The article has been withdrawn at the request of the author and the editor of the journal Current Drug Metabolism.
Bentham Science apologizes to the readers of the journal for any inconvenience this may have caused.
The Bentham editorial policy on article withdrawal can be found at https://benthamscience.com/editorial-policiesmain.php
Bentham science disclaimer: It is a condition of publication that manuscripts submitted to this journal have not been published and will not be simultaneously submitted or published elsewhere. Furthermore, any data, illustration, structure or table that has been published elsewhere must be reported, and copyright permission for reproduction must be obtained. Plagiarism is strictly forbidden, and by submitting the article for publication, the authors agree that the publishers have the legal right to take appropriate action against the authors if plagiarism or fabricated information is discovered. By submitting a manuscript, the authors agree that the copyright of their article is transferred to the publishers if and when the article is accepted for publication.
{"title":"WITHDRAWN: Pharmacokinetic Drug Interactions of Piperine: A Review of Pre-clinical and Clinical Studies","authors":"Imtiyaz Ahmed Najar, Sagar Pamu, Anushka Paul, Poonam Arora, Gaganjit Kaur, Manish Kumar","doi":"10.2174/0113892002302273240607055945","DOIUrl":"10.2174/0113892002302273240607055945","url":null,"abstract":"<p><p>The article has been withdrawn at the request of the author and the editor of the journal Current Drug Metabolism.</p><p><p>Bentham Science apologizes to the readers of the journal for any inconvenience this may have caused.</p><p><p>The Bentham editorial policy on article withdrawal can be found at https://benthamscience.com/editorial-policiesmain.php</p><p><strong>Bentham science disclaimer: </strong>It is a condition of publication that manuscripts submitted to this journal have not been published and will not be simultaneously\u0000submitted or published elsewhere. Furthermore, any data, illustration, structure or table that has been published elsewhere\u0000must be reported, and copyright permission for reproduction must be obtained. Plagiarism is strictly forbidden, and by submitting\u0000the article for publication, the authors agree that the publishers have the legal right to take appropriate action against the\u0000authors if plagiarism or fabricated information is discovered. By submitting a manuscript, the authors agree that the copyright\u0000of their article is transferred to the publishers if and when the article is accepted for publication.</p>","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141442216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-04DOI: 10.2174/0113892002298633240322071126
Yi-Rong Wang, Meng-Ting Zuo, Wen-Bo Xu, Zhao-Ying Liu
Aim: The aim of this study was to investigate the metabolism of Gelsemium elegans in human, pig, goat and rat liver microsomes and to elucidate the metabolic pathways and cleavage patterns of the Gelsemium alkaloids among different species. Methods: A human, goat, pig and rat liver microparticles were incubated in vitro. After incubating at 37°C for 1 hour and centrifuging, the processed samples were detected by HPLC/Qq-TOFMS was used to detect alcohol extract of Gelsemium elegans and its metabolites. Results: Forty-six natural products were characterized from alcohol extract of Gelsemium elegans and 13 metabolites were identified. These 13 metabolites belong to the gelsemine, koumine, gelsedine, humantenine, yohimbane, and sarpagine classes of alkaloids. The metabolic pathways included oxidation, demethylation and dehydrogenation. After preliminary identification, the metabolites detected in the four species were different. All 13 metabolites were detected in pig and rat microsomes, but no oxidative metabolites of Gelsedine-type alkaloids were detected in goat and human microsomes. Conclusion: In this study, Gelsemium elegans metabolic patterns in different species are clarified and the in vitro metabolism of Gelsemium elegans is investigated. It is of great significance for its clinical development and rational application. result: 46 natural products were characterized from alcohol extract of Gelsemium elegan and 13 metabolites were identified. The metabolic pathways included oxidation, demethylation and dehydrogenation. After preliminary identification, the metabolites detected in the four species were different. all 13 metabolites were detected in pig and rat, but no oxidative metabolites of Gelsedine-type alkaloids were detected in goat and human.
