Posner and Petersen (1990) suggested that the attention system is composed of three networks: alerting, orienting, and executive functioning or control. Drawing on this theory, the Attentional Networks Test (ANT) was designed to quantify the functionality of the three attention networks. The ANT is used extensively in psychology, neuroscience, and medicine. Later adjustments of the ANT have demonstrated that the three attention networks do not operate independently and can interact. The current study examined whether such interactions are constant or result from task demands. In three experiments (N = 147) we measured alerting, orienting, executive control and their interactions while manipulating task demands. The interactions between the three networks differed between experiments, with no interactions detected in the third experiment. We conclude that the interactions between executive functioning and alertness, and between executive functioning and orienting depend on spatial processes and are not an innate feature of attention. Our results suggest that the three attention networks can function independently, depending on task demands. Our findings offer experimental support for Posner and Petersen's theory (1990) and suggest a novel way to optimize attention measurements.
{"title":"Adaptive modes of attention: Evidence from attentional networks.","authors":"Omer Linkovski, Naama Katzin, Aviv Avitan, Noam Weinbach, Avishai Henik","doi":"10.1016/j.cortex.2024.11.018","DOIUrl":"https://doi.org/10.1016/j.cortex.2024.11.018","url":null,"abstract":"<p><p>Posner and Petersen (1990) suggested that the attention system is composed of three networks: alerting, orienting, and executive functioning or control. Drawing on this theory, the Attentional Networks Test (ANT) was designed to quantify the functionality of the three attention networks. The ANT is used extensively in psychology, neuroscience, and medicine. Later adjustments of the ANT have demonstrated that the three attention networks do not operate independently and can interact. The current study examined whether such interactions are constant or result from task demands. In three experiments (N = 147) we measured alerting, orienting, executive control and their interactions while manipulating task demands. The interactions between the three networks differed between experiments, with no interactions detected in the third experiment. We conclude that the interactions between executive functioning and alertness, and between executive functioning and orienting depend on spatial processes and are not an innate feature of attention. Our results suggest that the three attention networks can function independently, depending on task demands. Our findings offer experimental support for Posner and Petersen's theory (1990) and suggest a novel way to optimize attention measurements.</p>","PeriodicalId":10758,"journal":{"name":"Cortex","volume":"184 ","pages":"58-72"},"PeriodicalIF":3.2,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142969937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-25DOI: 10.1016/j.cortex.2024.12.007
Simone Vossel, Anne-Sophie Käsbauer, Paola Mengotti, Claudia C Schmidt, Jochen Saliger, Hans Karbe, Gereon R Fink
The precise cognitive mechanisms underlying spatial neglect are not fully understood. Recent studies have provided the first evidence for aberrant behavioral and electrophysiological prediction and prediction error responses in patients with neglect, but also in right-hemispheric (RH) stroke patients without neglect. For prediction-dependent attention, as assessed with Posner-type cueing paradigms with volatile cue-target contingencies, studies in healthy volunteers point to a crucial role of the right temporo-parietal junction (rTPJ) - as part of a network commonly disrupted in neglect. In order to study altered prediction-dependent attention in patients with RH damage and neglect, the present study employed a spatial cueing paradigm with unsignalled changes in the cue's predictive value in 26 RH patients, 21 left-hemispheric (LH) patients, and 33 healthy elderly controls. The inference of the changing cue's predictive value was assessed with a Rescorla-Wagner learning model of response times (RTs) and participants' ratings. We tested for lesion-side-dependent relationships between the computational model parameters, ratings, and neuropsychological performance. Moreover, we investigated links between the behavioral signatures of predictive processing and lesion anatomy (lesion location and disconnection). The results provided no evidence for a predictive inference deficit, but revealed a correlation between a hypersensitivity of RTs to inferred predictions for ipsilesional stimuli and neglect symptoms in RH patients. Irrespective of symptoms of neglect, the rating of the cue's predictive value deviated more from the actual values in RH patients. RT hypersensitivity for ipsilesional targets was linked to disconnection within fronto-parietal, fronto-occipital, and temporo-parietal pathways. These findings provide novel insights into the role of altered prediction-dependent processing for neglect as assessed by different read-outs, highlighting an exaggerated response adaption to predictions of ipsilesional stimuli.
{"title":"Neglect symptoms are related to a prediction-hypersensitivity in ipsilesional space.","authors":"Simone Vossel, Anne-Sophie Käsbauer, Paola Mengotti, Claudia C Schmidt, Jochen Saliger, Hans Karbe, Gereon R Fink","doi":"10.1016/j.cortex.2024.12.007","DOIUrl":"https://doi.org/10.1016/j.cortex.2024.12.007","url":null,"abstract":"<p><p>The precise cognitive mechanisms underlying spatial neglect are not fully understood. Recent studies have provided the first evidence for aberrant behavioral and electrophysiological prediction and prediction error responses in patients with neglect, but also in right-hemispheric (RH) stroke patients without neglect. For prediction-dependent attention, as assessed with Posner-type cueing paradigms with volatile cue-target contingencies, studies in healthy volunteers point to a crucial role of the right temporo-parietal junction (rTPJ) - as part of a network commonly disrupted in neglect. In order to study altered prediction-dependent attention in patients with RH damage and neglect, the present study employed a spatial cueing paradigm with unsignalled changes in the cue's predictive value in 26 RH patients, 21 left-hemispheric (LH) patients, and 33 healthy elderly controls. The inference of the changing cue's predictive value was assessed with a Rescorla-Wagner learning model of response times (RTs) and participants' ratings. We tested for lesion-side-dependent relationships between the computational model parameters, ratings, and neuropsychological performance. Moreover, we investigated links between the behavioral signatures of predictive processing and lesion anatomy (lesion location and disconnection). The results provided no evidence for a predictive inference deficit, but revealed a correlation between a hypersensitivity of RTs to inferred predictions for ipsilesional stimuli and neglect symptoms in RH patients. Irrespective of symptoms of neglect, the rating of the cue's predictive value deviated more from the actual values in RH patients. RT hypersensitivity for ipsilesional targets was linked to disconnection within fronto-parietal, fronto-occipital, and temporo-parietal pathways. These findings provide novel insights into the role of altered prediction-dependent processing for neglect as assessed by different read-outs, highlighting an exaggerated response adaption to predictions of ipsilesional stimuli.</p>","PeriodicalId":10758,"journal":{"name":"Cortex","volume":"184 ","pages":"1-18"},"PeriodicalIF":3.2,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142946005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-25DOI: 10.1016/j.cortex.2024.12.004
Grégoria Kalpouzos, Jonas Persson
The patterns of brain activation and functional connectivity, task-related and task-free, as a function of age have been well documented over the past 30 years. However, the aging brain undergoes structural changes that are likely to affect the functional properties of the brain. The relationship between brain structure and function started to be investigated more recently. Brain structure and brain function can influence behavioral outcomes independently, and several studies highlight independent contribution of structure and function on cognition. Here, a central assumption is that brain structure also affects behavior indirectly through its influence on brain function. In such a model, structure supports function. Although findings generally suggest that structure may indeed influence function, the direction of the associations, the variability in terms of regional effects and age windows when associations are observed vary greatly. Also, a certain number of studies highlight the independent contribution of structure and function on cognition. A critical aspect of studying aging is the necessity of longitudinal designs, allowing to observe true aging effects - as compared with age differences in cross-sectional designs. This review aims to give an updated account on research dealing with multimodal neuroimaging in aging, and more specifically on the links between structure and function and associated cognitive outcomes, putting in parallel findings from cross-sectional and longitudinal studies. Additionally, we discuss potential mechanisms by which age-related changes in structure may affect function, but also factors (sample characteristics, methodology) that may contribute to the heterogeneity of the findings and the lack of consensus on the associations between structure, function, cognition and aging.
{"title":"Structure-function relationships in the human aging brain: An account of cross-sectional and longitudinal multimodal neuroimaging studies.","authors":"Grégoria Kalpouzos, Jonas Persson","doi":"10.1016/j.cortex.2024.12.004","DOIUrl":"https://doi.org/10.1016/j.cortex.2024.12.004","url":null,"abstract":"<p><p>The patterns of brain activation and functional connectivity, task-related and task-free, as a function of age have been well documented over the past 30 years. However, the aging brain undergoes structural changes that are likely to affect the functional properties of the brain. The relationship between brain structure and function started to be investigated more recently. Brain structure and brain function can influence behavioral outcomes independently, and several studies highlight independent contribution of structure and function on cognition. Here, a central assumption is that brain structure also affects behavior indirectly through its influence on brain function. In such a model, structure supports function. Although findings generally suggest that structure may indeed influence function, the direction of the associations, the variability in terms of regional effects and age windows when associations are observed vary greatly. Also, a certain number of studies highlight the independent contribution of structure and function on cognition. A critical aspect of studying aging is the necessity of longitudinal designs, allowing to observe true aging effects - as compared with age differences in cross-sectional designs. This review aims to give an updated account on research dealing with multimodal neuroimaging in aging, and more specifically on the links between structure and function and associated cognitive outcomes, putting in parallel findings from cross-sectional and longitudinal studies. Additionally, we discuss potential mechanisms by which age-related changes in structure may affect function, but also factors (sample characteristics, methodology) that may contribute to the heterogeneity of the findings and the lack of consensus on the associations between structure, function, cognition and aging.</p>","PeriodicalId":10758,"journal":{"name":"Cortex","volume":"183 ","pages":"274-289"},"PeriodicalIF":3.2,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142930759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-25DOI: 10.1016/j.cortex.2024.12.006
Isabelle Régner, Pascal Huguet
Age-Based Stereotype Threat (ABST) adversely affects older adults' memory performance by inducing anxiety and interfering thoughts related to negative stereotypes about aging and memory decline. While well-documented in laboratory settings, the relevance of ABST in real-life clinical contexts remains underexplored. This narrative review examines the effects of ABST and its implications for cognitive aging, emphasizing the importance of addressing ABST in clinical settings. We review key laboratory findings and the limited studies that simulate clinical environments, highlighting their methodological limitations. The review underscores the need for further research involving actual patients, tested within real clinical setting and using appropriate interventions to reduce ABST. Proactive interventions such as educational debriefing and expressive writing, are promising methods adapted to clinical settings. By enhancing our understanding and mitigation of ABST in clinical practice, we can improve the accuracy and reliability of neuropsychological assessments, leading to better diagnostic outcomes for older adults.
{"title":"Age-based stereotype threat effects: From the laboratory to the clinical setting.","authors":"Isabelle Régner, Pascal Huguet","doi":"10.1016/j.cortex.2024.12.006","DOIUrl":"https://doi.org/10.1016/j.cortex.2024.12.006","url":null,"abstract":"<p><p>Age-Based Stereotype Threat (ABST) adversely affects older adults' memory performance by inducing anxiety and interfering thoughts related to negative stereotypes about aging and memory decline. While well-documented in laboratory settings, the relevance of ABST in real-life clinical contexts remains underexplored. This narrative review examines the effects of ABST and its implications for cognitive aging, emphasizing the importance of addressing ABST in clinical settings. We review key laboratory findings and the limited studies that simulate clinical environments, highlighting their methodological limitations. The review underscores the need for further research involving actual patients, tested within real clinical setting and using appropriate interventions to reduce ABST. Proactive interventions such as educational debriefing and expressive writing, are promising methods adapted to clinical settings. By enhancing our understanding and mitigation of ABST in clinical practice, we can improve the accuracy and reliability of neuropsychological assessments, leading to better diagnostic outcomes for older adults.</p>","PeriodicalId":10758,"journal":{"name":"Cortex","volume":"183 ","pages":"261-273"},"PeriodicalIF":3.2,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142930758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-22DOI: 10.1016/j.cortex.2024.12.010
Tirta Susilo, Brad Duchaine
{"title":"Improving diagnosis of developmental prosopagnosia: The role of exclusion criteria.","authors":"Tirta Susilo, Brad Duchaine","doi":"10.1016/j.cortex.2024.12.010","DOIUrl":"https://doi.org/10.1016/j.cortex.2024.12.010","url":null,"abstract":"","PeriodicalId":10758,"journal":{"name":"Cortex","volume":"183 ","pages":"304-308"},"PeriodicalIF":3.2,"publicationDate":"2024-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142945994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-21DOI: 10.1016/j.cortex.2024.12.005
Mario Hervault, Cheol Soh, Jan R Wessel
