Background: Propofol is an intravenous agent for clinical anesthesia. As the influence of the hypobaric-hypoxic environment (Qinghai-Tibetan region, altitude: 2800-4300 m, PaO2: 15.1-12.4 kPa) on the metabolism of Propofol is complex, the research results on the metabolic characteristics of Propofol in high-altitude areas remain unclear. This study aimed to investigate the pharmacokinetic characteristics of Propofol in a high-altitude hypoxic environment using animal experiments.
Methods: Rats were randomly divided into three groups: high-altitude, medium-altitude, and plain groups. The time of disappearance and recovery of the rat righting reflex was recorded as the time of anesthesia induction and awakening, respectively. The plasma concentration of Propofol was determined by gas chromatography-mass spectrometry. A pharmacokinetic analysis software was used to analyze the blood-drug concentrations and obtain the pharmacokinetic parameters.
Results: We observed that when Propofol anesthetizes rats, the anesthesia induction time was shortened, and the recovery time was prolonged with increased altitude. Compared with the plain group, the clearance of Propofol decreased, whereas the half-life, area under the concentration-time curve, peak plasma concentration, and average residence time extension increased.
Conclusion: The pharmacokinetic characteristics of Propofol are significantly altered in high-altitude hypoxic environments.
Background: The ultra-short-acting benzodiazepine remimazolam, approved for procedural sedation and general anesthesia, is inactivated by carboxylesterase 1 (CES1).
Objective: Remimazolam´s involvement in CES1-mediated drug-drug interactions (DDIs) was investigated.
Methods: Possible interactions of remimazolam were studied in co-exposure experiments with eleven different drugs. Further, substrates and inhibitors of CES1, identified in the literature, were evaluated for possible in-vivo inhibition using pharmacokinetic and Ki or IC50 values. Compounds with only one published inhibitory concentration and CES1 substrates lacking inhibition data were assigned conservative Ki values.
Results: In human liver homogenates and/or blood cells, remimazolam showed no significant inhibition of esmolol and landiolol metabolism, which, in turn, at up to 98 and 169 μM, respectively, did not inhibit remimazolam hydrolysis by human liver homogenates. In human liver S9 fractions, IC50 values ranged from 0.69 μM (simvastatin) and 57 μM (diltiazem) to > 100 μM (atorvastatin) and, for the remaining test items (bupropion, carvedilol, nelfinavir, nitrendipine, and telmisartan), they ranged from 126 to 658 μM. Remifentanil was ineffective even at 1250 μM. Guidance-conforming evaluation revealed no relevant drug-drug interactions with remimazolam via CES1. The algorithm-based predictions were consistent with human study data. Among CES1 inhibitors and substrates identified in the literature, only dapsone and rufinamide were found to be possible in-vivo inhibitors of remimazolam metabolism.
Conclusion: Data and analyses suggest a very low potential of remimazolam for pharmacokinetic DDIs mediated by CES1. The theoretical approach and compiled data are not specific to remimazolam and, hence, applicable in the evaluation of other CES1 substrates.
Objective: Various population pharmacokinetic (PPK) models have been established to help determine the appropriate dosage of docetaxel, however, no clear consensus on optimal dosing has been achieved. The purpose of this study is to perform an external evaluation of published models in order to test their predictive performance, and to find an appropriate PPK model for Chinese breast cancer patients.
Methods: A systematic literature search of docetaxel PPK models was performed using PubMed, Web of Science, China National Knowledge Infrastructure, and WanFang databases. The predictive performance of eleven identified models was evaluated using prediction-based and simulation-based diagnostics on an independent dataset (112 docetaxel concentrations from 56 breast cancer patients). The -2×log (likelihood) and Akaike information criterion were also calculated to evaluate model fit.
Results: The median prediction error of eight of the eleven models was less than 10%. The model fitting results showed that the three-compartment model of Bruno et al. had the best prediction performance and that the three compartment model of Wang et al. had the best simulation effect. Furthermore, although the covariates that significantly affect PK parameters were different between them, seven models demonstrated that docetaxel PK parameters were influenced by liver function.
Conclusions: Three compartment PPK models may be predictive of optimal docetaxel dosage for Chinese breast cancer patients. However, for patients with impaired liver function, the choice of which model to use to predict the blood concentration of docetaxel still requires great care.