{"title":"Comparative Analysis of the Gelsemium Alkaloids Metabolism in Human, Pig, Goat, and Rat Liver Microsomes","authors":"Yi-Rong Wang, Meng-Ting Zuo, Wen-Bo Xu, Zhao-Ying Liu","doi":"10.2174/0113892002298633240322071126","DOIUrl":"https://doi.org/10.2174/0113892002298633240322071126","url":null,"abstract":"Aim: The aim of this study was to investigate the metabolism of Gelsemium elegans in human, pig, goat and rat liver microsomes and to elucidate the metabolic pathways and cleavage patterns of the Gelsemium alkaloids among different species. Methods: A human, goat, pig and rat liver microparticles were incubated in vitro. After incubating at 37°C for 1 hour and centrifuging, the processed samples were detected by HPLC/Qq-TOFMS was used to detect alcohol extract of Gelsemium elegans and its metabolites. Results: Forty-six natural products were characterized from alcohol extract of Gelsemium elegans and 13 metabolites were identified. These 13 metabolites belong to the gelsemine, koumine, gelsedine, humantenine, yohimbane, and sarpagine classes of alkaloids. The metabolic pathways included oxidation, demethylation and dehydrogenation. After preliminary identification, the metabolites detected in the four species were different. All 13 metabolites were detected in pig and rat microsomes, but no oxidative metabolites of Gelsedine-type alkaloids were detected in goat and human microsomes. Conclusion: In this study, Gelsemium elegans metabolic patterns in different species are clarified and the in vitro metabolism of Gelsemium elegans is investigated. It is of great significance for its clinical development and rational application. result: 46 natural products were characterized from alcohol extract of Gelsemium elegan and 13 metabolites were identified. The metabolic pathways included oxidation, demethylation and dehydrogenation. After preliminary identification, the metabolites detected in the four species were different. all 13 metabolites were detected in pig and rat, but no oxidative metabolites of Gelsedine-type alkaloids were detected in goat and human.","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":"107 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140571310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-04DOI: 10.2174/0113892002287336240328083220
Yogita Shinde, Gitanjali Deokar
: Preserving host health and homeostasis is largely dependent on the human gut microbiome, a varied and ever-changing population of bacteria living in the gastrointestinal tract. This article aims to explore the multifaceted functions of the gut microbiome and shed light on the evolving field of research investigating the impact of herbal medicines on both the composition and functionality of the gut microbiome. Through a comprehensive overview, we aim to provide insights into the intricate relationship between herbal remedies and the gut microbiome, fostering a better understanding of their potential implications for human health.The gut microbiota is composed of trillions of microorganisms, predominantly bacteria, but also viruses, fungi, and archaea. It functions as a complex ecosystem that interacts with the host in various ways. It aids in nutrient metabolism, modulates the immune system, provides protection against pathogens, and influences host physiology. Moreover, it has been linked to a range of health outcomes, including digestion, metabolic health, and even mental well-being. Recent research has shed light on the potential of herbal medicines to modulate the gut microbiome. Herbal medicines, derived from plants and often used in traditional medicine systems, contain a diverse array of phytochemicals, which can directly or indirectly impact gut microbial composition. These phytochemicals can either act as prebiotics, promoting the growth of beneficial bacteria, or possess antimicrobial properties, targeting harmful pathogens. Several studies have demonstrated the effects of specific herbal medicines on the gut microbiome. For example, extracts from herbs have been shown to enhance the abundance of beneficial bacteria, such as Bifidobacterium and Lactobacillus, while reducing potentially harmful microbes. Moreover, herbal medicines have exhibited promising antimicrobial effects against certain pathogenic bacteria. The modulation of the gut microbiome by herbal medicines has potential therapeutic implications. Research suggests herbal interventions could be harnessed to alleviate gastrointestinal disorders, support immune function, and even impact metabolic health. However, it is important to note that individual responses to herbal treatments can vary due to genetics, diet, and baseline microbiome composition.
