Traditional treatment methods for the management of diabetes, such as oral hypoglycemic med-ications and insulin injections, include drawbacks like systemic adverse effects, inconsistent medication levels, and low compliance. To avoid difficulties, glycemic levels in diabetic patients, a long-term meta-bolic condition, must be precisely and consistently controlled. Smart therapeutic systems allow for precise, on-demand medication release in response to local physiological or environmental cues, such as glucose levels, pH, temperature, or enzyme activity. They provide a possible substitute for conventional diabetic therapies. As these systems only administer medications when and where needed, they reduce side effects while simultaneously increasing therapeutic efficacy and patient compliance. These systems are designed to respond to signals from external sources (such as light, ultrasound, or magnetic fields) or stimuli like temperature, pH, glucose levels, and enzymes. As they use glucose-sensitive substances like phenyl-boronic acid, glucose oxidase, or polymers to precisely release insulin in hyperglycemic circumstances, glucose-responsive delivery methods are essential for diabetes. This review discusses a stimuli-responsive drug delivery system designed for diabetes treatment, with a focus on the developments in biomaterials, nanotechnology, and engineering that improve its effectiveness and biocompatibility. Along with the pos-sibility of combining a stimuli-responsive drug delivery system with wearable technology for continuous glucose monitoring and intelligent insulin delivery, issues, such as manufacturing complexity, stability, and patient safety, are also addressed. The stimuli-responsive drug delivery system has the potential to revolutionize diabetes management by bridging the gap between physiological needs and therapeutic de-livery, providing better glucose control, fewer side effects, and an enhanced standard of living for patients.
扫码关注我们
求助内容:
应助结果提醒方式:
