首页 > 最新文献

Current drug metabolism最新文献

英文 中文
Recent Insights into Nano-mediated siRNA Drug Delivery. 纳米介导的siRNA药物递送的最新见解。
IF 2.1 4区 医学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-01 DOI: 10.2174/0113892002339055241211050131
Venkateshwaran Krishnaswami, Kumar Janakiraman, Vaidevi Sethuraman, Jacob Raja, Selvakumar Muruganantham, Senthilkumar Chelladurai

Gene silencing is the characteristic that inhibits gene expression afforded by siRNA interference. The efficacy of the delivery system in terms of precision, efficacy, and stability can be enhanced by genebased drug delivery options. The delivery challenges and their associated side effects create a challenge for the delivery of gene-based drug delivery carriers. Nano-based delivery systems were reported to improve the efficacy of therapy. The absence of an efficient delivery mechanism that shields siRNA from nuclease degradation delivers it to cancer cells, and releases it into the cytoplasm of specific cancer cells without causing side effects is currently the greatest obstacle to the practical implementation of siRNA therapy. This article focuses on general aspects of siRNA and various siRNA nanocarrier-based formulations. In the near future, we will move towards the siRNA-based drug delivery approach.

基因沉默是siRNA干扰对基因表达的抑制。基于基因的给药方案可以提高给药系统的精确性、有效性和稳定性。递送挑战及其相关的副作用给基于基因的药物递送载体的递送带来了挑战。据报道,基于纳米的递送系统可以提高治疗效果。缺乏有效的递送机制来保护siRNA免受核酸酶的降解,将其递送到癌细胞中,并将其释放到特定癌细胞的细胞质中而不产生副作用,这是目前siRNA治疗实际实施的最大障碍。本文着重于siRNA的一般方面和各种siRNA纳米载体为基础的配方。在不久的将来,我们将转向基于sirna的给药方法。
{"title":"Recent Insights into Nano-mediated siRNA Drug Delivery.","authors":"Venkateshwaran Krishnaswami, Kumar Janakiraman, Vaidevi Sethuraman, Jacob Raja, Selvakumar Muruganantham, Senthilkumar Chelladurai","doi":"10.2174/0113892002339055241211050131","DOIUrl":"10.2174/0113892002339055241211050131","url":null,"abstract":"<p><p>Gene silencing is the characteristic that inhibits gene expression afforded by siRNA interference. The efficacy of the delivery system in terms of precision, efficacy, and stability can be enhanced by genebased drug delivery options. The delivery challenges and their associated side effects create a challenge for the delivery of gene-based drug delivery carriers. Nano-based delivery systems were reported to improve the efficacy of therapy. The absence of an efficient delivery mechanism that shields siRNA from nuclease degradation delivers it to cancer cells, and releases it into the cytoplasm of specific cancer cells without causing side effects is currently the greatest obstacle to the practical implementation of siRNA therapy. This article focuses on general aspects of siRNA and various siRNA nanocarrier-based formulations. In the near future, we will move towards the siRNA-based drug delivery approach.</p>","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":" ","pages":"554-563"},"PeriodicalIF":2.1,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142881688","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
HFD-induced Alterations in Renal Tubular Oatp4c1-P-gp Transport Systems in Mice: Impact on Digoxin Renal Excretion and Gadolinium-Enhanced Radiological Manifestations. hfd诱导小鼠肾小管Oatp4c1-P-gp转运系统的改变:对地高辛肾排泄和钆增强放射学表现的影响。
IF 1.8 4区 医学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-01 DOI: 10.2174/0113892002371501250610074757
Jingwen Men, Jing Li, Tianyan Zhang, Yang Chen, Bin Xu, Huinan Hou, Lu Sun, Haoran Yue, Zhaoyue Duan, Ting Gui, Zhibo Gai
<p><strong>Objective: </strong>The clearance of digoxin in obese patients with renal impairment is reduced, leading to elevated serum concentrations and increased risks of digoxin toxicity. However, the exact mechanism of such alterations in obese patients remains unclear. Previous studies have suggested that the organic anion transporting polypeptide 4c1 (Oatp4c1, Slco4c1) mediates the elimination of digoxin at the basal membrane of the proximal tubule (PT), indicating its potential role in the pharmacokinetic changes in obese patients. This study aims to investigate the effects of a high-fat diet HFD on digoxin pharmacokinetics and transporter expression in mouse models and further analyze its significance by detecting the expression of transporters in human renal tissue samples.</p><p><strong>Methods: </strong>First, HFD-induced obese mouse model was established. Mice were intraperitoneally injected with digoxin, and 24-hour urine samples and blood samples at five time points were collected. Pharmacokinetic evaluation was performed using liquid chromatography-tandem mass spectrometry. Renal pathological changes and the expression of digoxin transporters (Oatp4c1 and P-glycoprotein (P-gp)) were assessed using histological staining, Western blots (WB), as well as quantitative polymerase chain reaction (qPCR). Human renal pathologic alterations and expression of transporter proteins showed consistency with the results of animal experiments. To explore the potential use of gadolinium-ethoxybenzyl-diethylenetriamine-pentaacetic acid (Gd-EOB-DTPA) as a marker for Oatp4c1 function, drug interactions between digoxin and Gd-EOBDTPA were assessed in mice.</p><p><strong>Results: </strong>HFD-induced obese mice showed significant increases in body weight, blood glucose, and triglyceride, along with elevated blood concentration of digoxin, increased areas under the curve, reduced renal clearance rate (CLr), and prolonged half-life (t1/2). Histological staining revealed proximal tubular epithelial cell detachment and slight fibrosis in the kidney of the HFD group, with decreased expression of villin, the protein marker for PT. Immunofluorescent staining and Western blots for digoxin transporters showed a significant reduction of Oatp4c1 and P-gp proteins, suggesting that the renal elimination of digoxin was affected by the reduced level of Oatp4c1 and P-gp proteins. Co-administration of digoxin and Gd-EOB-DTPA resulted in a reduced clearance of Gd-EOB-DTPA, suggesting that both share the same transporter. The blood concentration of Gd-EOB-DTPA was higher (77.5%) in the HFD group. Renal magnetic resonance imaging (MRI) intensity was lower in the HFD group after Gd-EOB-DTPA administration compared to the Chow group.</p><p><strong>Conclusion: </strong>Obesity-induced kidney damage results in decreased Oatp4c1 and P-gp expression and function in PT, resulting in a reduction of digoxin renal clearance. The inhibition of Gd-EOB-DTPA clearance by digoxin co-admini