{"title":"Regulation of Gut Microbiota by Herbal Medicines","authors":"Yogita Shinde, Gitanjali Deokar","doi":"10.2174/0113892002287336240328083220","DOIUrl":"https://doi.org/10.2174/0113892002287336240328083220","url":null,"abstract":": Preserving host health and homeostasis is largely dependent on the human gut microbiome, a varied and ever-changing population of bacteria living in the gastrointestinal tract. This article aims to explore the multifaceted functions of the gut microbiome and shed light on the evolving field of research investigating the impact of herbal medicines on both the composition and functionality of the gut microbiome. Through a comprehensive overview, we aim to provide insights into the intricate relationship between herbal remedies and the gut microbiome, fostering a better understanding of their potential implications for human health.The gut microbiota is composed of trillions of microorganisms, predominantly bacteria, but also viruses, fungi, and archaea. It functions as a complex ecosystem that interacts with the host in various ways. It aids in nutrient metabolism, modulates the immune system, provides protection against pathogens, and influences host physiology. Moreover, it has been linked to a range of health outcomes, including digestion, metabolic health, and even mental well-being. Recent research has shed light on the potential of herbal medicines to modulate the gut microbiome. Herbal medicines, derived from plants and often used in traditional medicine systems, contain a diverse array of phytochemicals, which can directly or indirectly impact gut microbial composition. These phytochemicals can either act as prebiotics, promoting the growth of beneficial bacteria, or possess antimicrobial properties, targeting harmful pathogens. Several studies have demonstrated the effects of specific herbal medicines on the gut microbiome. For example, extracts from herbs have been shown to enhance the abundance of beneficial bacteria, such as Bifidobacterium and Lactobacillus, while reducing potentially harmful microbes. Moreover, herbal medicines have exhibited promising antimicrobial effects against certain pathogenic bacteria. The modulation of the gut microbiome by herbal medicines has potential therapeutic implications. Research suggests herbal interventions could be harnessed to alleviate gastrointestinal disorders, support immune function, and even impact metabolic health. However, it is important to note that individual responses to herbal treatments can vary due to genetics, diet, and baseline microbiome composition.","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":"30 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140570995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-05DOI: 10.2174/0113892002270594231212090958
Verawan Uchaipichat
Background: Tricyclic antidepressants (TCAs) are commonly co-administered with morphine as an adjuvant analgesic. Nevertheless, there remains a lack of information concerning metabolic drug-drug interactions (DDIs) resulting from TCA inhibition on morphine glucuronidation Objective: This study aimed to (i) examine the inhibitory effects of TCAs (viz., amitriptyline, clomipramine, imipramine, and nortriptyline) on human liver microsomal morphine 3- and 6-glucuronidation and (ii) evaluate the potential of DDI in humans by employing in vitro-in vivo extrapolation (IVIVE) approaches. Method: The inhibition parameters for TCA inhibition on morphine glucuronidation were derived from the in vitro system containing 2% BSA. The Ki values were employed to predict the DDI magnitude in vivo by using static and dynamic mechanistic PBPK approaches Results: TCAs moderately inhibited human liver microsomal morphine glucuronidation, with clomipramine exhibiting the most potent inhibition potency. Amitriptyline, clomipramine, imipramine, and nortriptyline competitively inhibited morphine 3- and 6-glucuronide formation with the respective Ki values of 91 ± 7.5 and 82 ± 11 μM, 23 ± 1.3 and 14 ± 0.7 μM, 103 ± 5 and 90 ± 7 μM, and 115 ± 5 and 110 ± 3 μM. Employing the static mechanistic IVIVE, a prediction showed an estimated 20% elevation in the morphine AUC when co-administered with either clomipramine or imipramine, whereas the predicted increase was
{"title":"Inhibitory Effects of Tricyclic Antidepressants on Human Liver Microsomal Morphine Glucuronidation: Application of IVIVE to Predict Potential Drug-Drug Interactions in Humans","authors":"Verawan Uchaipichat","doi":"10.2174/0113892002270594231212090958","DOIUrl":"https://doi.org/10.2174/0113892002270594231212090958","url":null,"abstract":" Background: Tricyclic antidepressants (TCAs) are commonly co-administered with morphine as an adjuvant analgesic. Nevertheless, there remains a lack of information concerning metabolic drug-drug interactions (DDIs) resulting from TCA inhibition on morphine glucuronidation Objective: This study aimed to (i) examine the inhibitory effects of TCAs (viz., amitriptyline, clomipramine, imipramine, and nortriptyline) on human liver microsomal morphine 3- and 6-glucuronidation and (ii) evaluate the potential of DDI in humans by employing in vitro-in vivo extrapolation (IVIVE) approaches. Method: The inhibition parameters for TCA inhibition on morphine glucuronidation were derived from the in vitro system containing 2% BSA. The Ki values were employed to predict the DDI magnitude in vivo by using static and dynamic mechanistic PBPK approaches Results: TCAs moderately inhibited human liver microsomal morphine glucuronidation, with clomipramine exhibiting the most potent inhibition potency. Amitriptyline, clomipramine, imipramine, and nortriptyline competitively inhibited morphine 3- and 6-glucuronide formation with the respective Ki values of 91 ± 7.5 and 82 ± 11 μM, 23 ± 1.3 and 14 ± 0.7 μM, 103 ± 5 and 90 ± 7 μM, and 115 ± 5 and 110 ± 3 μM. Employing the static mechanistic IVIVE, a prediction showed an estimated 20% elevation in the morphine AUC when co-administered with either clomipramine or imipramine, whereas the predicted increase was ","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":"111 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139396630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-05DOI: 10.2174/0113892002268739231211063718