The ability to stop already-initiated actions is paramount to adaptive behavior. In psychology and neuroscience alike, action-stopping is a popular model behavior to probe inhibitory control - the underlying cognitive control process that is purportedly vital to regulating thoughts and actions. Starting with seminal work in the 1990s, the frontocentral stop-signal P3 - an event-related potential derived from scalp EEG - has been proposed as a neurophysiological index of inhibitory control during action-stopping. However, this association has been challenged repeatedly over recent years. Here, we perform a critical review of both the evidence in support of the association between this P3 index and inhibitory control, as well as its documented criticisms. We first comprehensively review literature from the past three decades that suggested a link between stop-signal P3 and inhibitory control. Second, we then replicate the key empirical patterns reported in that body of literature in a uniquely large stop-signal task EEG dataset (N = 255). Third, we then examine the criticisms raised against the view of P3 as an index of inhibitory control and evaluate the evidence supporting these arguments. Finally, we present an updated view of the process(es) reflected in the stop-signal P3. Specifically, we propose that the stop-signal P3 indexes a specific, selective inhibitory control process that critically contributes to action-stopping. This view is motivated by recent two-stage models of inhibitory control and emerging empirical data. Together, we hope to clarify the process(es) reflected in the stop-signal P3 and resolve the ongoing debates regarding its utility as an index of inhibitory control during action-stopping.
{"title":"Does the stop-signal P3 reflect inhibitory control?","authors":"Mario Hervault, Cheol Soh, Jan R Wessel","doi":"10.1016/j.cortex.2024.12.005","DOIUrl":"https://doi.org/10.1016/j.cortex.2024.12.005","url":null,"abstract":"<p><p>The ability to stop already-initiated actions is paramount to adaptive behavior. In psychology and neuroscience alike, action-stopping is a popular model behavior to probe inhibitory control - the underlying cognitive control process that is purportedly vital to regulating thoughts and actions. Starting with seminal work in the 1990s, the frontocentral stop-signal P3 - an event-related potential derived from scalp EEG - has been proposed as a neurophysiological index of inhibitory control during action-stopping. However, this association has been challenged repeatedly over recent years. Here, we perform a critical review of both the evidence in support of the association between this P3 index and inhibitory control, as well as its documented criticisms. We first comprehensively review literature from the past three decades that suggested a link between stop-signal P3 and inhibitory control. Second, we then replicate the key empirical patterns reported in that body of literature in a uniquely large stop-signal task EEG dataset (N = 255). Third, we then examine the criticisms raised against the view of P3 as an index of inhibitory control and evaluate the evidence supporting these arguments. Finally, we present an updated view of the process(es) reflected in the stop-signal P3. Specifically, we propose that the stop-signal P3 indexes a specific, selective inhibitory control process that critically contributes to action-stopping. This view is motivated by recent two-stage models of inhibitory control and emerging empirical data. Together, we hope to clarify the process(es) reflected in the stop-signal P3 and resolve the ongoing debates regarding its utility as an index of inhibitory control during action-stopping.</p>","PeriodicalId":10758,"journal":{"name":"Cortex","volume":"183 ","pages":"232-250"},"PeriodicalIF":3.2,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142926837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-17DOI: 10.1016/j.cortex.2024.10.024
Lola Danet, Emmanuel J Barbeau, Marie Lafuma, Fabrice Bonneville, Igor Sibon, Jean-François Albucher, Jérémie Pariente, Patrice Peran
The role of the medial part of the thalamus, and in particular the mediodorsal nucleus (MD) and the mammillothalamic tract (MTT), in memory has long been studied, but their contribution remains unclear. While the main functional hypothesis regarding the MTT focuses on memory, some authors postulate that the MD plays a supervisory executive role (indirectly affecting memory retrieval) due to its dense structural connectivity with the prefrontal cortex (PFC). Recently, it has been proposed that the MD, MTT and PFC form part of the DMN the default mode network (DMN). Due to the theoretical presence of MD and MTT in the DMN, we aimed to show the effect of thalamic lesions on functional connectivity (FC) and its putative role in cognitive impairment. We recruited 12 patients with left thalamic infarction and 12 matched healthy controls. They underwent neuropsychological assessment including memory tasks, morphological 3D MRI and resting state fMRI. A ROI-to-ROI method was used for group-level FC analyses. Patients had lesions in the MD and ventrolateral nuclei, with a damaged mammillothalamic tract (MTT) in seven of them. They showed lower performance than controls on verbal memory, executive function and language tests, with more impairment in memory, working memory, semantic verbal fluency and attention in the MTT-damaged patients. Contrast analyses between patients and matched controls showed lower FC in the ventral and dorsal DMN. Correlation analyses (patients and controls pooled) showed i/a positive correlation between memory and DMN, and ii/that MTT volume correlated with decreased functional connectivity in the dorsal DMN, whereas there was no correlation with MD lesion volume. These results suggest that both the memory impairment and the DMN functional change we observed may reflect an effect of the MTT lesion rather than MD damage.
