Pub Date : 2024-01-01DOI: 10.2174/0113892002312605240508042634
Asad Ahmad, Juber Akhtar, Mohammad Ahmad, Anas Islam, Badruddeen, Mohammad Irfan Khan, Shaiber Siddiqui, Akash Srivastava
Curcumin is a naturally occurring polyphenolic compound extracted from the rhizomes of Curcuma longa, commonly known as turmeric. It has been used for centuries in traditional medicine and is gaining increasing attention in modern medicine owing to its potential therapeutic benefits. Psoriasis is a chronic inflammatory disease characterized by red scaly patches on the skin. Curcumin has been found to be effective in treating psoriasis by inhibiting the activity of various enzymes and proteins involved in the inflammation and proliferation of psoriatic skin cells. Nanogel preparation of curcumin has been found to be a promising approach for the delivery of compounds to treat psoriasis. Nanogels are composed of biocompatible and biodegradable crosslinked hydrogels. The nanogel formulation of curcumin increases its solubility, stability, and bioavailability, indicating that a lower dose is needed to achieve the same therapeutic effect. This review article suggests that the nanogel preparation of curcumin can be a better alternative for psoriasis treatment as it increases the bioavailability and stability of curcumin and also reduces the required dosage. This study suggests that curcumin nanogel preparations are promising alternatives to traditional psoriasis treatments and could potentially be used as a more effective and safe treatment option. This article highlights the need for further research to fully understand the potential of curcumin nanogel preparations for psoriasis treatment in humans.
{"title":"Curcumin Nanogel Preparations: A Promising Alternative for Psoriasis Treatment.","authors":"Asad Ahmad, Juber Akhtar, Mohammad Ahmad, Anas Islam, Badruddeen, Mohammad Irfan Khan, Shaiber Siddiqui, Akash Srivastava","doi":"10.2174/0113892002312605240508042634","DOIUrl":"10.2174/0113892002312605240508042634","url":null,"abstract":"<p><p>Curcumin is a naturally occurring polyphenolic compound extracted from the rhizomes of <i>Curcuma longa</i>, commonly known as turmeric. It has been used for centuries in traditional medicine and is gaining increasing attention in modern medicine owing to its potential therapeutic benefits. Psoriasis is a chronic inflammatory disease characterized by red scaly patches on the skin. Curcumin has been found to be effective in treating psoriasis by inhibiting the activity of various enzymes and proteins involved in the inflammation and proliferation of psoriatic skin cells. Nanogel preparation of curcumin has been found to be a promising approach for the delivery of compounds to treat psoriasis. Nanogels are composed of biocompatible and biodegradable crosslinked hydrogels. The nanogel formulation of curcumin increases its solubility, stability, and bioavailability, indicating that a lower dose is needed to achieve the same therapeutic effect. This review article suggests that the nanogel preparation of curcumin can be a better alternative for psoriasis treatment as it increases the bioavailability and stability of curcumin and also reduces the required dosage. This study suggests that curcumin nanogel preparations are promising alternatives to traditional psoriasis treatments and could potentially be used as a more effective and safe treatment option. This article highlights the need for further research to fully understand the potential of curcumin nanogel preparations for psoriasis treatment in humans.</p>","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":" ","pages":"179-187"},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140955924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.2174/0113892002299899240515092703
Wei Wei, Liyuan Huang, Jun Huang, Jinhua Li, Yingying Qing, Xiaotao Hou, Wen Liu
Objective: Waiganfengsha Granule, an over-the-counter drug, is commonly used for treating windheat cold and sore throat in clinical settings. However, its material basis of medicinal efficacy is still unclear. In this study, an efficient integrated analytical strategy was established for its chemical and metabolite profiles study.
Methods: Firstly, to avoid the possible false-positive results of structural elucidation, an in-house component library that contains chemical constituents reported in the literature from the six individual medicines of Waiganfengsha Granule was established. Secondary, mass data post-processing techniques, including precursor ion list and neutral loss filtering, were applied to enhance the identification accuracy. Thirdly, for the rapid characterization of those absorbed components after oral administration in rats, the identified chemical constituents were used as candidate components for the serum analysis. By comparing the retention time and analyzing mass data, the metabolites in rat plasma were identified.
Results: As a result, 57 chemical ingredients were identified, including 21 phenolic acids, 9 alkaloids, 2 flavonoids, 5 lignins, 13 saponins, and 7 other compounds. Among these, 12 compounds were unambiguously identified by comparison with reference standards, and 45 were tentatively characterized by analyzing their accurate MS data, MS/MS fragmentation patterns, and also by comparison with those data reported in the literature. Additionally, 46 metabolites were detected and identified in rat plasma.
Conclusion: This study is beneficial for understanding the chemical composition and metabolic profiles of Waiganfengsha Granule, and the results obtained might provide a solid basis for further studies on its functional mechanism.