T. Idhaya, A. Suruliandi, S. P. Raja
Background: Drug-Protein Interaction (DPI) identification is crucial in drug discovery. The high dimensionality of drug and protein features poses challenges for accurate interaction prediction, necessitating the use of computational techniques. Docking-based methods rely on 3D structures, while ligand-based methods have limitations such as reliance on known ligands and neglecting protein structure. Therefore, the preferred approach is the chemogenomics-based approach using machine learning, which considers both drug and protein characteristics for DPI prediction. Methods: In machine learning, feature selection plays a vital role in improving model performance, reducing overfitting, enhancing interpretability, and making the learning process more efficient. It helps extract meaningful patterns from drug and protein data while eliminating irrelevant or redundant information, resulting in more effective machine-learning models. On the other hand, classification is of great importance as it enables pattern recognition, decision-making, predictive modeling, anomaly detection, data exploration, and automation. It empowers machines to make accurate predictions and facilitates efficient decision-making in DPI prediction. For this research work, protein data was sourced from the KEGG database, while drug data was obtained from the DrugBank data machine-learning base. Results: To address the issue of imbalanced Drug Protein Pairs (DPP), different balancing techniques like Random Over Sampling (ROS), Synthetic Minority Over-sampling Technique (SMOTE), and Adaptive SMOTE were employed. Given the large number of features associated with drugs and proteins, feature selection becomes necessary. Various feature selection methods were evaluated: Correlation, Information Gain (IG), Chi-Square (CS), and Relief. Multiple classification methods, including Support Vector Machines (SVM), Random Forest (RF), Adaboost, and Logistic Regression (LR), were used to predict DPI. Finally, this research identifies the best balancing, feature selection, and classification methods for accurate DPI prediction. Conclusion: This comprehensive approach aims to overcome the limitations of existing methods and provide more reliable and efficient predictions in drug-protein interaction studies.
{"title":"Drug-Protein Interactions Prediction Models Using Feature Selection and Classification Techniques","authors":"T. Idhaya, A. Suruliandi, S. P. Raja","doi":"10.2174/0113892002268739231211063718","DOIUrl":"https://doi.org/10.2174/0113892002268739231211063718","url":null,"abstract":"Background: Drug-Protein Interaction (DPI) identification is crucial in drug discovery. The high dimensionality of drug and protein features poses challenges for accurate interaction prediction, necessitating the use of computational techniques. Docking-based methods rely on 3D structures, while ligand-based methods have limitations such as reliance on known ligands and neglecting protein structure. Therefore, the preferred approach is the chemogenomics-based approach using machine learning, which considers both drug and protein characteristics for DPI prediction. Methods: In machine learning, feature selection plays a vital role in improving model performance, reducing overfitting, enhancing interpretability, and making the learning process more efficient. It helps extract meaningful patterns from drug and protein data while eliminating irrelevant or redundant information, resulting in more effective machine-learning models. On the other hand, classification is of great importance as it enables pattern recognition, decision-making, predictive modeling, anomaly detection, data exploration, and automation. It empowers machines to make accurate predictions and facilitates efficient decision-making in DPI prediction. For this research work, protein data was sourced from the KEGG database, while drug data was obtained from the DrugBank data machine-learning base. Results: To address the issue of imbalanced Drug Protein Pairs (DPP), different balancing techniques like Random Over Sampling (ROS), Synthetic Minority Over-sampling Technique (SMOTE), and Adaptive SMOTE were employed. Given the large number of features associated with drugs and proteins, feature selection becomes necessary. Various feature selection methods were evaluated: Correlation, Information Gain (IG), Chi-Square (CS), and Relief. Multiple classification methods, including Support Vector Machines (SVM), Random Forest (RF), Adaboost, and Logistic Regression (LR), were used to predict DPI. Finally, this research identifies the best balancing, feature selection, and classification methods for accurate DPI prediction. Conclusion: This comprehensive approach aims to overcome the limitations of existing methods and provide more reliable and efficient predictions in drug-protein interaction studies.","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":"79 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139398687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.2174/0113892002285571240220131547
Lijun Li, Xuejun Wang, Sheng Wang, Li Wen, Haopeng Zhang
Background: Propofol is an intravenous agent for clinical anesthesia. As the influence of the hypobaric-hypoxic environment (Qinghai-Tibetan region, altitude: 2800-4300 m, PaO2: 15.1-12.4 kPa) on the metabolism of Propofol is complex, the research results on the metabolic characteristics of Propofol in high-altitude areas remain unclear. This study aimed to investigate the pharmacokinetic characteristics of Propofol in a high-altitude hypoxic environment using animal experiments.