{"title":"An insight from the default mode network in patients with amnesia following left thalamic infarction involving the mediodorsal nucleus and mammillothalamic tract.","authors":"Lola Danet, Emmanuel J Barbeau, Marie Lafuma, Fabrice Bonneville, Igor Sibon, Jean-François Albucher, Jérémie Pariente, Patrice Peran","doi":"10.1016/j.cortex.2024.10.024","DOIUrl":"https://doi.org/10.1016/j.cortex.2024.10.024","url":null,"abstract":"<p><p>The role of the medial part of the thalamus, and in particular the mediodorsal nucleus (MD) and the mammillothalamic tract (MTT), in memory has long been studied, but their contribution remains unclear. While the main functional hypothesis regarding the MTT focuses on memory, some authors postulate that the MD plays a supervisory executive role (indirectly affecting memory retrieval) due to its dense structural connectivity with the prefrontal cortex (PFC). Recently, it has been proposed that the MD, MTT and PFC form part of the DMN the default mode network (DMN). Due to the theoretical presence of MD and MTT in the DMN, we aimed to show the effect of thalamic lesions on functional connectivity (FC) and its putative role in cognitive impairment. We recruited 12 patients with left thalamic infarction and 12 matched healthy controls. They underwent neuropsychological assessment including memory tasks, morphological 3D MRI and resting state fMRI. A ROI-to-ROI method was used for group-level FC analyses. Patients had lesions in the MD and ventrolateral nuclei, with a damaged mammillothalamic tract (MTT) in seven of them. They showed lower performance than controls on verbal memory, executive function and language tests, with more impairment in memory, working memory, semantic verbal fluency and attention in the MTT-damaged patients. Contrast analyses between patients and matched controls showed lower FC in the ventral and dorsal DMN. Correlation analyses (patients and controls pooled) showed i/a positive correlation between memory and DMN, and ii/that MTT volume correlated with decreased functional connectivity in the dorsal DMN, whereas there was no correlation with MD lesion volume. These results suggest that both the memory impairment and the DMN functional change we observed may reflect an effect of the MTT lesion rather than MD damage.</p>","PeriodicalId":10758,"journal":{"name":"Cortex","volume":"183 ","pages":"220-231"},"PeriodicalIF":3.2,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142909367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-17DOI: 10.1016/j.cortex.2024.11.017
Shanshan Xiao, Natalie C Ebner, Junhua Dang, Gull Rukh, Lars Westberg, Helgi B Schiöth, Håkan Fischer
The role of oxytocin-related genes in social-cognitive function has been previously established, but structural brain mechanisms underlying this link remain poorly understood. Utilizing a substantial dataset from the UK Biobank (N ≈ 30,000), this research determined associations between variations in ten single nucleotide polymorphisms (SNPs) within three oxytocin pathway genes (i.e., the oxytocin/neurophysin I prepropetide gene, the cluster of differentiation 38 glycoprotein gene, the oxytocin receptor gene) and whole-brain gray matter volume. Carriers of the AA or AG genotypes of the oxytocin receptor gene rs237851 SNP exhibited significantly larger hippocampal volume than carriers of the GG genotype. These results support the link between variations in the oxytocin receptor gene and hippocampal structure, with possible impact on social-cognitive function such as social recognition memory.