目的:伴有肾功能损害的肥胖患者地高辛清除率降低,导致血药浓度升高,地高辛毒性风险增加。然而,肥胖患者这种改变的确切机制尚不清楚。既往研究提示有机阴离子转运多肽4c1 (Oatp4c1, Slco4c1)介导地高辛在近端小管(PT)基底膜的消除,提示其在肥胖患者药代动力学变化中的潜在作用。本研究旨在通过检测人肾组织样本中转运蛋白的表达,探讨高脂肪饮食对小鼠模型地高辛药代动力学及转运蛋白表达的影响,并进一步分析其意义。方法:首先,建立高脂饮食(HFD)致肥胖小鼠模型。小鼠腹腔注射地高辛,并在5个时间点采集24小时尿样和血样。采用液相色谱-串联质谱法进行药代动力学评价。采用组织学染色、Western blots (WB)和定量聚合酶链反应(qPCR)评估肾脏病理变化和地高辛转运体(Oatp4c1和p -糖蛋白(P-gp))的表达。人体肾脏病理改变及转运蛋白表达与动物实验结果一致。为了探索钆-乙氧基苄基-二乙烯三胺-五乙酸(Gd-EOB-DTPA)作为Oatp4c1功能标记物的潜在用途,我们在小鼠身上评估了地高辛与Gd-EOB-DTPA之间的药物相互作用。结果:hfd诱导肥胖小鼠体重、血糖、甘油三酯显著升高,地高辛血药浓度升高,曲线下面积增大,肾清除率(CLr)降低,半衰期延长(t1/2)。组织学染色显示HFD组肾脏近端小管上皮细胞脱离,轻度纤维化,PT蛋白标志物绒毛蛋白表达降低。免疫荧光染色和地高辛转运蛋白Western blot显示Oatp4c1和P-gp蛋白显著减少,提示地高辛的肾脏消除仅受Oatp4c1和P-gp蛋白水平降低的影响。地高辛和Gd-EOB-DTPA联合用药导致Gd-EOB-DTPA清除率降低,表明两者具有相同的转运体。HFD组Gd-EOB-DTPA血药浓度较高(77.5%)。Gd-EOB-DATP给药后HFD组肾脏磁共振成像(MRI)强度低于Chow组。结论:肥胖所致肾损害可导致PT中Oatp4c1和P-gp表达及功能降低,导致地高辛肾清除率降低。地高辛联合给药对Gd-EOB-DTPA清除的抑制作用以及HFD组中Gd-EOB-DTPA血药浓度的升高都表明其在体内表征Oatp4c1功能方面的潜在应用。
{"title":"HFD-induced Alterations in Renal Tubular Oatp4c1-P-gp Transport Systems in Mice: Impact on Digoxin Renal Excretion and Gadolinium-Enhanced Radiological Manifestations.","authors":"Jingwen Men, Jing Li, Tianyan Zhang, Yang Chen, Bin Xu, Huinan Hou, Lu Sun, Haoran Yue, Zhaoyue Duan, Ting Gui, Zhibo Gai","doi":"10.2174/0113892002371501250610074757","DOIUrl":"10.2174/0113892002371501250610074757","url":null,"abstract":"&lt;p&gt;&lt;strong&gt;Objective: &lt;/strong&gt;The clearance of digoxin in obese patients with renal impairment is reduced, leading to elevated serum concentrations and increased risks of digoxin toxicity. However, the exact mechanism of such alterations in obese patients remains unclear. Previous studies have suggested that the organic anion transporting polypeptide 4c1 (Oatp4c1, Slco4c1) mediates the elimination of digoxin at the basal membrane of the proximal tubule (PT), indicating its potential role in the pharmacokinetic changes in obese patients. This study aims to investigate the effects of a high-fat diet HFD on digoxin pharmacokinetics and transporter expression in mouse models and further analyze its significance by detecting the expression of transporters in human renal tissue samples.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Methods: &lt;/strong&gt;First, HFD-induced obese mouse model was established. Mice were intraperitoneally injected with digoxin, and 24-hour urine samples and blood samples at five time points were collected. Pharmacokinetic evaluation was performed using liquid chromatography-tandem mass spectrometry. Renal pathological changes and the expression of digoxin transporters (Oatp4c1 and P-glycoprotein (P-gp)) were assessed using histological staining, Western blots (WB), as well as quantitative polymerase chain reaction (qPCR). Human renal pathologic alterations and expression of transporter proteins showed consistency with the results of animal experiments. To explore the potential use of gadolinium-ethoxybenzyl-diethylenetriamine-pentaacetic acid (Gd-EOB-DTPA) as a marker for Oatp4c1 function, drug interactions between digoxin and Gd-EOBDTPA were assessed in mice.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Results: &lt;/strong&gt;HFD-induced obese mice showed significant increases in body weight, blood glucose, and triglyceride, along with elevated blood concentration of digoxin, increased areas under the curve, reduced renal clearance rate (CLr), and prolonged half-life (t1/2). Histological staining revealed proximal tubular epithelial cell detachment and slight fibrosis in the kidney of the HFD group, with decreased expression of villin, the protein marker for PT. Immunofluorescent staining and Western blots for digoxin transporters showed a significant reduction of Oatp4c1 and P-gp proteins, suggesting that the renal elimination of digoxin was affected by the reduced level of Oatp4c1 and P-gp proteins. Co-administration of digoxin and Gd-EOB-DTPA resulted in a reduced clearance of Gd-EOB-DTPA, suggesting that both share the same transporter. The blood concentration of Gd-EOB-DTPA was higher (77.5%) in the HFD group. Renal magnetic resonance imaging (MRI) intensity was lower in the HFD group after Gd-EOB-DTPA administration compared to the Chow group.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Conclusion: &lt;/strong&gt;Obesity-induced kidney damage results in decreased Oatp4c1 and P-gp expression and function in PT, resulting in a reduction of digoxin renal clearance. The inhibition of Gd-EOB-DTPA clearance by digoxin co-admini","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":" ","pages":"136-148"},"PeriodicalIF":1.8,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144539344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Wuzhi Capsule (WZC) on the Pharmacokinetics of Tacrolimus in Renal Transplantation Recipients. 五脂胶囊对肾移植受者他克莫司药动学的影响。
IF 1.8 4区 医学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-01 DOI: 10.2174/0113892002320686250310054152
Weiyue Zhang, Ruidong Wang, Lin Li, Jiani Chen, Jingwen Zhai, Wei Wang, Shiyi Liu, Hong Liu, Hua Wei, Shu Han

Background: Previous studies have shown that WZC can increase tacrolimus blood concentration when co-administered. However, limited knowledge exists regarding the pharmacokinetics of both tacrolimus and the bioactive lignans in WZC when administered simultaneously in renal transplantation patients.

Aims: This study aimed to investigate the pharmacokinetics of tacrolimus and multiple bioactive lignans in Wuzhi capsule (WZC) when co-administered with 5 bioactive components in renal transplantation recipients.

Objectives: The objective of this study was to develop a method for simultaneous quantification of tacrolimus and multiple bioactive lignans in WZC using liquid-liquid extraction followed by LC-MS/MS analysis.

Methods: A liquid-liquid extraction method combined with LC-MS/MS analysis was developed for simultaneous quantification of tacrolimus and multiple bioactive lignans in WZC. Human whole blood samples were analyzed, and the accuracy and precision of the method were evaluated.

Results: The developed method showed good linearity and accuracy for the quantification of tacrolimus and bioactive lignans in WZC. Pharmacokinetic analysis revealed significant effects of WZC co-administration on both V/F and CL/F in renal transplantation patients.

Conclusion: This study demonstrated that simultaneous administration of WZC had notable effects on the pharmacokinetics of tacrolimus and bioactive lignans in renal transplantation patients. The developed method proved to be reliable and sensitive for determining the whole blood concentrations of tacrolimus and WZC, making it suitable for pharmacokinetic studies in transplant patients.

背景:既往研究表明,WZC可增加他克莫司的血药浓度。然而,关于他克莫司和WZC中生物活性木脂素在肾移植患者中同时使用时的药代动力学方面的知识有限。目的:研究五脂胶囊(WZC)中他克莫司及多种木脂素与5种生物活性成分在肾移植受者体内的药动学。目的:建立液-液萃取- LC-MS/MS同时定量测定白参中他克莫司及多种生物活性木脂素含量的方法。方法:建立液液萃取结合LC-MS/MS法同时定量测定他克莫司及白参中多种生物活性木脂素含量的方法。对人全血样本进行了分析,并对该方法的准确性和精密度进行了评价。结果:所建立的定量方法线性良好,准确度高。药代动力学分析显示,WZC合用对肾移植患者的V/F和CL/F均有显著影响。结论:本研究表明,同时给药WZC对肾移植患者他克莫司和生物活性木脂素的药动学有显著影响。该方法对他克莫司和WZC全血浓度的测定可靠、灵敏,适用于移植患者的药代动力学研究。
{"title":"Effect of <i>Wuzhi</i> Capsule (WZC) on the Pharmacokinetics of Tacrolimus in Renal Transplantation Recipients.","authors":"Weiyue Zhang, Ruidong Wang, Lin Li, Jiani Chen, Jingwen Zhai, Wei Wang, Shiyi Liu, Hong Liu, Hua Wei, Shu Han","doi":"10.2174/0113892002320686250310054152","DOIUrl":"10.2174/0113892002320686250310054152","url":null,"abstract":"<p><strong>Background: </strong>Previous studies have shown that WZC can increase tacrolimus blood concentration when co-administered. However, limited knowledge exists regarding the pharmacokinetics of both tacrolimus and the bioactive lignans in WZC when administered simultaneously in renal transplantation patients.</p><p><strong>Aims: </strong>This study aimed to investigate the pharmacokinetics of tacrolimus and multiple bioactive lignans in Wuzhi capsule (WZC) when co-administered with 5 bioactive components in renal transplantation recipients.</p><p><strong>Objectives: </strong>The objective of this study was to develop a method for simultaneous quantification of tacrolimus and multiple bioactive lignans in WZC using liquid-liquid extraction followed by LC-MS/MS analysis.</p><p><strong>Methods: </strong>A liquid-liquid extraction method combined with LC-MS/MS analysis was developed for simultaneous quantification of tacrolimus and multiple bioactive lignans in WZC. Human whole blood samples were analyzed, and the accuracy and precision of the method were evaluated.</p><p><strong>Results: </strong>The developed method showed good linearity and accuracy for the quantification of tacrolimus and bioactive lignans in WZC. Pharmacokinetic analysis revealed significant effects of WZC co-administration on both V/F and CL/F in renal transplantation patients.</p><p><strong>Conclusion: </strong>This study demonstrated that simultaneous administration of WZC had notable effects on the pharmacokinetics of tacrolimus and bioactive lignans in renal transplantation patients. The developed method proved to be reliable and sensitive for determining the whole blood concentrations of tacrolimus and WZC, making it suitable for pharmacokinetic studies in transplant patients.</p>","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":" ","pages":"47-54"},"PeriodicalIF":1.8,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143662955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Application of UPLC-MS/MS to Study Cellular Pharmacokinetics of Seven Active Components of Cnidii Fructus Extracts. 应用 UPLC-MS/MS 研究蛇床子提取物中七种活性成分的细胞药代动力学
IF 2.1 4区 医学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-01 DOI: 10.2174/0113892002301262241107065717
Yu Bai, Huizi Ouyang, Yang Liu, Fanjiao Zuo, Caixia Li, Shuting Zhou, Yanxu Chang, Jun He

Background: Cnidii Fructus (CF) is a herbal medicine with pharmacological activities such as antitumor, antiviral, antiallergic, antipruritic effects, and so on.