Methods: Rats were randomly divided into three groups: high-altitude, medium-altitude, and plain groups. The time of disappearance and recovery of the rat righting reflex was recorded as the time of anesthesia induction and awakening, respectively. The plasma concentration of Propofol was determined by gas chromatography-mass spectrometry. A pharmacokinetic analysis software was used to analyze the blood-drug concentrations and obtain the pharmacokinetic parameters.
Results: We observed that when Propofol anesthetizes rats, the anesthesia induction time was shortened, and the recovery time was prolonged with increased altitude. Compared with the plain group, the clearance of Propofol decreased, whereas the half-life, area under the concentration-time curve, peak plasma concentration, and average residence time extension increased.
Conclusion: The pharmacokinetic characteristics of Propofol are significantly altered in high-altitude hypoxic environments.
{"title":"Altitude effect on Propofol Pharmacokinetics in Rats.","authors":"Lijun Li, Xuejun Wang, Sheng Wang, Li Wen, Haopeng Zhang","doi":"10.2174/0113892002285571240220131547","DOIUrl":"10.2174/0113892002285571240220131547","url":null,"abstract":"<p><strong>Background: </strong>Propofol is an intravenous agent for clinical anesthesia. As the influence of the hypobaric-hypoxic environment (Qinghai-Tibetan region, altitude: 2800-4300 m, PaO2: 15.1-12.4 kPa) on the metabolism of Propofol is complex, the research results on the metabolic characteristics of Propofol in high-altitude areas remain unclear. This study aimed to investigate the pharmacokinetic characteristics of Propofol in a high-altitude hypoxic environment using animal experiments.</p><p><strong>Methods: </strong>Rats were randomly divided into three groups: high-altitude, medium-altitude, and plain groups. The time of disappearance and recovery of the rat righting reflex was recorded as the time of anesthesia induction and awakening, respectively. The plasma concentration of Propofol was determined by gas chromatography-mass spectrometry. A pharmacokinetic analysis software was used to analyze the blood-drug concentrations and obtain the pharmacokinetic parameters.</p><p><strong>Results: </strong>We observed that when Propofol anesthetizes rats, the anesthesia induction time was shortened, and\u0000the recovery time was prolonged with increased altitude. Compared with the plain group, the clearance of\u0000Propofol decreased, whereas the half-life, area under the concentration-time curve, peak plasma concentration,\u0000and average residence time extension increased.</p><p><strong>Conclusion: </strong>The pharmacokinetic characteristics of Propofol are significantly altered in high-altitude hypoxic environments.</p>","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":" ","pages":"81-90"},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11327735/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140101201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.2174/0113892002308233240801104910
Karl-Uwe Petersen, Wolfgang Schmalix, Marija Pesic, Thomas Stohr
Background: The ultra-short-acting benzodiazepine remimazolam, approved for procedural sedation and general anesthesia, is inactivated by carboxylesterase 1 (CES1).
Objective: Remimazolam´s involvement in CES1-mediated drug-drug interactions (DDIs) was investigated.
Methods: Possible interactions of remimazolam were studied in co-exposure experiments with eleven different drugs. Further, substrates and inhibitors of CES1, identified in the literature, were evaluated for possible in-vivo inhibition using pharmacokinetic and Ki or IC50 values. Compounds with only one published inhibitory concentration and CES1 substrates lacking inhibition data were assigned conservative Ki values.
Results: In human liver homogenates and/or blood cells, remimazolam showed no significant inhibition of esmolol and landiolol metabolism, which, in turn, at up to 98 and 169 μM, respectively, did not inhibit remimazolam hydrolysis by human liver homogenates. In human liver S9 fractions, IC50 values ranged from 0.69 μM (simvastatin) and 57 μM (diltiazem) to > 100 μM (atorvastatin) and, for the remaining test items (bupropion, carvedilol, nelfinavir, nitrendipine, and telmisartan), they ranged from 126 to 658 μM. Remifentanil was ineffective even at 1250 μM. Guidance-conforming evaluation revealed no relevant drug-drug interactions with remimazolam via CES1. The algorithm-based predictions were consistent with human study data. Among CES1 inhibitors and substrates identified in the literature, only dapsone and rufinamide were found to be possible in-vivo inhibitors of remimazolam metabolism.
Conclusion: Data and analyses suggest a very low potential of remimazolam for pharmacokinetic DDIs mediated by CES1. The theoretical approach and compiled data are not specific to remimazolam and, hence, applicable in the evaluation of other CES1 substrates.