{"title":"Associations between genetic variations in oxytocin pathway genes and hippocampal volume: Insights from the UK Biobank.","authors":"Shanshan Xiao, Natalie C Ebner, Junhua Dang, Gull Rukh, Lars Westberg, Helgi B Schiöth, Håkan Fischer","doi":"10.1016/j.cortex.2024.11.017","DOIUrl":"https://doi.org/10.1016/j.cortex.2024.11.017","url":null,"abstract":"<p><p>The role of oxytocin-related genes in social-cognitive function has been previously established, but structural brain mechanisms underlying this link remain poorly understood. Utilizing a substantial dataset from the UK Biobank (N ≈ 30,000), this research determined associations between variations in ten single nucleotide polymorphisms (SNPs) within three oxytocin pathway genes (i.e., the oxytocin/neurophysin I prepropetide gene, the cluster of differentiation 38 glycoprotein gene, the oxytocin receptor gene) and whole-brain gray matter volume. Carriers of the AA or AG genotypes of the oxytocin receptor gene rs237851 SNP exhibited significantly larger hippocampal volume than carriers of the GG genotype. These results support the link between variations in the oxytocin receptor gene and hippocampal structure, with possible impact on social-cognitive function such as social recognition memory.</p>","PeriodicalId":10758,"journal":{"name":"Cortex","volume":"183 ","pages":"211-219"},"PeriodicalIF":3.2,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142906645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-16DOI: 10.1016/j.cortex.2024.11.013
Gwendolyn Jauny, Marine Le Petit, Shailendra Segobin, Catherine Merck, Serge Belliard, Francis Eustache, Mickael Laisney, Thomas Hinault
Healthy aging is characterized by frontal and diffuse brain changes, while certain age-related pathologies such as semantic dementia will be associated with more focal brain lesions, particularly in the temporo-parietal regions. These changes in structural integrity could influence functional brain networks. Here we use multilayer brain network analysis on structural (DWI) and functional (fMRI) data in younger and older healthy individuals and patients with semantic dementia. Relative to younger adults, results revealed lower levels of similarity of connectivity patterns between brain structure and function, and an increased network clustering in frontal regions in healthy older individuals. These changes were either associated with a preservation (similarity) and a decrease (clustering) in cognitive performance. Patients with semantic dementia showed an increase in the similarity of structural and functional connectivity patterns, as well as an increase in clustering in temporo-parietal regions. These changes were respectively associated with a preservation and a decrease in cognitive performance. These results provide a better characterization of distinct profiles of age- and pathology-brain network changes and their association with the preservation or the decline of cognitive functions.
{"title":"Linking structural and functional changes during healthy aging and semantic dementia using multilayer brain network analysis.","authors":"Gwendolyn Jauny, Marine Le Petit, Shailendra Segobin, Catherine Merck, Serge Belliard, Francis Eustache, Mickael Laisney, Thomas Hinault","doi":"10.1016/j.cortex.2024.11.013","DOIUrl":"https://doi.org/10.1016/j.cortex.2024.11.013","url":null,"abstract":"<p><p>Healthy aging is characterized by frontal and diffuse brain changes, while certain age-related pathologies such as semantic dementia will be associated with more focal brain lesions, particularly in the temporo-parietal regions. These changes in structural integrity could influence functional brain networks. Here we use multilayer brain network analysis on structural (DWI) and functional (fMRI) data in younger and older healthy individuals and patients with semantic dementia. Relative to younger adults, results revealed lower levels of similarity of connectivity patterns between brain structure and function, and an increased network clustering in frontal regions in healthy older individuals. These changes were either associated with a preservation (similarity) and a decrease (clustering) in cognitive performance. Patients with semantic dementia showed an increase in the similarity of structural and functional connectivity patterns, as well as an increase in clustering in temporo-parietal regions. These changes were respectively associated with a preservation and a decrease in cognitive performance. These results provide a better characterization of distinct profiles of age- and pathology-brain network changes and their association with the preservation or the decline of cognitive functions.</p>","PeriodicalId":10758,"journal":{"name":"Cortex","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142892685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-15DOI: 10.1016/j.cortex.2024.11.015
Jonathan Curot, Vincent Dornier, Luc Valton, Marie Denuelle, Alexis Robin, Florence Rulquin, Jean-Christophe Sol, Amaury De Barros, Agnès Trébuchon, Christian Bénar, Fabrice Bartolomei, Emmanuel J Barbeau
