidal zone, despite very high (above-threshold) chloride contents. To develop a full understanding of the severity of marine exposure conditions with regard to the actual deterioration, it is imperative that other factors that directly affect corrosion, such as oxygen availability at the steel surface (which is influenced by concrete quality, cover thickness and moisture condition), are carefully considered. The laboratory experimental work in the study presented in this paper comprised of different cover depths (10, 20 and 30 mm) and w/b ratios (0.5 and 0.8) and simulated marine tidal, splash and submerged environments. The results show that for any give exposure environment, the relative influence of each of the various factors considered should be considered in conjunction with the other factors; this finding can be generalized to include all relevant factors that can affect corrosion in a given exposure environment including ambient temperature. For example, a cover depth of 30 mm in the tidal zone with a simulated intertidal duration of 6 h effectively resulted in similar corrosion behavior to that in the submerged zone. The paper concludes that engineers should consider these factors when applying standard exposure classes in the design for durability of marine structures.
{"title":"Oxygen Availability and Corrosion Propagation in RC Structures in the Marine Environment—Inferences from Field and Laboratory Studies","authors":"A. Moore, H. Beushausen, M. Otieno, Joanitta Ndawula, M. Alexander","doi":"10.3390/cmd3030022","DOIUrl":"https://doi.org/10.3390/cmd3030022","url":null,"abstract":"The splash and spray and tidal zones are generally assumed to be the most severe marine exposure environments with respect to steel reinforcement corrosion in concrete structures. However, it has been observed in several aged marine structures along the Southern African coastlines, that there is usually relatively insignificant reinforcement corrosion damage in the tidal zone, despite very high (above-threshold) chloride contents. To develop a full understanding of the severity of marine exposure conditions with regard to the actual deterioration, it is imperative that other factors that directly affect corrosion, such as oxygen availability at the steel surface (which is influenced by concrete quality, cover thickness and moisture condition), are carefully considered. The laboratory experimental work in the study presented in this paper comprised of different cover depths (10, 20 and 30 mm) and w/b ratios (0.5 and 0.8) and simulated marine tidal, splash and submerged environments. The results show that for any give exposure environment, the relative influence of each of the various factors considered should be considered in conjunction with the other factors; this finding can be generalized to include all relevant factors that can affect corrosion in a given exposure environment including ambient temperature. For example, a cover depth of 30 mm in the tidal zone with a simulated intertidal duration of 6 h effectively resulted in similar corrosion behavior to that in the submerged zone. The paper concludes that engineers should consider these factors when applying standard exposure classes in the design for durability of marine structures.","PeriodicalId":10693,"journal":{"name":"Corrosion and Materials Degradation","volume":"44 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77817783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Surface chloride concentration (Cs) is a key parameter used to feed models adopted to simulate chloride penetration into concrete and evaluate the initial period of corrosion. Although there are several models that have been proposed for the representation of Cs behaviour in the marine atmosphere zone, such models are still scarce. In this context, we analysed the behaviour of surface chloride concentration in concrete specimens exposed over 12.5 years in a marine atmosphere zone in the northeast of Brazil. The experimental work was carried out in two steps: environmental characterization, which was undertaken for temperature, relative humidity, rainfall, wind characteristics and sea-salt data; and chloride concentration measurements for the concrete surface considering three different concrete mixtures with w/b ratios of 0.65, 0.57 and 0.50. The results showed that the Cs increase over time followed three stages: a first short stage characterised by an initial dispersion, followed by an increase period and then a final period of stabilisation, which was not fully reached in the present study. This behaviour can be represented by a power function or a sigmoidal function, with a better fit with the latter. Chloride concentration in the atmosphere plays an important role in Cs behaviour. Higher availability of chlorides means higher Cs values. The relationship between Cs and the rate of chloride deposition on a wet candle was analysed and the function Cs=C0+kcs·(Dac)n was the one that best fit the experimental data.