Objective: In this study, an ultra-high performance liquid chromatography/tandem mass spectrometry (UPLC- MS/MS) method was prepared and verified to measure the concentrations of seven analytes (bergapten, xanthotoxol, xanthotoxin, imperatorin, osthole, isopimpinellin, isoimperatorin) in HepG2 cells.

Methods: The separation of seven analytes was performed on an ACQUITY UPLC® BEH C18 column (2.1×100 mm, 1.7 μm) with a gradient mobile phase system of 0.1% formic acid/water and acetonitrile.

Results: The CV of analytes was within 7.77%, and the bias was in the range of -5.43%-3.84%. The matrix effects of analytes ranged from 92.95% to 104.58%, and the extraction recoveries ranged from 76.45% to 104.69%. The relative standard deviation of stability results was less than 8.21%, indicating that seven analytes were stable.

Conclusion: The method was successfully applied to the determination of the content of seven analytes of CF extracts by UPLC-MS/MS, and the results will provide a reference for the cellular pharmacokinetics of CF.

背景:蛇床子是一种中药材,具有抗肿瘤、抗病毒、抗过敏、止痒等药理作用:本研究制备并验证了超高效液相色谱/串联质谱(UPLC- MS/MS)方法,用于测定HepG2细胞中7种分析物(小檗苷、黄毒酚、黄毒苷、欧蛇床子苷、异欧蛇床子苷、异欧蛇床子苷)的浓度:采用ACQUITY UPLC® BEH C18色谱柱(2.1×100 mm,1.7 μm),以0.1%甲酸/水和乙腈为流动相进行梯度洗脱,分离了7种分析物:分析物的检出限(CV)在 7.77%以内,偏差在-5.43%-3.84%之间。分析物的基质效应为 92.95% 至 104.58%,萃取回收率为 76.45% 至 104.69%。稳定性结果的相对标准偏差小于8.21%,表明7种分析物稳定:该方法成功地应用于UPLC-MS/MS测定CF提取物中7种分析物的含量,其结果将为CF的细胞药代动力学提供参考。
{"title":"Application of UPLC-MS/MS to Study Cellular Pharmacokinetics of Seven Active Components of <i>Cnidii Fructus</i> Extracts.","authors":"Yu Bai, Huizi Ouyang, Yang Liu, Fanjiao Zuo, Caixia Li, Shuting Zhou, Yanxu Chang, Jun He","doi":"10.2174/0113892002301262241107065717","DOIUrl":"10.2174/0113892002301262241107065717","url":null,"abstract":"<p><strong>Background: </strong>Cnidii Fructus (CF) is a herbal medicine with pharmacological activities such as antitumor, antiviral, antiallergic, antipruritic effects, and so on.</p><p><strong>Objective: </strong>In this study, an ultra-high performance liquid chromatography/tandem mass spectrometry (UPLC- MS/MS) method was prepared and verified to measure the concentrations of seven analytes (bergapten, xanthotoxol, xanthotoxin, imperatorin, osthole, isopimpinellin, isoimperatorin) in HepG2 cells.</p><p><strong>Methods: </strong>The separation of seven analytes was performed on an ACQUITY UPLC® BEH C18 column (2.1×100 mm, 1.7 μm) with a gradient mobile phase system of 0.1% formic acid/water and acetonitrile.</p><p><strong>Results: </strong>The CV of analytes was within 7.77%, and the bias was in the range of -5.43%-3.84%. The matrix effects of analytes ranged from 92.95% to 104.58%, and the extraction recoveries ranged from 76.45% to 104.69%. The relative standard deviation of stability results was less than 8.21%, indicating that seven analytes were stable.</p><p><strong>Conclusion: </strong>The method was successfully applied to the determination of the content of seven analytes of CF extracts by UPLC-MS/MS, and the results will provide a reference for the cellular pharmacokinetics of CF.</p>","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":" ","pages":"576-585"},"PeriodicalIF":2.1,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142667178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pharmacokinetic Interaction between Imatinib and Tacrolimus in Rats. 伊马替尼与他克莫司在大鼠体内的药动学相互作用。
IF 2.1 4区 医学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-01 DOI: 10.2174/0113892002319356241210073350
Naling Fan, Teng Guo, Liying Du, Mingfeng Liu, Xinran Chen

Objective: Tacrolimus, a calcineurin inhibitor (CNI), is the first-line treatment for chronic myeloid leukemia (CML) and advanced gastrointestinal stromal tumors (GIST). Imatinib and tacrolimus are both substrates of the hepatic enzymes CYP3A4/5 and efflux transporter P-gp, so drug-drug interactions may occur during their co-administration treatment. Therefore, this study aimed to evaluate the pharmacokinetic interaction between imatinib and tacrolimus in rats.

Methods: Rats were divided into groups I (30 mg/kg imatinib administered for 14 days), II (1.89 mg/kg tacrolimus and 30 mg/kg imatinib administered for 14 days), III (30mg/kg imatinib and 0.63mg/kg tacrolimus administered for 14 days), IV (1.89mg/kg tacrolimus for 14 days), and V (10mg/kg imatinib and 1.89mg/kg tacrolimus for 14 days). Blood samples were determined for whole blood of tacrolimus, plasma of imatinib, and Ndesmethyl imatinib concentrations using ultra-performance liquid chromatography-mass spectrometry.

Results: After 1 day of a single dose, tacrolimus had no significant effect on the pharmacokinetics of imatinib and N-desmethyl imatinib; imatinib significantly increased the AUC and Cmax of tacrolimus (P < 0.05). After 14 days of multiple doses, tacrolimus significantly reduced the AUC and Cmax of imatinib and N-desmethyl imatinib (P < 0.05). Further, imatinib significantly increased AUC0-24 and AUC0-∞ of tacrolimus (P < 0.05).

Conclusion: Imatinib increased tacrolimus blood concentrations after single and multiple administrations. Tacrolimus did not significantly affect the pharmacokinetics of imatinib after a single dose; however, tacrolimus might impact the absorption and metabolism of imatinib after multiple doses. The results showed that when imatinib and tacrolimus were co-administered, attention should be paid to the presence of drug-drug interactions.