The precise and fleeting moment of rich recollection triggered by an environmental cue is difficult to reproduce in the lab. However, epilepsy patients can experience sudden reminiscences after intracranial electrical brain stimulation (EBS). In these cases, the transient brain state related to the activation of the engram and its conscious perception can be recorded using intracerebral EEG (iEEG). We collected various EBS-induced reminiscences for iEEG analysis, classifying them as follows: no or weak details (familiarity); moderate details and context (semantic and personal semantic memories); high details and context (episodic). Nine brain areas were selected within the temporal lobes (including the hippocampus and temporal neocortex, ipsi- and contralateral) and the insula, defining a network (each area as a node). Functional connectivity was measured by estimating pair-wise non-linear correlations between signals recorded from these brain regions during different memory events. Seventeen reminiscences in six patients (2 episodic, 10 personal semantic, 2 semantic memories, 5 familiar objects, 1 déjà-rêvé) were compared to 18 control experiential phenomena (unrelated to reminiscence), 18 negative EBS (which failed to elicit memories or other phenomena) in the same locations, and pre-EBS baseline activity. The global functional connectivity in the network was higher following EBS-induced reminiscences than during baseline activity, control phenomena, or negative EBS. The degree of connectivity increased with the complexity of memories; it was higher for detailed and contextualized memories like episodic memories. More significant links compared to baseline (edges with higher non-linear correlation relative to baseline) were observed for episodic memories than for less contextualized memories. These increases in connectivity occurred in all frequency bands, except the delta band. Our results support understanding declarative memory retrieval as having a multiplexed organization. They also show that richer memories activated by intracranial EBS are related to more complex connectivity patterns across medial and neocortical temporal lobe structures.
{"title":"Complex memories induced by intracranial electrical brain stimulation are related to complex networks.","authors":"Jonathan Curot, Vincent Dornier, Luc Valton, Marie Denuelle, Alexis Robin, Florence Rulquin, Jean-Christophe Sol, Amaury De Barros, Agnès Trébuchon, Christian Bénar, Fabrice Bartolomei, Emmanuel J Barbeau","doi":"10.1016/j.cortex.2024.11.015","DOIUrl":"https://doi.org/10.1016/j.cortex.2024.11.015","url":null,"abstract":"<p><p>The precise and fleeting moment of rich recollection triggered by an environmental cue is difficult to reproduce in the lab. However, epilepsy patients can experience sudden reminiscences after intracranial electrical brain stimulation (EBS). In these cases, the transient brain state related to the activation of the engram and its conscious perception can be recorded using intracerebral EEG (iEEG). We collected various EBS-induced reminiscences for iEEG analysis, classifying them as follows: no or weak details (familiarity); moderate details and context (semantic and personal semantic memories); high details and context (episodic). Nine brain areas were selected within the temporal lobes (including the hippocampus and temporal neocortex, ipsi- and contralateral) and the insula, defining a network (each area as a node). Functional connectivity was measured by estimating pair-wise non-linear correlations between signals recorded from these brain regions during different memory events. Seventeen reminiscences in six patients (2 episodic, 10 personal semantic, 2 semantic memories, 5 familiar objects, 1 déjà-rêvé) were compared to 18 control experiential phenomena (unrelated to reminiscence), 18 negative EBS (which failed to elicit memories or other phenomena) in the same locations, and pre-EBS baseline activity. The global functional connectivity in the network was higher following EBS-induced reminiscences than during baseline activity, control phenomena, or negative EBS. The degree of connectivity increased with the complexity of memories; it was higher for detailed and contextualized memories like episodic memories. More significant links compared to baseline (edges with higher non-linear correlation relative to baseline) were observed for episodic memories than for less contextualized memories. These increases in connectivity occurred in all frequency bands, except the delta band. Our results support understanding declarative memory retrieval as having a multiplexed organization. They also show that richer memories activated by intracranial EBS are related to more complex connectivity patterns across medial and neocortical temporal lobe structures.</p>","PeriodicalId":10758,"journal":{"name":"Cortex","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142909365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}