{"title":"Carboxylesterase 1-Based Drug-Drug Interaction Potential of Remimazolam: <i>In-Vitro</i> Studies and Literature Review.","authors":"Karl-Uwe Petersen, Wolfgang Schmalix, Marija Pesic, Thomas Stohr","doi":"10.2174/0113892002308233240801104910","DOIUrl":"10.2174/0113892002308233240801104910","url":null,"abstract":"<p><strong>Background: </strong>The ultra-short-acting benzodiazepine remimazolam, approved for procedural sedation and general anesthesia, is inactivated by carboxylesterase 1 (CES1).</p><p><strong>Objective: </strong>Remimazolam´s involvement in CES1-mediated drug-drug interactions (DDIs) was investigated.</p><p><strong>Methods: </strong>Possible interactions of remimazolam were studied in co-exposure experiments with eleven different drugs. Further, substrates and inhibitors of CES1, identified in the literature, were evaluated for possible <i>in-vivo</i> inhibition using pharmacokinetic and Ki or IC<sub>50</sub> values. Compounds with only one published inhibitory concentration and CES1 substrates lacking inhibition data were assigned conservative Ki values.</p><p><strong>Results: </strong>In human liver homogenates and/or blood cells, remimazolam showed no significant inhibition of esmolol and landiolol metabolism, which, in turn, at up to 98 and 169 μM, respectively, did not inhibit remimazolam hydrolysis by human liver homogenates. In human liver S9 fractions, IC<sub>50</sub> values ranged from 0.69 μM (simvastatin) and 57 μM (diltiazem) to > 100 μM (atorvastatin) and, for the remaining test items (bupropion, carvedilol, nelfinavir, nitrendipine, and telmisartan), they ranged from 126 to 658 μM. Remifentanil was ineffective even at 1250 μM. Guidance-conforming evaluation revealed no relevant drug-drug interactions with remimazolam <i>via</i> CES1. The algorithm-based predictions were consistent with human study data. Among CES1 inhibitors and substrates identified in the literature, only dapsone and rufinamide were found to be possible <i>in-vivo</i> inhibitors of remimazolam metabolism.</p><p><strong>Conclusion: </strong>Data and analyses suggest a very low potential of remimazolam for pharmacokinetic DDIs mediated by CES1. The theoretical approach and compiled data are not specific to remimazolam and, hence, applicable in the evaluation of other CES1 substrates.</p>","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":" ","pages":"431-445"},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141897013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.2174/0113892002277930240201101256
Xiaojing Zhang, Hongfang Mu, Yan Zhong, Rong Wang, Wenbin Li
Background: High altitude environment affects the pharmacokinetic (PK) parameters of drugs and the PK parameters are an important theoretical basis for guiding the rational clinical use of drugs. Warfarin is an oral anticoagulant of the coumarin class commonly used in clinical practice, but it has a narrow therapeutic window and wide individual variation. However, the effect of high altitude environment on PK and pharmacodynamic (PD) of warfarin is unclear.
Objective: The objective of this study is to investigate the effect of a high altitude environment on PK and PD of warfarin in rats.
Method: Rats were randomly divided into plain group and high altitude group and blood samples were collected through the orbital venous plexus after administration of 2 mg/kg warfarin. Warfarin concentrations in plasma samples were determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and PK parameters were calculated by the non-compartment model using WinNonlin 8.1 software. Meanwhile, the expression of PXR, P-gp and CYP2C9 in liver tissues was also determined by western blotting. The effect of high altitude environment on PD of warfarin was explored by measuring activated partial thromboplastin time (APTT) and prothrombin time (PT) values and then calculated international normalized ratio (INR) values based on PT.
Results: Significant changes in PK behaviors and PD of warfarin in high altitude-rats were observed. Compared with the plain-rats, the peak concentration (Cmax) and the area under the plasma concentration-time curve (AUC) increased significantly by 50.9% and 107.46%, respectively. At the same time, high altitude environment significantly inhibited the expression of PXR, P-gp and CYP2C9 in liver tissues. The results of the PD study showed that high altitude environments significantly prolonged PT, APTT and INR values.
Conclusion: High altitude environment inhibited the metabolism and increased the absorption of warfarin in rats and increased the effect of anticoagulant effect, suggesting that the optimal dose of warfarin for patients at high altitude should be reassessed.