目的:他克莫司是一种钙调神经磷酸酶抑制剂(CNI),是治疗慢性髓性白血病(CML)和晚期胃肠道间质瘤(GIST)的一线药物。伊马替尼和他克莫司都是肝酶CYP3A4/5和外排转运体P-gp的底物,因此在共同给药治疗过程中可能会发生药物相互作用。因此,本研究旨在评价伊马替尼与他克莫司在大鼠体内的药动学相互作用。方法:将大鼠分为I组(30mg/kg伊马替尼,连用14 d)、II组(1.89mg/kg他克莫司,30mg/kg伊克莫司,连用14 d)、III组(30mg/kg伊克莫司,0.63mg/kg他克莫司,连用14 d)、IV组(1.89mg/kg他克莫司,连用14 d)、V组(10mg/kg伊马替尼,1.89mg/kg他克莫司,连用14 d)。采用超高效液相色谱-质谱法测定血样中他克莫司全血、伊马替尼血浆和奈德斯甲基伊马替尼浓度。结果:单次给药1 d后,他克莫司对伊马替尼和n -去甲基伊马替尼的药代动力学无显著影响;伊马替尼显著提高了他克莫司的AUC和Cmax (P < 0.05)。多次给药14 d后,他克莫司显著降低伊马替尼和n -去甲基伊马替尼的AUC和Cmax (P < 0.05)。伊马替尼显著提高他克莫司AUC0-24和AUC0-∞(P < 0.05)。结论:伊马替尼使他克莫司单次和多次给药后血药浓度升高。单次给药后他克莫司对伊马替尼的药代动力学无显著影响;然而,他克莫司在多次给药后可能影响伊马替尼的吸收和代谢。结果表明,伊马替尼与他克莫司合用时,应注意是否存在药物相互作用。
{"title":"Pharmacokinetic Interaction between Imatinib and Tacrolimus in Rats.","authors":"Naling Fan, Teng Guo, Liying Du, Mingfeng Liu, Xinran Chen","doi":"10.2174/0113892002319356241210073350","DOIUrl":"10.2174/0113892002319356241210073350","url":null,"abstract":"<p><strong>Objective: </strong>Tacrolimus, a calcineurin inhibitor (CNI), is the first-line treatment for chronic myeloid leukemia (CML) and advanced gastrointestinal stromal tumors (GIST). Imatinib and tacrolimus are both substrates of the hepatic enzymes CYP3A4/5 and efflux transporter P-gp, so drug-drug interactions may occur during their co-administration treatment. Therefore, this study aimed to evaluate the pharmacokinetic interaction between imatinib and tacrolimus in rats.</p><p><strong>Methods: </strong>Rats were divided into groups I (30 mg/kg imatinib administered for 14 days), II (1.89 mg/kg tacrolimus and 30 mg/kg imatinib administered for 14 days), III (30mg/kg imatinib and 0.63mg/kg tacrolimus administered for 14 days), IV (1.89mg/kg tacrolimus for 14 days), and V (10mg/kg imatinib and 1.89mg/kg tacrolimus for 14 days). Blood samples were determined for whole blood of tacrolimus, plasma of imatinib, and Ndesmethyl imatinib concentrations using ultra-performance liquid chromatography-mass spectrometry.</p><p><strong>Results: </strong>After 1 day of a single dose, tacrolimus had no significant effect on the pharmacokinetics of imatinib and N-desmethyl imatinib; imatinib significantly increased the AUC and C<sub>max</sub> of tacrolimus (P < 0.05). After 14 days of multiple doses, tacrolimus significantly reduced the AUC and C<sub>max</sub> of imatinib and N-desmethyl imatinib (P < 0.05). Further, imatinib significantly increased AUC<sub>0-24</sub> and AUC<sub>0-∞</sub> of tacrolimus (P < 0.05).</p><p><strong>Conclusion: </strong>Imatinib increased tacrolimus blood concentrations after single and multiple administrations. Tacrolimus did not significantly affect the pharmacokinetics of imatinib after a single dose; however, tacrolimus might impact the absorption and metabolism of imatinib after multiple doses. The results showed that when imatinib and tacrolimus were co-administered, attention should be paid to the presence of drug-drug interactions.</p>","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":" ","pages":"613-621"},"PeriodicalIF":2.1,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142881687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the Gut-brain Axis: Microbiome Contributions to Pathophysiology of Attention Deficit Hyperactivity Disorder and Potential Therapeutic Strategies. 探索肠脑轴:微生物组对注意缺陷多动障碍病理生理的贡献和潜在的治疗策略。
IF 1.8 4区 医学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-01 DOI: 10.2174/0113892002361676250325082424
Manasi Phatak, Bhavi Nair, Urvashi Soni, Rohini Pujari

Attention Deficit Hyperactivity Disorder (ADHD) is a prevalent neurodevelopmental disorder characterized by symptoms of hyperactivity, inattention, and impulsivity, significantly impacting individuals' daily functioning and quality of life. This manuscript explores the intricate relationship between the gut microbiome and ADHD, emphasizing the role of the gut-brain axis, a bidirectional communication pathway linking the central nervous system (CNS) and the gastrointestinal tract (GIT). The composition of gut microbiota influences several physiological processes, including immune function, metabolism, and the production of neuroactive metabolites, which are critical for cognitive functions such as memory and decision-making. The review discusses alternative therapeutic options, including dietary modifications, synbiotics, and specific diets like the ketogenic diet, which may offer promising outcomes in managing ADHD symptoms. Further research is necessary to establish the efficacy and mechanisms of action of synbiotics and dietary interventions, despite preliminary studies suggesting their potential benefits. This review article aims to provide a comprehensive overview of the current understanding of the gut microbiome's impact on ADHD, highlighting the need for continued investigation into innovative treatment strategies that leverage the gut-brain connection.