{"title":"Comprehensive Analysis of Chemical Ingredients of Waiganfengsha Granule and Absorbed Components in Rat Plasma Based on UHPLC-Q-TOF-MS.","authors":"Wei Wei, Liyuan Huang, Jun Huang, Jinhua Li, Yingying Qing, Xiaotao Hou, Wen Liu","doi":"10.2174/0113892002299899240515092703","DOIUrl":"10.2174/0113892002299899240515092703","url":null,"abstract":"<p><strong>Objective: </strong>Waiganfengsha Granule, an over-the-counter drug, is commonly used for treating windheat cold and sore throat in clinical settings. However, its material basis of medicinal efficacy is still unclear. In this study, an efficient integrated analytical strategy was established for its chemical and metabolite profiles study.</p><p><strong>Methods: </strong>Firstly, to avoid the possible false-positive results of structural elucidation, an in-house component library that contains chemical constituents reported in the literature from the six individual medicines of Waiganfengsha Granule was established. Secondary, mass data post-processing techniques, including precursor ion list and neutral loss filtering, were applied to enhance the identification accuracy. Thirdly, for the rapid characterization of those absorbed components after oral administration in rats, the identified chemical constituents were used as candidate components for the serum analysis. By comparing the retention time and analyzing mass data, the metabolites in rat plasma were identified.</p><p><strong>Results: </strong>As a result, 57 chemical ingredients were identified, including 21 phenolic acids, 9 alkaloids, 2 flavonoids, 5 lignins, 13 saponins, and 7 other compounds. Among these, 12 compounds were unambiguously identified by comparison with reference standards, and 45 were tentatively characterized by analyzing their accurate MS data, MS/MS fragmentation patterns, and also by comparison with those data reported in the literature. Additionally, 46 metabolites were detected and identified in rat plasma.</p><p><strong>Conclusion: </strong>This study is beneficial for understanding the chemical composition and metabolic profiles of Waiganfengsha Granule, and the results obtained might provide a solid basis for further studies on its functional mechanism.</p>","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":" ","pages":"205-219"},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11475105/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141079754","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Cytochrome P450 (CYP) 46A1, also known as cholesterol 24S-hydroxylase, is essential for maintaining the homeostasis of cholesterol in the brain and serves as a therapeutic target of neurodegenerative disorders and excitatory neurotoxicity. N-methyl-d-aspartate receptor (NMDAR) is a prototypical receptor for the excitatory neurotransmitter glutamate and can be specifically regulated by 24S-hydroxycholesterol (24S-HC). Glycyrrhiza is one of the most widely used herbs with broad clinical applications, which has several pharmacological activities, such as clearing heat and detoxifying, moistening the lung and relieving cough, analgesic, neuroprotective outcomes, and regulating a variety of drug activities. Glycyrrhiza is a commonly used herb for the treatment of epileptic encephalopathy. However, whether glycyrrhiza can interfere with the activity of CYP46A1 remains unknown.
Objective: This study aimed to investigate the regulating effects of glycyrrhiza polysaccharides (GP) on CYP46A1-mediated cholesterol conversion, as well as in the modulation of related proteins.
Materials and methods: The effects of glycyrrhiza polysaccharide (GP) on the activity of CYP46A1 were investigated in vivo and in vitro. Moreover, the potential regulatory effects of GP on the expressions of CYP46A1, HMG-CoA reductase (HMGCR), and NMDAR were also detected.
Results: The in vitro results demonstrated that glycyrrhiza polysaccharide (GP), as the main water-soluble active component of glycyrrhiza, remarkably inhibited the activity of CYP46A1 in a non-competitive mode with a Ki value of 0.7003 mg/ml. Furthermore, the in vivo experiments verified that GP markedly decreased the contents of 24S-HC in rat plasma and brain tissues as compared to the control. More importantly, the protein expressions of CYP46A1, GluN2A, GluN2B, and HMG-CoA reductase (HMGCR) in rat brains were all downregulated, whereas the mRNA expressions of CYP46A1 and HMGCR were not significantly changed after treatment with GP.
Conclusion: GP exhibits a significant inhibitory effect on CYP46A1 activity in vitro and in vivo, and the protein expressions of CYP46A1, HMGCR, and NMDAR are also inhibited by GP, which are of considerable clinical significance for GP's potential therapeutic role in treating neurological diseases.
{"title":"Inhibition of <i>Glycyrrhiza</i> Polysaccharide on Human Cytochrome P450 46A1 <i>in vitro</i> and <i>in vivo</i>: Implications in Treating Neurological Diseases.","authors":"Jie Du, Zujia Chen, Xiaodong Chen, Jiahui Zhang, Yaojun Wang, Tingting Zhao, Dalong Wang, Changyuan Wang, Yanwei Chen, Qiang Meng, Huijun Sun, Kexin Liu, Jingjing Wu","doi":"10.2174/0113892002305873240520072802","DOIUrl":"10.2174/0113892002305873240520072802","url":null,"abstract":"<p><strong>Background: </strong>Cytochrome P450 (CYP) 46A1, also known as cholesterol 24S-hydroxylase, is essential for maintaining the homeostasis of cholesterol in the brain and serves as a therapeutic target of neurodegenerative disorders and excitatory neurotoxicity. N-methyl-d-aspartate receptor (NMDAR) is a prototypical receptor for the excitatory neurotransmitter glutamate and can be specifically regulated by 24S-hydroxycholesterol (24S-HC). Glycyrrhiza is one of the most widely used herbs with broad clinical applications, which has several pharmacological activities, such as clearing heat and detoxifying, moistening the lung and relieving cough, analgesic, neuroprotective outcomes, and regulating a variety of drug activities. Glycyrrhiza is a commonly used herb for the treatment of epileptic encephalopathy. However, whether glycyrrhiza can interfere with the activity of CYP46A1 remains unknown.</p><p><strong>Objective: </strong>This study aimed to investigate the regulating effects of glycyrrhiza polysaccharides (GP) on CYP46A1-mediated cholesterol conversion, as well as in the modulation of related proteins.</p><p><strong>Materials and methods: </strong>The effects of glycyrrhiza polysaccharide (GP) on the activity of CYP46A1 were investigated <i>in vivo</i> and <i>in vitro</i>. Moreover, the potential regulatory effects of GP on the expressions of CYP46A1, HMG-CoA reductase (HMGCR), and NMDAR were also detected.</p><p><strong>Results: </strong>The <i>in vitro</i> results demonstrated that glycyrrhiza polysaccharide (GP), as the main water-soluble active component of glycyrrhiza, remarkably inhibited the activity of CYP46A1 in a non-competitive mode with a Ki value of 0.7003 mg/ml. Furthermore, the <i>in vivo</i> experiments verified that GP markedly decreased the contents of 24S-HC in rat plasma and brain tissues as compared to the control. More importantly, the protein expressions of CYP46A1, GluN2A, GluN2B, and HMG-CoA reductase (HMGCR) in rat brains were all downregulated, whereas the mRNA expressions of CYP46A1 and HMGCR were not significantly changed after treatment with GP.</p><p><strong>Conclusion: </strong>GP exhibits a significant inhibitory effect on CYP46A1 activity <i>in vitro</i> and <i>in vivo</i>, and the protein expressions of CYP46A1, HMGCR, and NMDAR are also inhibited by GP, which are of considerable clinical significance for GP's potential therapeutic role in treating neurological diseases.</p>","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":" ","pages":"227-234"},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141154778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.2174/0113892002323535240830093452
Dilpreet Singh, Neelam Poonia
The field of cancer therapy has witnessed a transformative shift with the emergence of biomimetic nanoscale drug delivery systems. These innovative platforms draw inspiration from nature's intricate designs and have the potential to revolutionize cancer treatment by precisely targeting tumor cells while sparing healthy tissues. In this critical appraisal, we explore the current advances in biomimetic nanosystems, examining their principles, diverse natural inspirations, benefits, and challenges. Biomimetic nanoscale systems, including liposomes, exosome-based carriers, virus-mimetic nanoparticles, and cell-membrane-coated nanoparticles, have demonstrated the ability to overcome the complexities of the tumor microenvironment. They offer enhanced target specificity, improved cellular uptake, and prolonged circulation, addressing limitations associated with conventional chemotherapy. We assess recent breakthroughs and discuss the potential impact of biomimetic nanosystems on oncology, emphasizing their versatility in encapsulating various therapeutic payloads, from small molecules to nucleic acids and immunotherapeutics. While these systems hold great promise, we also scrutinize safety concerns, scalability issues, and the necessity for rigorous clinical validation. In conclusion, biomimetic nanoscale drug delivery systems represent a promising avenue in the quest for more effective and targeted cancer therapies. This appraisal provides a comprehensive overview of the current state of the field, highlighting its potential to shape the future of cancer treatment and underscoring the importance of continued research and development efforts in this dynamic and transformative domain.