Background: High altitude environment affects the pharmacokinetic (PK) parameters of drugs and the PK parameters are an important theoretical basis for guiding the rational clinical use of drugs. Warfarin is an oral anticoagulant of the coumarin class commonly used in clinical practice, but it has a narrow therapeutic window and wide individual variation. However, the effect of high altitude environment on PK and pharmacodynamic (PD) of warfarin is unclear.
Objective: The objective of this study is to investigate the effect of a high altitude environment on PK and PD of warfarin in rats.
Method: Rats were randomly divided into plain group and high altitude group and blood samples were collected through the orbital venous plexus after administration of 2 mg/kg warfarin. Warfarin concentrations in plasma samples were determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and PK parameters were calculated by the non-compartment model using WinNonlin 8.1 software. Meanwhile, the expression of PXR, P-gp and CYP2C9 in liver tissues was also determined by western blotting. The effect of high altitude environment on PD of warfarin was explored by measuring activated partial thromboplastin time (APTT) and prothrombin time (PT) values and then calculated international normalized ratio (INR) values based on PT.
Results: Significant changes in PK behaviors and PD of warfarin in high altitude-rats were observed. Compared with the plain-rats, the peak concentration (Cmax) and the area under the plasma concentration-time curve (AUC) increased significantly by 50.9% and 107.46%, respectively. At the same time, high altitude environment significantly inhibited the expression of PXR, P-gp and CYP2C9 in liver tissues. The results of the PD study showed that high altitude environments significantly prolonged PT, APTT and INR values.
Conclusion: High altitude environment inhibited the metabolism and increased the absorption of warfarin in rats and increased the effect of anticoagulant effect, suggesting that the optimal dose of warfarin for patients at high altitude should be reassessed.
Background: Depression is a common neuropsychiatric disease. As a famous traditional Chinese medicine with significant anti-depressive and sleep-promoting effects, Ziziphi Spinosae Semen (ZSS) has attracted the attention of many researchers. Although it is well known that Magnoflorine (MAG) and Spinosin (SPI) were the main active components isolated from ZSS, there is a lack of research on the combined treatment of depression with these two ingredients.
Methods: The shaking bottle method was used to simulate the human environment for detecting the changes in oil-water partition coefficient before and after the drug combination. Cell viability was evaluated by the MTT assay. To establish a mouse model of depression and insomnia by CUMS method, and then to explore the effect of combined administration of MAG and SPI on depression in CUMS model by observing behavior and analyzing pharmacokinetics.
Results: The change in LogP values affected the lipid solubility of MAG and increased the water solubility of SPI, allowing them to penetrate more easily through the blood-brain barrier into the brain. Compared with the model group, MAG-SPI with a concentration of 60 μM significantly increased cell survival rate. In both the TST and FST experiments, the mice showed a decrease in immobilization time. Pharmacokinetic results showed that the pharmacokinetic parameters, Cmax and AUC of MAG and SPI, were increased in the case of combination, which resulted in enhancement of their relative bioavailability and improvement of in vivo effects.
Conclusions: The present study demonstrated that a combination of MAG and SPI had a synergistic antidepressant effect in CUMS mouse model.
Warfarin is a popular anticoagulant with high global demand. However, studies have underlined serious safety issues when warfarin is consumed concomitantly with herbs or its formulations. This review aimed to highlight the mechanisms behind herb-warfarin interactions while laying special emphasis on its PKPD interactions and evidence on Herb-Warfarin Interaction (HWI) with regards to three different scenarios, such as when warfarin is consumed with herbs, taken as foods or prescribed as medicine, or when used in special situations. A targeted literature methodology involving different scientific databases was adopted for acquiring information on the subject of HWIs. Results of the present study revealed some of the fatal consequences of HWI, including post-operative bleeding, thrombosis, subarachnoid hemorrhage, and subdural hematomas occurring as a result of interactions between warfarin and herbs or commonly associated food products from Hypericum perforatum, Zingiber officinale, Vaccinium oxycoccos, Citrus paradisi, and Punica granatum. In terms of PK-PD parameters, herbs, such as Coptis chinensis Franch. and Phellodendron amurense Rupr., were found to compete with warfarin for binding with plasma proteins, leading to an increase in free warfarin levels in the bloodstream, resulting in its augmented antithrombic effect. Besides, HWIs were also found to decrease International Normalised Ratio (INR) levels following the consumption of Persea americana or avocado. Therefore, there is an urgent need for an up-to-date interaction database to educate patients and healthcare providers on these interactions, besides promoting the adoption of novel technologies, such as natural language processing, by healthcare professionals to guide them in making informed decisions to avoid HWIs.