{"title":"Effect of High Altitude Environment on Pharmacokinetic and Pharmacodynamic of Warfarin in Rats.","authors":"Xiaojing Zhang, Hongfang Mu, Yan Zhong, Rong Wang, Wenbin Li","doi":"10.2174/0113892002277930240201101256","DOIUrl":"10.2174/0113892002277930240201101256","url":null,"abstract":"<p><strong>Background: </strong>High altitude environment affects the pharmacokinetic (PK) parameters of drugs and the PK parameters are an important theoretical basis for guiding the rational clinical use of drugs. Warfarin is an oral anticoagulant of the coumarin class commonly used in clinical practice, but it has a narrow therapeutic window and wide individual variation. However, the effect of high altitude environment on PK and pharmacodynamic (PD) of warfarin is unclear.</p><p><strong>Objective: </strong>The objective of this study is to investigate the effect of a high altitude environment on PK and PD of warfarin in rats.</p><p><strong>Method: </strong>Rats were randomly divided into plain group and high altitude group and blood samples were collected through the orbital venous plexus after administration of 2 mg/kg warfarin. Warfarin concentrations in plasma samples were determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and PK parameters were calculated by the non-compartment model using WinNonlin 8.1 software. Meanwhile, the expression of PXR, P-gp and CYP2C9 in liver tissues was also determined by western blotting. The effect of high altitude environment on PD of warfarin was explored by measuring activated partial thromboplastin time (APTT) and prothrombin time (PT) values and then calculated international normalized ratio (INR) values based on PT.</p><p><strong>Results: </strong>Significant changes in PK behaviors and PD of warfarin in high altitude-rats were observed. Compared with the plain-rats, the peak concentration (C<sub>max</sub>) and the area under the plasma concentration-time curve (AUC) increased significantly by 50.9% and 107.46%, respectively. At the same time, high altitude environment significantly inhibited the expression of PXR, P-gp and CYP2C9 in liver tissues. The results of the PD study showed that high altitude environments significantly prolonged PT, APTT and INR values.</p><p><strong>Conclusion: </strong>High altitude environment inhibited the metabolism and increased the absorption of warfarin in rats and increased the effect of anticoagulant effect, suggesting that the optimal dose of warfarin for patients at high altitude should be reassessed.</p>","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":" ","pages":"54-62"},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139971186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Depression is a common neuropsychiatric disease. As a famous traditional Chinese medicine with significant anti-depressive and sleep-promoting effects, Ziziphi Spinosae Semen (ZSS) has attracted the attention of many researchers. Although it is well known that Magnoflorine (MAG) and Spinosin (SPI) were the main active components isolated from ZSS, there is a lack of research on the combined treatment of depression with these two ingredients.
Methods: The shaking bottle method was used to simulate the human environment for detecting the changes in oil-water partition coefficient before and after the drug combination. Cell viability was evaluated by the MTT assay. To establish a mouse model of depression and insomnia by CUMS method, and then to explore the effect of combined administration of MAG and SPI on depression in CUMS model by observing behavior and analyzing pharmacokinetics.
Results: The change in LogP values affected the lipid solubility of MAG and increased the water solubility of SPI, allowing them to penetrate more easily through the blood-brain barrier into the brain. Compared with the model group, MAG-SPI with a concentration of 60 μM significantly increased cell survival rate. In both the TST and FST experiments, the mice showed a decrease in immobilization time. Pharmacokinetic results showed that the pharmacokinetic parameters, Cmax and AUC of MAG and SPI, were increased in the case of combination, which resulted in enhancement of their relative bioavailability and improvement of in vivo effects.
Conclusions: The present study demonstrated that a combination of MAG and SPI had a synergistic antidepressant effect in CUMS mouse model.