{"title":"Long-Term Chloride Accumulation on Concrete Surface in Marine Atmosphere Zone—Modelling the Influence of Exposure Time and Chloride Availability in Atmosphere","authors":"G. R. Meira, P. Ferreira, C. Andrade","doi":"10.3390/cmd3030021","DOIUrl":"https://doi.org/10.3390/cmd3030021","url":null,"abstract":"Surface chloride concentration (Cs) is a key parameter used to feed models adopted to simulate chloride penetration into concrete and evaluate the initial period of corrosion. Although there are several models that have been proposed for the representation of Cs behaviour in the marine atmosphere zone, such models are still scarce. In this context, we analysed the behaviour of surface chloride concentration in concrete specimens exposed over 12.5 years in a marine atmosphere zone in the northeast of Brazil. The experimental work was carried out in two steps: environmental characterization, which was undertaken for temperature, relative humidity, rainfall, wind characteristics and sea-salt data; and chloride concentration measurements for the concrete surface considering three different concrete mixtures with w/b ratios of 0.65, 0.57 and 0.50. The results showed that the Cs increase over time followed three stages: a first short stage characterised by an initial dispersion, followed by an increase period and then a final period of stabilisation, which was not fully reached in the present study. This behaviour can be represented by a power function or a sigmoidal function, with a better fit with the latter. Chloride concentration in the atmosphere plays an important role in Cs behaviour. Higher availability of chlorides means higher Cs values. The relationship between Cs and the rate of chloride deposition on a wet candle was analysed and the function Cs=C0+kcs·(Dac)n was the one that best fit the experimental data.","PeriodicalId":10693,"journal":{"name":"Corrosion and Materials Degradation","volume":"112 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83139262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. F. Márquez-Peñaranda, M. Sánchez-Silva, E. Bastidas-Arteaga
The worldwide current practice of the structural design of sewers is based on procedures which usually include the effects caused by chemical and biological deterioration. However, in the last few decades, many sewer pipes have been designed using reinforced concrete which have succinctly considered such deterioration promoters. Indeed, knowledge related to reinforced concrete deterioration processes has become an important issue when forecasting the expected or remaining lifespan of sewers. Within these processes, thickness and strength losses and porosity augments have been found to be the result of the vital activity of sulfur-oxidizing bacteria and some types of fungus. This paper presents a rational methodology that uses biodeterioration measurements to describe how biodeterioration effects can affect the probability of failure during the lifetime of sewers. The probability of failure was obtained using Monte Carlo simulations based on numerical sampling from lognormal and uniform distributions. The concrete and reinforcement strength, geometric properties, H2S concentration in the headspace, and load values were considered as the main sources of uncertainty. The results indicate that the expected service lifespan can vary between 55 and 37 years for low and high H2S concentrations, respectively.
{"title":"Probabilistic Assessment of Biodeterioration Effects on Reinforced Concrete Sewers","authors":"J. F. Márquez-Peñaranda, M. Sánchez-Silva, E. Bastidas-Arteaga","doi":"10.3390/cmd3030020","DOIUrl":"https://doi.org/10.3390/cmd3030020","url":null,"abstract":"The worldwide current practice of the structural design of sewers is based on procedures which usually include the effects caused by chemical and biological deterioration. However, in the last few decades, many sewer pipes have been designed using reinforced concrete which have succinctly considered such deterioration promoters. Indeed, knowledge related to reinforced concrete deterioration processes has become an important issue when forecasting the expected or remaining lifespan of sewers. Within these processes, thickness and strength losses and porosity augments have been found to be the result of the vital activity of sulfur-oxidizing bacteria and some types of fungus. This paper presents a rational methodology that uses biodeterioration measurements to describe how biodeterioration effects can affect the probability of failure during the lifetime of sewers. The probability of failure was obtained using Monte Carlo simulations based on numerical sampling from lognormal and uniform distributions. The concrete and reinforcement strength, geometric properties, H2S concentration in the headspace, and load values were considered as the main sources of uncertainty. The results indicate that the expected service lifespan can vary between 55 and 37 years for low and high H2S concentrations, respectively.","PeriodicalId":10693,"journal":{"name":"Corrosion and Materials Degradation","volume":"74 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89004910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The design processes for reinforced concrete are changing. More often, durability targets are being achieved by using modelling. This paper compares some of the models available and the precision undertaken to obtain the data that underpins the calculations, and it reflects on the change in the environment that is known to be occurring. In addition, a review of the sustainability implications of durability is considered. It is concluded that there may be more sustainable methods to achieve a long life than simply increasing cement contents and covers.
{"title":"Limitations in Modelling Reinforced Concrete Durability","authors":"C. Atkins, Paul Lambert","doi":"10.3390/cmd3030019","DOIUrl":"https://doi.org/10.3390/cmd3030019","url":null,"abstract":"The design processes for reinforced concrete are changing. More often, durability targets are being achieved by using modelling. This paper compares some of the models available and the precision undertaken to obtain the data that underpins the calculations, and it reflects on the change in the environment that is known to be occurring. In addition, a review of the sustainability implications of durability is considered. It is concluded that there may be more sustainable methods to achieve a long life than simply increasing cement contents and covers.","PeriodicalId":10693,"journal":{"name":"Corrosion and Materials Degradation","volume":"818 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80984910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Trentin, Victória Hellen Chagas, M. C. Uvida, S. Pulcinelli, C. Santilli, P. Hammer
Organic-inorganic coatings based on polymethyl methacrylate (PMMA)–silica–lithium are an efficient alternative to protect metals against corrosion. Although the preparation methodology is established and the thin coatings (~10 µm) are highly protective, the use of an environmentally friendly solvent has not yet been addressed. In this work, PMMA–silica coatings were synthesized using 2-propanol as a solvent and deposited on aluminum alloy AA7075, widely used in the aeronautical industry. Different concentrations of lithium carbonate (0–4000 ppm) were incorporated into the hybrid matrix to study the structural and inhibitive effects of Li+ in terms of barrier efficiency of the coatings in contact with saline solution (3.5% NaCl). Structural and morphological characterization by low-angle X-ray scattering, X-ray photoelectron spectroscopy, atomic force microscopy, thermogravimetric analysis, thickness, and adhesion measurements, showed for intermediate lithium content (500–2000 ppm) the formation of a highly polymerized PMMA phase covalently cross-linked by silica nodes, which provide strong adhesion to the aluminum substrate (15 MPa). Electrochemical impedance spectroscopy (EIS) results revealed an excellent barrier property in the GΩ cm2 range and durability of more than two years in a 3.5% NaCl solution. This performance can be attributed to the formation of a highly reticulated phase in the presence of Li, which hinders the permeation of water and ions. Additionally, the self-healing ability of scratched samples was evidenced by EIS assays showing a fast Li-induced formation of insoluble products in damaged areas; thus, constituting an excellent eco-friendly solution for corrosion protection of aerospace components.
{"title":"Green-High-Performance PMMA–Silica–Li Barrier Coatings","authors":"A. Trentin, Victória Hellen Chagas, M. C. Uvida, S. Pulcinelli, C. Santilli, P. Hammer","doi":"10.3390/cmd3030018","DOIUrl":"https://doi.org/10.3390/cmd3030018","url":null,"abstract":"Organic-inorganic coatings based on polymethyl methacrylate (PMMA)–silica–lithium are an efficient alternative to protect metals against corrosion. Although the preparation methodology is established and the thin coatings (~10 µm) are highly protective, the use of an environmentally friendly solvent has not yet been addressed. In this work, PMMA–silica coatings were synthesized using 2-propanol as a solvent and deposited on aluminum alloy AA7075, widely used in the aeronautical industry. Different concentrations of lithium carbonate (0–4000 ppm) were incorporated into the hybrid matrix to study the structural and inhibitive effects of Li+ in terms of barrier efficiency of the coatings in contact with saline solution (3.5% NaCl). Structural and morphological characterization by low-angle X-ray scattering, X-ray photoelectron spectroscopy, atomic force microscopy, thermogravimetric analysis, thickness, and adhesion measurements, showed for intermediate lithium content (500–2000 ppm) the formation of a highly polymerized PMMA phase covalently cross-linked by silica nodes, which provide strong adhesion to the aluminum substrate (15 MPa). Electrochemical impedance spectroscopy (EIS) results revealed an excellent barrier property in the GΩ cm2 range and durability of more than two years in a 3.5% NaCl solution. This performance can be attributed to the formation of a highly reticulated