{"title":"Biomimetic Nanoscale Systems for Targeted Delivery in Cancer: Current Advances and Future Prospects.","authors":"Dilpreet Singh, Neelam Poonia","doi":"10.2174/0113892002323535240830093452","DOIUrl":"10.2174/0113892002323535240830093452","url":null,"abstract":"<p><p>The field of cancer therapy has witnessed a transformative shift with the emergence of biomimetic nanoscale drug delivery systems. These innovative platforms draw inspiration from nature's intricate designs and have the potential to revolutionize cancer treatment by precisely targeting tumor cells while sparing healthy tissues. In this critical appraisal, we explore the current advances in biomimetic nanosystems, examining their principles, diverse natural inspirations, benefits, and challenges. Biomimetic nanoscale systems, including liposomes, exosome-based carriers, virus-mimetic nanoparticles, and cell-membrane-coated nanoparticles, have demonstrated the ability to overcome the complexities of the tumor microenvironment. They offer enhanced target specificity, improved cellular uptake, and prolonged circulation, addressing limitations associated with conventional chemotherapy. We assess recent breakthroughs and discuss the potential impact of biomimetic nanosystems on oncology, emphasizing their versatility in encapsulating various therapeutic payloads, from small molecules to nucleic acids and immunotherapeutics. While these systems hold great promise, we also scrutinize safety concerns, scalability issues, and the necessity for rigorous clinical validation. In conclusion, biomimetic nanoscale drug delivery systems represent a promising avenue in the quest for more effective and targeted cancer therapies. This appraisal provides a comprehensive overview of the current state of the field, highlighting its potential to shape the future of cancer treatment and underscoring the importance of continued research and development efforts in this dynamic and transformative domain.</p>","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":" ","pages":"403-415"},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142139558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.2174/0113892002282271231219044508
Teslime Erdogan, Halis Oguz, Orhan Corum
Background: The simultaneous use of NSAIDs and antibiotics is recommended for bacterial diseases in human and veterinary medicine. Moxifloxacin (MFX) and dexketoprofen (DEX) can be used simultaneously in bacterial infections. However, there are no studies on how the simultaneous use of DEX affects the pharmacokinetics of MFX in rats.
Objectives: The aim of this study was to determine the effect of DEX on plasma and lung pharmacokinetics of MFX in male and female rats.
Methods: A total of 132 rats were randomly divided into 2 groups: MFX (n=66, 33 males/33 females) and MFX+DEX (n=66, 33 females/33 males). MFX at a dose of 20 mg/kg and DEX at a dose of 25 mg/kg were administered intraperitoneally. Plasma and lung concentrations of MFX were determined using the highperformance liquid chromatography-UV and pharmacokinetic parameters were evaluated by noncompartmental analysis.
Results: Simultaneous administration of DEX increased the plasma and lung area under the curve from 0 to 8 h (AUC0-8) and peak concentration (Cmax) of MFX in rats, while it significantly decreased the total body clearance (CL/F). When female and male rats were compared, significant differences were detected in AUC0-8, Cmax, CL/F and volume of distribution. The AUC0-8lung/AUC0-8plasma ratios of MFX were calculated as 1.68 and 1.65 in female rats and 5.15 and 4.90 in male rats after single and combined use, respectively.
Conclusion: MFX was highly transferred to the lung tissue and this passage was remarkably higher in male rats. However, DEX administration increased the plasma concentration of MFX in both male and female rats but did not change its passage to the lung. However, there is a need for a more detailed investigation of the difference in the pharmacokinetics of MFX in male and female rats.
{"title":"Effect of Dexketoprofen on the Disposition Kinetics of Moxifloxacin in Plasma and Lung in Male and Female Rats.","authors":"Teslime Erdogan, Halis Oguz, Orhan Corum","doi":"10.2174/0113892002282271231219044508","DOIUrl":"10.2174/0113892002282271231219044508","url":null,"abstract":"<p><strong>Background: </strong>The simultaneous use of NSAIDs and antibiotics is recommended for bacterial diseases in human and veterinary medicine. Moxifloxacin (MFX) and dexketoprofen (DEX) can be used simultaneously in bacterial infections. However, there are no studies on how the simultaneous use of DEX affects the pharmacokinetics of MFX in rats.</p><p><strong>Objectives: </strong>The aim of this study was to determine the effect of DEX on plasma and lung pharmacokinetics of MFX in male and female rats.</p><p><strong>Methods: </strong>A total of 132 rats were randomly divided into 2 groups: MFX (n=66, 33 males/33 females) and MFX+DEX (n=66, 33 females/33 males). MFX at a dose of 20 mg/kg and DEX at a dose of 25 mg/kg were administered intraperitoneally. Plasma and lung concentrations of MFX were determined using the highperformance liquid chromatography-UV and pharmacokinetic parameters were evaluated by noncompartmental analysis.</p><p><strong>Results: </strong>Simultaneous administration of DEX increased the plasma and lung area under the curve from 0 to 8 h (AUC<sub>0-8</sub>) and peak concentration (C<sub>max</sub>) of MFX in rats, while it significantly decreased the total body clearance (CL/F). When female and male rats were compared, significant differences were detected in AUC<sub>0-8</sub>, C<sub>max</sub>, CL/F and volume of distribution. The AUC<sub>0-8lung</sub>/AUC<sub>0-8plasma</sub> ratios of MFX were calculated as 1.68 and 1.65 in female rats and 5.15 and 4.90 in male rats after single and combined use, respectively.</p><p><strong>Conclusion: </strong>MFX was highly transferred to the lung tissue and this passage was remarkably higher in male rats. However, DEX administration increased the plasma concentration of MFX in both male and female rats but did not change its passage to the lung. However, there is a need for a more detailed investigation of the difference in the pharmacokinetics of MFX in male and female rats.</p>","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":" ","pages":"63-70"},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139520283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.2174/0113892002286019240315052145
Jinhua Wen, Yuwei Xiao, Menghua Zhao, Chen Yang, Weiqiang Hu
Objective: This study aimed to investigate the effects of clarithromycin and ketoconazole on the pharmacokinetic properties of tacrolimus in different CYP3A4 genotype recombinant metabolic enzyme systems, so as to understand the drug interactions and their mechanisms further.