注意缺陷多动障碍(ADHD)是一种常见的神经发育障碍,以多动、注意力不集中和冲动为特征,严重影响个体的日常功能和生活质量。本文探讨了肠道微生物群与ADHD之间的复杂关系,强调了肠-脑轴的作用,肠-脑轴是连接中枢神经系统(CNS)和胃肠道(GIT)的双向通讯途径。肠道菌群的组成影响一些生理过程,包括免疫功能、代谢和神经活性代谢物的产生,这对记忆和决策等认知功能至关重要。这篇综述讨论了替代治疗方案,包括饮食调整、合生剂和特定饮食,如生酮饮食,这可能在治疗多动症症状方面提供有希望的结果。尽管初步研究表明它们具有潜在的益处,但仍需要进一步的研究来确定合生剂和饮食干预的功效和作用机制。这篇综述文章旨在全面概述目前对肠道微生物组对ADHD的影响的理解,强调需要继续研究利用肠-脑连接的创新治疗策略。
{"title":"Exploring the Gut-brain Axis: Microbiome Contributions to Pathophysiology of Attention Deficit Hyperactivity Disorder and Potential Therapeutic Strategies.","authors":"Manasi Phatak, Bhavi Nair, Urvashi Soni, Rohini Pujari","doi":"10.2174/0113892002361676250325082424","DOIUrl":"10.2174/0113892002361676250325082424","url":null,"abstract":"<p><p>Attention Deficit Hyperactivity Disorder (ADHD) is a prevalent neurodevelopmental disorder characterized by symptoms of hyperactivity, inattention, and impulsivity, significantly impacting individuals' daily functioning and quality of life. This manuscript explores the intricate relationship between the gut microbiome and ADHD, emphasizing the role of the gut-brain axis, a bidirectional communication pathway linking the central nervous system (CNS) and the gastrointestinal tract (GIT). The composition of gut microbiota influences several physiological processes, including immune function, metabolism, and the production of neuroactive metabolites, which are critical for cognitive functions such as memory and decision-making. The review discusses alternative therapeutic options, including dietary modifications, synbiotics, and specific diets like the ketogenic diet, which may offer promising outcomes in managing ADHD symptoms. Further research is necessary to establish the efficacy and mechanisms of action of synbiotics and dietary interventions, despite preliminary studies suggesting their potential benefits. This review article aims to provide a comprehensive overview of the current understanding of the gut microbiome's impact on ADHD, highlighting the need for continued investigation into innovative treatment strategies that leverage the gut-brain connection.</p>","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":" ","pages":"1-11"},"PeriodicalIF":1.8,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143956289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Application of Artificial Intelligence in Drug ADME Research. 人工智能在药物ADME研究中的应用。
IF 1.8 4区 医学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-01 DOI: 10.2174/0113892002398453250611101651
Jiayi Yin, Yuting Qi, Feng Zhu, Su Zeng
{"title":"The Application of Artificial Intelligence in Drug ADME Research.","authors":"Jiayi Yin, Yuting Qi, Feng Zhu, Su Zeng","doi":"10.2174/0113892002398453250611101651","DOIUrl":"10.2174/0113892002398453250611101651","url":null,"abstract":"","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":" ","pages":"73-77"},"PeriodicalIF":1.8,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144332610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Temperature-sensitive Hydrogel: An Effective Treatment for Nasal Drug Delivery Targeting the Brain. 温度敏感水凝胶:一种针对大脑的鼻腔给药的有效治疗方法。
IF 1.8 4区 医学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-01 DOI: 10.2174/0113892002365157250422114917
Doudou Li, Liping Chen, Yidan Chen, Lin Jiang, Rong Wang, Wenbin Li

The brain is highly protected by physiological barriers, in which the blood-brain barrier restricts the entry of most drugs. Intranasal drug delivery is a non-invasive way of drug delivery, which can cross the blood-brain barrier and achieve direct and efficient targeted delivery to the brain. Therefore, it has great potential in application to the treatment of brain diseases. Temperature-sensitive hydrogels undergo a solutiongel transition with temperature change, and the gel form has good mucosal adsorption properties in the nasal cavity, which is commonly used for targeted delivery of drugs for brain diseases. In this article, by introducing the transport mechanism of brain targeting after nasal administration, combined with the prescription design and basic performance study of temperature-sensitive nasal hydrogel, we summarized the research on the role that temperature-sensitive hydrogel plays brain targeting after via nasal administration, aiming to provide a reference for the development of therapeutic drugs for cerebral diseases and their clinical application. A graphical summary.

大脑受到生理屏障的高度保护,其中血脑屏障限制了大多数药物的进入。鼻内给药是一种无创给药方式,可以跨越血脑屏障,实现直接高效的靶向给药。因此,它在脑部疾病的治疗中具有很大的应用潜力。温度敏感型水凝胶随着温度的变化发生溶液-凝胶的转变,凝胶形式在鼻腔内具有良好的粘膜吸附特性,常用于脑部疾病药物的靶向递送。本文通过介绍经鼻给药后脑靶向的转运机制,结合温度敏感型鼻水凝胶的处方设计和基本性能研究,对温度敏感型鼻水凝胶经鼻给药后脑靶向作用的研究进行综述,旨在为脑病治疗药物的开发及临床应用提供参考。图(1)显示了一个图形总结。
{"title":"Temperature-sensitive Hydrogel: An Effective Treatment for Nasal Drug Delivery Targeting the Brain.","authors":"Doudou Li, Liping Chen, Yidan Chen, Lin Jiang, Rong Wang, Wenbin Li","doi":"10.2174/0113892002365157250422114917","DOIUrl":"10.2174/0113892002365157250422114917","url":null,"abstract":"<p><p>The brain is highly protected by physiological barriers, in which the blood-brain barrier restricts the entry of most drugs. Intranasal drug delivery is a non-invasive way of drug delivery, which can cross the blood-brain barrier and achieve direct and efficient targeted delivery to the brain. Therefore, it has great potential in application to the treatment of brain diseases. Temperature-sensitive hydrogels undergo a solutiongel transition with temperature change, and the gel form has good mucosal adsorption properties in the nasal cavity, which is commonly used for targeted delivery of drugs for brain diseases. In this article, by introducing the transport mechanism of brain targeting after nasal administration, combined with the prescription design and basic performance study of temperature-sensitive nasal hydrogel, we summarized the research on the role that temperature-sensitive hydrogel plays brain targeting after via nasal administration, aiming to provide a reference for the development of therapeutic drugs for cerebral diseases and their clinical application. A graphical summary.</p>","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":" ","pages":"78-92"},"PeriodicalIF":1.8,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143962667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rapid and Comprehensive Identification of Vincosamide Metabolites in vitro and in vivo in Rats by Ultra-high Performance Liquid Chromatography-Quadrupole-Exactive Orbitrap-high Resolution Mass Spectrometry. 超高效液相色谱-四极杆-精确轨道-高分辨质谱法快速综合鉴定大鼠体内体外维萨胺代谢物。
IF 1.8 4区 医学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-01 DOI: 10.2174/0113892002351614250401153450
Aichun Gao, Hongjin Wang, Xiaoge Cheng, Caihong Li, Lixin Sun

Background: Vincosamide, an indole alkaloid extracted from Nauclea officinalis, exhibits a range of pharmacological activities, such as anti-tumor, antibacterial, and anti-inflammatory properties. However, despite its promising therapeutic applications, there is a notable gap in research focused on the metabolic pathways of vincosamide.