phase in the presence of Li, which hinders the permeation of water and ions. Additionally, the self-healing ability of scratched samples was evidenced by EIS assays showing a fast Li-induced formation of insoluble products in damaged areas; thus, constituting an excellent eco-friendly solution for corrosion protection of aerospace components.","PeriodicalId":10693,"journal":{"name":"Corrosion and Materials Degradation","volume":"14 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79423808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hydrogen plays various roles in metals or at metal–environment interfaces. Well known effects on metals are hydrogen embrittlement, hydrogen enhanced local plasticity, hydrogen enhanced strain-induced vacancy, hydrogen accelerated oxidation, hydrogen-induced creep, and their synergy. In this study, the potential roles of hydrogen in materials degradation are demonstrated and studied by two different tests. One is the high temperature oxidation of Ni-based alloy in various environments with hydrogen penetration, and the other is the effects of neutron flux/fluence on the oxidation kinetics and SCC of 316L and 316LN stainless steels, regarding a possible role of transmuted H from N. The results emphasize that the hydrogen either permeated into metals from surrounding environments, such as high temperature water or gaseous hydrogen, or generated in metals by nuclei transmutation, such as hydrogen transmuted from N atoms in metals, which can promote metal oxidation through multiple mechanisms. Apparently, the oxidation/corrosion phenomenon is a synergy of sub-mechanisms. For instance, dissolved hydrogen (DH) is usually believed to slow down the corrosion process for lowering the open circuit potential (OCP). However, H also facilitates the transport of the cations in oxide, thereby accelerating the corrosion process. In this bi-mechanism system, two different, contradictory mechanisms work and exist simultaneously. Therefore, whether the metallic materials are benefited or degraded by the H during its oxidation process depends on which sub-mechanism is dominant. Namely, hydrogen can play the role an oxidant in the metal and metal/oxide interface to pre-oxidize metal elements, such as Cr, Ni, and Fe, and possibly promote inward oxygen diffusion and the oxidation rate at the interface. Moreover, hydrogen may play a role as a reductant in oxides where existing oxides can be reduced. Then, the protective capability of oxides will be decreased to result in corrosion acceleration at the metal–oxide interface. These phenomena were observed in Ni-based alloy and possibly austenitic stainless steel containing N such as 316LN SS. This work demonstrates a part of the role of hydrogen on oxidation, and more extensive and systematic work is needed to delineate the role of hydrogen on oxidation with and without irradiation.
{"title":"Role of Hydrogen in Metal Oxidation- Implication to Irradiation Enhanced Corrosion of Ni-Based Alloys and Stainless Steels in High Temperature Water","authors":"Zihao Wang, T. Shoji","doi":"10.3390/cmd3020017","DOIUrl":"https://doi.org/10.3390/cmd3020017","url":null,"abstract":"Hydrogen plays various roles in metals or at metal–environment interfaces. Well known effects on metals are hydrogen embrittlement, hydrogen enhanced local plasticity, hydrogen enhanced strain-induced vacancy, hydrogen accelerated oxidation, hydrogen-induced creep, and their synergy. In this study, the potential roles of hydrogen in materials degradation are demonstrated and studied by two different tests. One is the high temperature oxidation of Ni-based alloy in various environments with hydrogen penetration, and the other is the effects of neutron flux/fluence on the oxidation kinetics and SCC of 316L and 316LN stainless steels, regarding a possible role of transmuted H from N. The results emphasize that the hydrogen either permeated into metals from surrounding environments, such as high temperature water or gaseous hydrogen, or generated in metals by nuclei transmutation, such as hydrogen transmuted from N atoms in metals, which can promote metal oxidation through multiple mechanisms. Apparently, the oxidation/corrosion phenomenon is a synergy of sub-mechanisms. For instance, dissolved hydrogen (DH) is usually believed to slow down the corrosion process for lowering the open circuit potential (OCP). However, H also facilitates the transport of