{"title":"A Combination of Magnoflorine and Spinosin Improves the Antidepressant effects on CUMS Mouse Model.","authors":"Fenghe Bi, Zhihui Wang, Yijing Guo, Menglin Xia, Xuehui Zhu, Wei Qiao","doi":"10.2174/0113892002284230240213064248","DOIUrl":"10.2174/0113892002284230240213064248","url":null,"abstract":"<p><strong>Background: </strong>Depression is a common neuropsychiatric disease. As a famous traditional Chinese medicine with significant anti-depressive and sleep-promoting effects, <i>Ziziphi Spinosae</i> Semen (ZSS) has attracted the attention of many researchers. Although it is well known that Magnoflorine (MAG) and Spinosin (SPI) were the main active components isolated from ZSS, there is a lack of research on the combined treatment of depression with these two ingredients.</p><p><strong>Methods: </strong>The shaking bottle method was used to simulate the human environment for detecting the changes in oil-water partition coefficient before and after the drug combination. Cell viability was evaluated by the MTT assay. To establish a mouse model of depression and insomnia by CUMS method, and then to explore the effect of combined administration of MAG and SPI on depression in CUMS model by observing behavior and analyzing pharmacokinetics.</p><p><strong>Results: </strong>The change in LogP values affected the lipid solubility of MAG and increased the water solubility of SPI, allowing them to penetrate more easily through the blood-brain barrier into the brain. Compared with the model group, MAG-SPI with a concentration of 60 μM significantly increased cell survival rate. In both the TST and FST experiments, the mice showed a decrease in immobilization time. Pharmacokinetic results showed that the pharmacokinetic parameters, C<sub>max</sub> and AUC of MAG and SPI, were increased in the case of combination, which resulted in enhancement of their relative bioavailability and improvement of <i>in vivo</i> effects.</p><p><strong>Conclusions: </strong>The present study demonstrated that a combination of MAG and SPI had a synergistic antidepressant effect in CUMS mouse model.</p>","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":" ","pages":"71-80"},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139982538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Prusogliptin is a potent and selective DPP-4 inhibitor. In different animal models, Prusogliptin showed potential efficacy in the treatment of type 2 diabetes. However, the knowledge of its pharmacokinetics and safety in patients with liver dysfunction is limited.
Objectives: The present study evaluated the pharmacokinetics and safety of Prusogliptin in subjects with mild or moderate hepatic impairment compared with healthy subjects.
Methods: According to the liver function of the subjects, we divided them into a mild liver dysfunction group, a moderate liver dysfunction group and a normal liver function group. All subjects in three groups received a single oral dose of Prusogliptin 100-mg tablets. Pharmacokinetics and safety index collection was carried out before and after taking the drug. Plasma pharmacokinetics of Prusogliptin were evaluated, and geometric least- -squares mean (GLSM) and associated 90% confidence intervals for insufficient groups versus the control group were calculated for plasma exposures.
Results: After a single oral administration of 100 mg of Prusogliptin tablets, the exposure level of Prusogliptin in subjects with mild liver dysfunction was slightly higher than that in healthy subjects. The exposure level of Prusogliptin was significantly increased in subjects with moderate liver dysfunction. There were no adverse events in this study.
Conclusion: The exposure level of Prusogliptin in subjects with liver dysfunction was higher than that in healthy subjects. No participant was observed of adverse events. Prusogliptin tablets were safe and well tolerated in Chinese subjects with mild to moderate liver dysfunction and normal liver function.
{"title":"A Phase I Clinical Study of the Pharmacokinetics and Safety of Prusogliptin Tablets in Subjects with Mild to Moderate Hepatic Insufficiency and Normal Liver Function.","authors":"Huiting Zhang, Yicong Bian, Weifeng Zhao, Liyan Miao, Hua Zhang, Juanjuan Cui, Xiaofang Zhang, Xueyuan Zhang, Wen Cai","doi":"10.2174/0113892002288120240221111336","DOIUrl":"10.2174/0113892002288120240221111336","url":null,"abstract":"<p><strong>Background: </strong>Prusogliptin is a potent and selective DPP-4 inhibitor. In different animal models, Prusogliptin showed potential efficacy in the treatment of type 2 diabetes. However, the knowledge of its pharmacokinetics and safety in patients with liver dysfunction is limited.</p><p><strong>Objectives: </strong>The present study evaluated the pharmacokinetics and safety of Prusogliptin in subjects with mild or moderate hepatic impairment compared with healthy subjects.</p><p><strong>Methods: </strong>According to the liver function of the subjects, we divided them into a mild liver dysfunction group, a moderate liver dysfunction group and a normal liver function group. All subjects in three groups received a single oral dose of Prusogliptin 100-mg tablets. Pharmacokinetics and safety index collection was carried out before and after taking the drug. Plasma pharmacokinetics of Prusogliptin were evaluated, and geometric least- -squares mean (GLSM) and associated 90% confidence intervals for insufficient groups versus the control group were calculated for plasma exposures.</p><p><strong>Results: </strong>After a single oral administration of 100 mg of Prusogliptin tablets, the exposure level of Prusogliptin in subjects with mild liver dysfunction was slightly higher than that in healthy subjects. The exposure level of Prusogliptin was significantly increased in subjects with moderate liver dysfunction. There were no adverse events in this study.</p><p><strong>Conclusion: </strong>The exposure level of Prusogliptin in subjects with liver dysfunction was higher than that in healthy subjects. No participant was observed of adverse events. Prusogliptin tablets were safe and well tolerated in Chinese subjects with mild to moderate liver dysfunction and normal liver function.</p>","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":" ","pages":"140-151"},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140058890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}