Method: The experiment was divided into three groups: a blank control group, CYP3A4*1 group and CYP3A4*18 recombinant enzyme group. Each group was added with tacrolimus (FK506) of a series of concentrations. Then 1 umol/L clarithromycin or ketoconazole was added to the recombinant enzyme group and incubated in the NADPH system for 30 minutes to examine the effects of clarithromycin and ketoconazole on the metabolizing enzymes' activity of different genotypes. The remaining concentration of FK506 in the reaction system was determined using UPLC-MS/MS, and the enzyme kinetic parameters were calculated using the software.
Results: The metabolism of CYP3A4*18 to FK506 was greater than that of CyP3А4*1B. Compared with the CYP3A4*1 group, the metabolic rate and clearance of FK506 in the CYP3A4*18 group significantly increased, with Km decreasing. Clarithromycin and ketoconazole inhibit the metabolism of FK506 by affecting the enzyme activity of CYP3A4*1B and CYP3A4*18B. After adding clarithromycin or ketoconazole, the metabolic rate of FK506 significantly decreased in CYP3A4*1 and CYP3A4*18, with Km increasing, Vmax and Clint decreasing.
Conclusion: Compared with CYP3A4*1, CYP3A4*18 has a greater metabolism of FK506, clarithromycin and ketoconazole can inhibit both the enzymatic activities of CYP3A4*1 and CYP3A4*18, consequently affecting the metabolism of FK506 and the inhibitory on CYP3A4*1 is stronger.
{"title":"Effects of Clarithromycin and Ketoconazole on FK506 Metabolism in Different CYP3A4 Genotype Recombinant Metabolic Enzyme Systems.","authors":"Jinhua Wen, Yuwei Xiao, Menghua Zhao, Chen Yang, Weiqiang Hu","doi":"10.2174/0113892002286019240315052145","DOIUrl":"10.2174/0113892002286019240315052145","url":null,"abstract":"<p><strong>Objective: </strong>This study aimed to investigate the effects of clarithromycin and ketoconazole on the pharmacokinetic properties of tacrolimus in different CYP3A4 genotype recombinant metabolic enzyme systems, so as to understand the drug interactions and their mechanisms further.</p><p><strong>Method: </strong>The experiment was divided into three groups: a blank control group, CYP3A4*1 group and CYP3A4*18 recombinant enzyme group. Each group was added with tacrolimus (FK506) of a series of concentrations. Then 1 umol/L clarithromycin or ketoconazole was added to the recombinant enzyme group and incubated in the NADPH system for 30 minutes to examine the effects of clarithromycin and ketoconazole on the metabolizing enzymes' activity of different genotypes. The remaining concentration of FK506 in the reaction system was determined using UPLC-MS/MS, and the enzyme kinetic parameters were calculated using the software.</p><p><strong>Results: </strong>The metabolism of CYP3A4*18 to FK506 was greater than that of CyP3А4*1B. Compared with the CYP3A4*1 group, the metabolic rate and clearance of FK506 in the CYP3A4*18 group significantly increased, with Km decreasing. Clarithromycin and ketoconazole inhibit the metabolism of FK506 by affecting the enzyme activity of CYP3A4*1B and CYP3A4*18B. After adding clarithromycin or ketoconazole, the metabolic rate of FK506 significantly decreased in CYP3A4*1 and CYP3A4*18, with Km increasing, Vmax and Clint decreasing.</p><p><strong>Conclusion: </strong>Compared with CYP3A4*1, CYP3A4*18 has a greater metabolism of FK506, clarithromycin and ketoconazole can inhibit both the enzymatic activities of CYP3A4*1 and CYP3A4*18, consequently affecting the metabolism of FK506 and the inhibitory on CYP3A4*1 is stronger.</p>","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":" ","pages":"174-177"},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140206417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.2174/0113892002289027240809114634
Wen Kou, Xinan Wu
Precision dosing is essential in improving drug efficacy and minimizing adverse reactions, especially in liver impaired patients. However, there is no objective index to directly evaluate the body's ability to metabolize specific drugs. Many factors affect the activity of enzymes, and alter the systemic exposure of substrate drugs, like genetic polymorphism, drug-drug interactions and physiological/pathological state. So, quantifying the activities of enzymes dynamically would be helpful to make precision dosing. Recently, some endogenous substrates of enzymes, such as 6β-hydroxycortisol (6β-OH-cortisol)/cortisol and 6β-hydroxycortisone, have been identified to investigate variations in drug enzymes in humans. Clinical data obtained support their performance as surrogate probes in terms of reflecting the activities of corresponding enzyme. Therefore, a group of Monitored endogenous biomarkers in multiple points can address the uncertainty in drug metabolization in the preclinical phase and have the potential to fulfill precision dosing. This review focuses on recent progress in the contribution of endogenous substances to drug precision dosing, factors that influence enzyme activities, and drug exposure in vivo.
{"title":"Hepatic Metabolic Enzyme Activity with Endogenous Substances-Current Status, Challenges and Limitations.","authors":"Wen Kou, Xinan Wu","doi":"10.2174/0113892002289027240809114634","DOIUrl":"10.2174/0113892002289027240809114634","url":null,"abstract":"<p><p>Precision dosing is essential in improving drug efficacy and minimizing adverse reactions, especially in liver impaired patients. However, there is no objective index to directly evaluate the body's ability to metabolize specific drugs. Many factors affect the activity of enzymes, and alter the systemic exposure of substrate drugs, like genetic polymorphism, drug-drug interactions and physiological/pathological state. So, quantifying the activities of enzymes dynamically would be helpful to make precision dosing. Recently, some endogenous substrates of enzymes, such as 6β-hydroxycortisol (6β-OH-cortisol)/cortisol and 6β-hydroxycortisone, have been identified to investigate variations in drug enzymes in humans. Clinical data obtained support their performance as surrogate probes in terms of reflecting the activities of corresponding enzyme. Therefore, a group of Monitored endogenous biomarkers in multiple points can address the uncertainty in drug metabolization in the preclinical phase and have the potential to fulfill precision dosing. This review focuses on recent progress in the contribution of endogenous substances to drug precision dosing, factors that influence enzyme activities, and drug exposure <i>in vivo</i>.</p>","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":" ","pages":"381-390"},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142003806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-23DOI: 10.2174/0113892002274982231211102127
Handan Tanyildizi-Kökkülünk, Ahmet Murat Şenişik, Mahmut Yüksel
Aim: This study was aimed to re-determine the radiation dose rate emitted from the patients who underwent bone scintigraphy Material and Methods: A mean of 20.87±2.54 mCi 99mTc-MDP was injected into patients. A GM counter was used to measure dose rates in 3 different periods, at intervals of 25, 50, 100, 150, and 200 cm from the patient's anterior for head, thorax, abdomen, and pelvis levels. Measurements were used to determine patient-induced environmental doses and radiation doses to personnel/patient relatives. Results and Discussion: There were strong correlations between mean dose rate (mRh-1mCi-1) and time at all regions and distances. The received dose for staff was calculated between a range of 0.01-0.02 mSv/mCi per patient. The total dose to be received by the companion was estimated to be between 0.019-0.039 and 0.011-0.022 mSv for public and personal vehicle transportation, respectively. The radiation dose exposed by nurses (4th, 6th, and 8th hours after injection) was found to be 0.012-0.064, 0.006-0.038, and 0.002-0.018 mSv/patient, respectively. Conclusion: The fact that the doses of personnel and patient relatives in the study were below the legal limits shows that the study was carried out within a safe range. However, in terms of radiation protection, it is necessary to limit the time spent with the patient as much as possible and increase the distance. Since the dangers of low radiation dosages are unknown, there is a need to inform the patient's relatives and staff about the potential risks.
{"title":"Reassessment of Radiation Exposure From Bone Scintigraphy","authors":"Handan Tanyildizi-Kökkülünk, Ahmet Murat Şenişik, Mahmut Yüksel","doi":"10.2174/0113892002274982231211102127","DOIUrl":"https://doi.org/10.2174/0113892002274982231211102127","url":null,"abstract":"Aim: This study was aimed to re-determine the radiation dose rate emitted from the patients who underwent bone scintigraphy Material and Methods: A mean of 20.87±2.54 mCi 99mTc-MDP was injected into patients. A GM counter was used to measure dose rates in 3 different periods, at intervals of 25, 50, 100, 150, and 200 cm from the patient's anterior for head, thorax, abdomen, and pelvis levels. Measurements were used to determine patient-induced environmental doses and radiation doses to personnel/patient relatives. Results and Discussion: There were strong correlations between mean dose rate (mRh-1mCi-1) and time at all regions and distances. The received dose for staff was calculated between a range of 0.01-0.02 mSv/mCi per patient. The total dose to be received by the companion was estimated to be between 0.019-0.039 and 0.011-0.022 mSv for public and personal vehicle transportation, respectively. The radiation dose exposed by nurses (4th, 6th, and 8th hours after injection) was found to be 0.012-0.064, 0.006-0.038, and 0.002-0.018 mSv/patient, respectively. Conclusion: The fact that the doses of personnel and patient relatives in the study were below the legal limits shows that the study was carried out within a safe range. However, in terms of radiation protection, it is necessary to limit the time spent with the patient as much as possible and increase the distance. Since the dangers of low radiation dosages are unknown, there is a need to inform the patient's relatives and staff about the potential risks.","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":"6 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139031796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Cancer drug resistance remains a difficult barrier to effective treatment, necessitating a thorough understanding of its multi-layered mechanism. Objective: This study aims to comprehensively explore the diverse mechanisms of cancer drug resistance, assess the evolution of resistance detection methods, and identify strategies for overcoming this challenge. The evolution of resistance detection methods and identification strategies for overcoming the challenge. Methods: A comprehensive literature review was conducted to analyze intrinsic and acquired drug resistance mechanisms, including altered drug efflux, reduced uptake, inactivation, target mutations, signaling pathway changes, apoptotic defects, and cellular plasticity. The evolution of mutation detection techniques, encompassing clinical predictions, experimental approaches, and computational methods, was investigated. Strategies to enhance drug efficacy, modify pharmacokinetics, optimizoptimizee binding modes, and explore alternate protein folding states were examined. Results: The study comprehensively overviews the intricate mechanisms contributing to cancer drug resistance. It outlines the progression of mutation detection methods and underscores the importance of interdisciplinary approaches. Strategies to overcome drug resistance challenges, such as modulating ATP-binding cassette transporters and developing multidrug resistance inhibitors, are discussed. The study underscores the critical need for continued research to enhance cancer treatment efficacy. Conclusion: This study provides valuable insights into the complexity of cancer drug resistance mechanisms, highlights evolving detection methods, and offers potential strategies to enhance treatment outcomes.
背景:癌症耐药性仍然是有效治疗的一个难以逾越的障碍,因此有必要深入了解其多层次的机制。研究目的本研究旨在全面探讨癌症耐药性的多种机制,评估耐药性检测方法的演变,并确定克服这一挑战的策略。耐药性检测方法的演变,并确定克服这一挑战的策略。方法:通过全面的文献综述,分析内在和获得性耐药机制,包括药物外流改变、摄取减少、失活、靶点突变、信号通路变化、凋亡缺陷和细胞可塑性。研究还探讨了突变检测技术的演变,包括临床预测、实验方法和计算方法。研究还探讨了提高药物疗效、改变药代动力学、优化结合模式和探索替代蛋白质折叠状态的策略。研究结果该研究全面概述了导致癌症耐药性的复杂机制。它概述了突变检测方法的进展,并强调了跨学科方法的重要性。研究还讨论了克服耐药性挑战的策略,如调节 ATP 结合盒转运体和开发多药耐药性抑制剂。该研究强调了继续开展研究以提高癌症治疗效果的迫切需要。结论:本研究为了解癌症耐药机制的复杂性提供了宝贵的见解,强调了不断发展的检测方法,并提供了提高治疗效果的潜在策略。
{"title":"The Impacts and Changes Related to the Cancer Drug Resistance Mechanism","authors":"Prachi varshney, Vishal Sharma, Devdhar Yadav, Yogesh Kumar, Amit Singh, Naga Rani Kagithala, Pramod Kumar Sharma, Omji Porwal, Neeraj Kumar Fuloria, Pradeep Kumar Sharma, Ashok Kumar Gupta, Koteswara Rao GSN","doi":"10.2174/0113892002266408231207150547","DOIUrl":"https://doi.org/10.2174/0113892002266408231207150547","url":null,"abstract":"Background: Cancer drug resistance remains a difficult barrier to effective treatment, necessitating a thorough understanding of its multi-layered mechanism. Objective: This study aims to comprehensively explore the diverse mechanisms of cancer drug resistance, assess the evolution of resistance detection methods, and identify strategies for overcoming this challenge. The evolution of resistance detection methods and identification strategies for overcoming the challenge. Methods: A comprehensive literature review was conducted to analyze intrinsic and acquired drug resistance mechanisms, including altered drug efflux, reduced uptake, inactivation, target mutations, signaling pathway