Objectives: This study aims to investigate the metabolism of vincosamide both in vitro and in vivo in rats, and to elucidate its metabolic pathways.

Methods: Samples of liver microsomal incubation, plasma, bile, urine, and feces following vincosamide administration were analyzed by ultra-high performance liquid chromatography-quadrupole-Exactive Orbitraphigh resolution mass spectrometry (UHPLC-Q-Exactive Orbitrap HRMS). The collected data were analyzed using Compound Discovery 3.2 software and the molecular network method. The metabolites identified through these methodologies were subsequently validated using Xcalibur 4.1 software, which provided information on retention times, parent ions, and characteristic fragment ions.

Results: A total of 37 metabolites were identified, including 8 in vitro and 32 in vivo (3 in plasma, 7 in bile, 22 in urine, and 17 in feces). While the metabolism of vincosamide differs in vitro and in vivo in rats, the type of metabolic reaction that occurs is well-defined. The predominant metabolic pathways are oxidation, reduction, deglycosylation, hydration, glucuronidation, methylation, sulfation, glycine conjugation, cysteine conjugation, taurine conjugation, and complex reactions.

Conclusion: This study elucidates the metabolism of vincosamide in vitro and in vivo in rats, thereby expanding the metabolite profile of vincosamide. These findings provide a foundation for the potential development of new drugs based on vincosamide.

背景:长春酰胺是一种从officinalis中提取的吲哚类生物碱,具有抗肿瘤、抗菌和抗炎等药理活性。然而,尽管其具有良好的治疗应用前景,但在研究vincosavide的代谢途径方面存在明显的差距。目的:研究长春酰胺在大鼠体内和体外的代谢情况,阐明其代谢途径。方法:采用超高效液相色谱-四极柱-高分辨质谱法(UHPLC-Q-Exactive Orbitrap HRMS)对长春新胺给药后的肝微粒体孵育、血浆、胆汁、尿液和粪便进行分析。采用Compound Discovery 3.2软件和分子网络方法对收集的数据进行分析。通过这些方法鉴定的代谢物随后使用Xcalibur 4.1软件进行验证,该软件提供了保留时间、亲本离子和特征片段离子的信息。结果:共鉴定出37种代谢物,其中体外代谢物8种,体内代谢物32种(血浆代谢物3种,胆汁代谢物7种,尿液代谢物22种,粪便代谢物17种)。虽然大鼠体内和体外对维新胺的代谢不同,但所发生的代谢反应的类型是明确的。主要的代谢途径是氧化、还原、去糖基化、水化、葡萄糖醛酸化、甲基化、磺化、甘氨酸偶联、半胱氨酸偶联、牛磺酸偶联和复合反应。结论:本研究阐明了大鼠体内和体外对维科沙胺的代谢,从而扩大了维科沙胺的代谢谱。这些发现为开发以维科沙胺为基础的新药奠定了基础。
{"title":"Rapid and Comprehensive Identification of Vincosamide Metabolites <i>in vitro</i> and <i>in vivo</i> in Rats by Ultra-high Performance Liquid Chromatography-Quadrupole-Exactive Orbitrap-high Resolution Mass Spectrometry.","authors":"Aichun Gao, Hongjin Wang, Xiaoge Cheng, Caihong Li, Lixin Sun","doi":"10.2174/0113892002351614250401153450","DOIUrl":"10.2174/0113892002351614250401153450","url":null,"abstract":"<p><strong>Background: </strong>Vincosamide, an indole alkaloid extracted from <i>Nauclea officinalis</i>, exhibits a range of pharmacological activities, such as anti-tumor, antibacterial, and anti-inflammatory properties. However, despite its promising therapeutic applications, there is a notable gap in research focused on the metabolic pathways of vincosamide.</p><p><strong>Objectives: </strong>This study aims to investigate the metabolism of vincosamide both <i>in vitro</i> and <i>in vivo</i> in rats, and to elucidate its metabolic pathways.</p><p><strong>Methods: </strong>Samples of liver microsomal incubation, plasma, bile, urine, and feces following vincosamide administration were analyzed by ultra-high performance liquid chromatography-quadrupole-Exactive Orbitraphigh resolution mass spectrometry (UHPLC-Q-Exactive Orbitrap HRMS). The collected data were analyzed using Compound Discovery 3.2 software and the molecular network method. The metabolites identified through these methodologies were subsequently validated using Xcalibur 4.1 software, which provided information on retention times, parent ions, and characteristic fragment ions.</p><p><strong>Results: </strong>A total of 37 metabolites were identified, including 8 <i>in vitro</i> and 32 in vivo (3 in plasma, 7 in bile, 22 in urine, and 17 in feces). While the metabolism of vincosamide differs in vitro and <i>in vivo</i> in rats, the type of metabolic reaction that occurs is well-defined. The predominant metabolic pathways are oxidation, reduction, deglycosylation, hydration, glucuronidation, methylation, sulfation, glycine conjugation, cysteine conjugation, taurine conjugation, and complex reactions.</p><p><strong>Conclusion: </strong>This study elucidates the metabolism of vincosamide <i>in vitro</i> and <i>in vivo</i> in rats, thereby expanding the metabolite profile of vincosamide. These findings provide a foundation for the potential development of new drugs based on vincosamide.</p>","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":" ","pages":"55-71"},"PeriodicalIF":1.8,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143968712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Clinical Pharmacology and Side Effects of Venetoclax in Hematologic Malignancies. 维妥乐治疗血液恶性肿瘤的临床药理学及毒副作用。
IF 2.1 4区 医学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-01 DOI: 10.2174/0113892002338926241114080504
Yuting Yan, Yujiao Guo, Ziyi Wang, Wei He, Yu Zhu, Xiaoli Zhao, Luning Sun, Yongqing Wang