the cations in oxide, thereby accelerating the corrosion process. In this bi-mechanism system, two different, contradictory mechanisms work and exist simultaneously. Therefore, whether the metallic materials are benefited or degraded by the H during its oxidation process depends on which sub-mechanism is dominant. Namely, hydrogen can play the role an oxidant in the metal and metal/oxide interface to pre-oxidize metal elements, such as Cr, Ni, and Fe, and possibly promote inward oxygen diffusion and the oxidation rate at the interface. Moreover, hydrogen may play a role as a reductant in oxides where existing oxides can be reduced. Then, the protective capability of oxides will be decreased to result in corrosion acceleration at the metal–oxide interface. These phenomena were observed in Ni-based alloy and possibly austenitic stainless steel containing N such as 316LN SS. This work demonstrates a part of the role of hydrogen on oxidation, and more extensive and systematic work is needed to delineate the role of hydrogen on oxidation with and without irradiation.","PeriodicalId":10693,"journal":{"name":"Corrosion and Materials Degradation","volume":"29 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77331835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abraham Sainz-Rosales, Xóchitl Ocampo-Lazcarro, Azalia Hernández-Pérez, A. G. González-Gutiérrez, E. R. Larios-Durán, C. Ponce de León, F. Walsh, M. Bárcena-Soto, N. Casillas
Background: Evans’s drop is a classic corrosion experiment that is nearly 100 years old, and it is analogous to other corrosion systems promoted by O2 gradients. The availability of more robust finite element software packages opens the possibility to reach a deeper understanding of these kind of corrosion systems. Methodology: In order to solve the problem, the model includes the governing mass transport diffusion and migration equation and the material balance in a nonsteady state by the finite element method. This is performed using COMSOL Multiphysics to predict the tertiary current and potential distribution considering the geometry, reaction kinetics, and mass transport for each ionic species. Significant Findings: A simulation of the tertiary current and potential distribution of the Evans’s drop corrosion experiment on an iron surface is presented. An oxygen concentration difference of 0.18 mol m−3 between the center and the drop periphery sets up a potential difference of 60 mV which acts as a corrosion driving force. Reaction kinetics are described by Tafel equations. Results include the evolution of concentration profiles for OH−, Fe2+, Fe3+, Fe(OH)2, and Fe(OH)3.
{"title":"Classic Evans’s Drop Corrosion Experiment Investigated in Terms of a Tertiary Current and Potential Distribution","authors":"Abraham Sainz-Rosales, Xóchitl Ocampo-Lazcarro, Azalia Hernández-Pérez, A. G. González-Gutiérrez, E. R. Larios-Durán, C. Ponce de León, F. Walsh, M. Bárcena-Soto, N. Casillas","doi":"10.3390/cmd3020016","DOIUrl":"https://doi.org/10.3390/cmd3020016","url":null,"abstract":"Background: Evans’s drop is a classic corrosion experiment that is nearly 100 years old, and it is analogous to other corrosion systems promoted by O2 gradients. The availability of more robust finite element software packages opens the possibility to reach a deeper understanding of these kind of corrosion systems. Methodology: In order to solve the problem, the model includes the governing mass transport diffusion and migration equation and the material balance in a nonsteady state by the finite element method. This is performed using COMSOL Multiphysics to predict the tertiary current and potential distribution considering the geometry, reaction kinetics, and mass transport for each ionic species. Significant Findings: A simulation of the tertiary current and potential distribution of the Evans’s drop corrosion experiment on an iron surface is presented. An oxygen concentration difference of 0.18 mol m−3 between the center and the drop periphery sets up a potential difference of 60 mV which acts as a corrosion driving force. Reaction kinetics are described by Tafel equations. Results include the evolution of concentration profiles for OH−, Fe2+, Fe3+, Fe(OH)2, and Fe(OH)3.","PeriodicalId":10693,"journal":{"name":"Corrosion and Materials Degradation","volume":"32 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85069350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}