changes, apoptotic defects, and cellular plasticity. The evolution of mutation detection techniques, encompassing clinical predictions, experimental approaches, and computational methods, was investigated. Strategies to enhance drug efficacy, modify pharmacokinetics, optimizoptimizee binding modes, and explore alternate protein folding states were examined. Results: The study comprehensively overviews the intricate mechanisms contributing to cancer drug resistance. It outlines the progression of mutation detection methods and underscores the importance of interdisciplinary approaches. Strategies to overcome drug resistance challenges, such as modulating ATP-binding cassette transporters and developing multidrug resistance inhibitors, are discussed. The study underscores the critical need for continued research to enhance cancer treatment efficacy. Conclusion: This study provides valuable insights into the complexity of cancer drug resistance mechanisms, highlights evolving detection methods, and offers potential strategies to enhance treatment outcomes.","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":"65 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139028841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-23DOI: 10.2174/0113892002278220231208072351
Devran Coskun, Orhan Corum, Duygu Durna Corum, Kamil Uney
Background: Enrofloxacin (ENR) is a fluoroquinolone antibiotic approved for use in sheep of all ages. The body composition and metabolic capability change with age. These changes may alter the pharmacokinetics of drugs and thus their effect. Therefore, the pharmacokinetics of drugs need to be established in target-age animals Objective: To determine the pharmacokinetics of ENR and its active metabolite, ciprofloxacin (CIP), following a single intravenous administration of ENR at a dose of 10 mg/kg in different ages of sheep. Methods: The study was carried out in the one-, six- and twelve-month age period of the sheep. A single dose of 10 mg/kg ENR was administered intravenously through the jugular vein to sheep in all age periods. ENR and CIP plasma concentrations were determined using HPLC–UV and analyzed using a non-compartmental method. Results: ENR was detected in the plasma until 36 h in one-month-old and up to 24 h in other ages. CIP was detected in the plasma up to 24 h in all age groups. The t1/2ʎz and Vdss were significantly higher in one-month-old sheep than in six and twelve-months old sheep. There was no difference in ClT and AUC values in different age groups. AUC0-∞CIP/AUC0-∞ENR ratios were higher in one-month-old than in six- and twelve-months sheep. Conclusion: The most important pharmacokinetic changes associated with aging in sheep are decreased Vdss and t1/2ʎz of ENR and the low ratio metabolizing of ENR to CIP. Pharmacokinetic/pharmacodynamic data showed that ENR after IV administration of 10 mg/kg dose provided the optimal AUC0–24/MIC90 ratios for E. coli, P. multocida and Mycoplasma spp. (>125) with MIC of 0.37 µg/mL and for S. aureus (>30) with MIC of 0.5 µg/mL in all ages of sheep.
{"title":"Comparative Pharmacokinetics of İntravenous Enrofloxacin in One- Six- And Twelve-Month-Old Sheep","authors":"Devran Coskun, Orhan Corum, Duygu Durna Corum, Kamil Uney","doi":"10.2174/0113892002278220231208072351","DOIUrl":"https://doi.org/10.2174/0113892002278220231208072351","url":null,"abstract":"Background: Enrofloxacin (ENR) is a fluoroquinolone antibiotic approved for use in sheep of all ages. The body composition and metabolic capability change with age. These changes may alter the pharmacokinetics of drugs and thus their effect. Therefore, the pharmacokinetics of drugs need to be established in target-age animals Objective: To determine the pharmacokinetics of ENR and its active metabolite, ciprofloxacin (CIP), following a single intravenous administration of ENR at a dose of 10 mg/kg in different ages of sheep. Methods: The study was carried out in the one-, six- and twelve-month age period of the sheep. A single dose of 10 mg/kg ENR was administered intravenously through the jugular vein to sheep in all age periods. ENR and CIP plasma concentrations were determined using HPLC–UV and analyzed using a non-compartmental method. Results: ENR was detected in the plasma until 36 h in one-month-old and up to 24 h in other ages. CIP was detected in the plasma up to 24 h in all age groups. The t1/2ʎz and Vdss were significantly higher in one-month-old sheep than in six and twelve-months old sheep. There was no difference in ClT and AUC values in different age groups. AUC0-∞CIP/AUC0-∞ENR ratios were higher in one-month-old than in six- and twelve-months sheep. Conclusion: The most important pharmacokinetic changes associated with aging in sheep are decreased Vdss and t1/2ʎz of ENR and the low ratio metabolizing of ENR to CIP. Pharmacokinetic/pharmacodynamic data showed that ENR after IV administration of 10 mg/kg dose provided the optimal AUC0–24/MIC90 ratios for E. coli, P. multocida and Mycoplasma spp. (>125) with MIC of 0.37 µg/mL and for S. aureus (>30) with MIC of 0.5 µg/mL in all ages of sheep.","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":"60 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139028919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}