Venetoclax is a first-in-class B-cell lymphoma/lymphoma-2 (BCL-2) inhibitor that induces apoptosis in malignant cells through the inhibition of BCL-2. The clinical response to venetoclax exhibits heterogeneity, and its sensitivity and resistance may be intricately linked to genetic expression. Pharmacokinetic studies following doses of venetoclax (ranging from 100 to 1200mg) revealed a time to maximum observed plasma concentration of 5-8 hours, with a maximum blood concentration of 1.58-3.89 μg/mL, and a 24-hour area under the concentration-time curve of 12.7-62.8 μg·h/mL. Population-based pharmacokinetic investigations highlighted that factors such as low-fat diet, race, and severe hepatic impairment play pivotal roles in influencing venetoclax dose selection. Being a substrate for CYP3A4, P-glycoprotein, and breast cancer resistance protein, venetoclax undergoes primary metabolism and clearance in the liver, displaying low accumulation in the body.The significance of dose modifications (a 50% decrease with moderate and a 75% reduction with strong CYP3A inhibitors) and a cautious two-hour interval when co-administered with P-glycoprotein inhibitors are highlighted by insights from clinical medication interaction studies. Moreover, an exposure-response relationship analysis indicates that venetoclax exposure significantly correlates not only with overall survival and total response rate but also with the occurrence of ≥ 3-grade neutropenia. In real-world studies, common or severe side effects of venetoclax include tumor lysis syndrome, myelosuppression, nausea, diarrhea, constipation, infection, autoimmune hemolytic anemia, and cardiac toxicity, among others. In this review, we summarize the current clinical pharmacology studies and side effects of venetoclax, which showed that the approved dosage of venetoclax is relatively wide, and the dosage for different hematologic populations can be streamlined in the future.

Venetoclax是一种一流的b细胞淋巴瘤/淋巴瘤-2 (BCL-2)抑制剂,通过抑制BCL-2诱导恶性细胞凋亡。对venetoclax的临床反应表现出异质性,其敏感性和耐药性可能与遗传表达复杂相关。venetoclax (100 ~ 1200mg)给药后的药代动力学研究显示,达到最大血药浓度的时间为5 ~ 8小时,最大血药浓度为1.58 ~ 3.89 μg/mL, 24小时浓度-时间曲线下面积为12.7 ~ 62.8 μg·h/mL。基于人群的药代动力学研究强调,低脂饮食、种族和严重肝功能损害等因素在影响venetoclax剂量选择中起关键作用。venetoclax是CYP3A4、p糖蛋白和乳腺癌抵抗蛋白的底物,在肝脏中进行初级代谢和清除,在体内积累较少。临床药物相互作用研究的见解强调了剂量调整的重要性(中度CYP3A抑制剂减少50%,强CYP3A抑制剂减少75%)和与p -糖蛋白抑制剂联合给药时谨慎的两小时间隔。此外,一项暴露-反应关系分析表明,venetoclax暴露不仅与总生存率和总有效率显著相关,而且与≥3级中性粒细胞减少症的发生也显著相关。在现实世界的研究中,venetoclax常见或严重的副作用包括肿瘤溶解综合征、骨髓抑制、恶心、腹泻、便秘、感染、自身免疫性溶血性贫血和心脏毒性等。本文综述了目前venetoclax的临床药理学研究和副作用,表明venetoclax的批准剂量相对较宽,未来可以精简不同血液人群的剂量。
{"title":"Clinical Pharmacology and Side Effects of Venetoclax in Hematologic Malignancies.","authors":"Yuting Yan, Yujiao Guo, Ziyi Wang, Wei He, Yu Zhu, Xiaoli Zhao, Luning Sun, Yongqing Wang","doi":"10.2174/0113892002338926241114080504","DOIUrl":"10.2174/0113892002338926241114080504","url":null,"abstract":"<p><p>Venetoclax is a first-in-class B-cell lymphoma/lymphoma-2 (BCL-2) inhibitor that induces apoptosis in malignant cells through the inhibition of BCL-2. The clinical response to venetoclax exhibits heterogeneity, and its sensitivity and resistance may be intricately linked to genetic expression. Pharmacokinetic studies following doses of venetoclax (ranging from 100 to 1200mg) revealed a time to maximum observed plasma concentration of 5-8 hours, with a maximum blood concentration of 1.58-3.89 μg/mL, and a 24-hour area under the concentration-time curve of 12.7-62.8 μg·h/mL. Population-based pharmacokinetic investigations highlighted that factors such as low-fat diet, race, and severe hepatic impairment play pivotal roles in influencing venetoclax dose selection. Being a substrate for CYP3A4, P-glycoprotein, and breast cancer resistance protein, venetoclax undergoes primary metabolism and clearance in the liver, displaying low accumulation in the body.The significance of dose modifications (a 50% decrease with moderate and a 75% reduction with strong CYP3A inhibitors) and a cautious two-hour interval when co-administered with P-glycoprotein inhibitors are highlighted by insights from clinical medication interaction studies. Moreover, an exposure-response relationship analysis indicates that venetoclax exposure significantly correlates not only with overall survival and total response rate but also with the occurrence of ≥ 3-grade neutropenia. In real-world studies, common or severe side effects of venetoclax include tumor lysis syndrome, myelosuppression, nausea, diarrhea, constipation, infection, autoimmune hemolytic anemia, and cardiac toxicity, among others. In this review, we summarize the current clinical pharmacology studies and side effects of venetoclax, which showed that the approved dosage of venetoclax is relatively wide, and the dosage for different hematologic populations can be streamlined in the future.</p>","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":" ","pages":"564-575"},"PeriodicalIF":2.1,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142767016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Current drug metabolism
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1