首页 > 最新文献

Current drug metabolism最新文献

英文 中文
Disposition Kinetics of Cathinone and its Metabolites after Oral Administration in Rats. 大鼠口服 Cathinone 及其代谢物的处置动力学
IF 2.1 4区 医学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-01-01 DOI: 10.2174/0113892002300638240513065512
Fahad Y Sabei, Ibrahim Khardali, Mohamed A Al-Kasim, Emad Sayed Shaheen, Magbool Oraiby, Ahmad Alamir, Banji David, Saeed Alshahrani, Abdulmajeed M Jali, Mohammed Attafi, Mohammed Y Albeishy, Ibraheem Attafi

Background: Cathinone is a natural stimulant found in the Catha edulis plant. Its derivatives make up the largest group of new psychoactive substances. In order to better understand its effects, it is imperative to investigate its distribution, pharmacokinetics, and metabolic profile. However, the existing literature on cathinone remains limited.

Objective: This study aimed to investigate the disposition kinetics and metabolic profile of cathinone and its metabolite cathine through a single oral dose of cathinone administration in rats.

Methods: Cathinone and cathine concentrations were identified and quantified using ion trap liquid chromatography- mass spectrometry (LC-IT/MS). The metabolic profile in the serum, brain, lung, liver, kidney, and heart was analyzed at specific time points (0, 0.5, 2.5, 6, 12, 24, 48, and 72 hours) using the ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF/MS) method.

Results: The highest concentration of cathinone was found in the kidney (1438.6 μg/L, which gradually decreased to 1.97 within 48 h and disappeared after 72 h. Cathinone levels in the lungs, liver, and heart were 859, 798.9, and 385.8 μg/L, respectively, within half an hour. However, within 2.5 hours, these levels decreased to 608.1, 429.3, and 309.1 μg/L and became undetectable after 24 h. In the rat brain, cathinone levels dropped quickly and were undetectable within six hours, decreasing from 712.7 μg/L after 30 min. In the brain and serum, cathine reached its highest levels at 2.5 hours, while in other organs, it peaked at 0.5 hours, indicating slower conversion of cathinone to cathine in the brain and serum.

Conclusion: This study revealed a dynamic interplay between cathinone disposition kinetics and its impact on organ-specific metabolic profiles in rats. These results have significant implications for drug development, pharmacovigilance, and clinical practices involving cathinone. Investigating the correlation between the changes in biomarkers found in the brain and the levels of cathinone and cathine is essential for informed decision- making in medical practices and further research into the pharmacological properties of cathinone.

背景介绍Cathinone 是一种天然的兴奋剂,存在于 Catha edulis 植物中。其衍生物是新精神活性物质中最大的一类。为了更好地了解其作用,必须研究其分布、药代动力学和代谢概况。然而,现有关于卡西酮的文献仍然有限:本研究旨在通过大鼠单次口服卡西酮,研究卡西酮及其代谢物卡辛的分布动力学和代谢概况:采用离子阱液相色谱-质谱法(LC-IT/MS)对卡西酮和卡辛的浓度进行鉴定和定量。采用超高效液相色谱-四极杆飞行时间质谱法(UPLC-QTOF/MS)分析了特定时间点(0、0.5、2.5、6、12、24、48 和 72 小时)大鼠血清、脑、肺、肝、肾和心脏的代谢概况:肾脏中的卡西酮浓度最高(1438.6 μg/L),48 小时内逐渐降至 1.97,72 小时后消失。在大鼠大脑中,卡西酮水平迅速下降,30 分钟后从 712.7 微克/升下降到 6 小时内检测不到。在大脑和血清中,卡西酮在 2.5 小时后达到最高水平,而在其他器官中,卡西酮在 0.5 小时后达到峰值,这表明卡西酮在大脑和血清中转化为卡西酮的速度较慢:本研究揭示了卡西酮处置动力学与卡西酮对大鼠特定器官代谢特征的影响之间的动态相互作用。这些结果对涉及卡西酮的药物开发、药物警戒和临床实践具有重要意义。研究大脑中发现的生物标志物的变化与卡西酮和卡辛水平之间的相关性,对于在医疗实践中做出明智决策以及进一步研究卡西酮的药理特性至关重要。
{"title":"Disposition Kinetics of Cathinone and its Metabolites after Oral Administration in Rats.","authors":"Fahad Y Sabei, Ibrahim Khardali, Mohamed A Al-Kasim, Emad Sayed Shaheen, Magbool Oraiby, Ahmad Alamir, Banji David, Saeed Alshahrani, Abdulmajeed M Jali, Mohammed Attafi, Mohammed Y Albeishy, Ibraheem Attafi","doi":"10.2174/0113892002300638240513065512","DOIUrl":"10.2174/0113892002300638240513065512","url":null,"abstract":"<p><strong>Background: </strong>Cathinone is a natural stimulant found in the Catha edulis plant. Its derivatives make up the largest group of new psychoactive substances. In order to better understand its effects, it is imperative to investigate its distribution, pharmacokinetics, and metabolic profile. However, the existing literature on cathinone remains limited.</p><p><strong>Objective: </strong>This study aimed to investigate the disposition kinetics and metabolic profile of cathinone and its metabolite cathine through a single oral dose of cathinone administration in rats.</p><p><strong>Methods: </strong>Cathinone and cathine concentrations were identified and quantified using ion trap liquid chromatography- mass spectrometry (LC-IT/MS). The metabolic profile in the serum, brain, lung, liver, kidney, and heart was analyzed at specific time points (0, 0.5, 2.5, 6, 12, 24, 48, and 72 hours) using the ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF/MS) method.</p><p><strong>Results: </strong>The highest concentration of cathinone was found in the kidney (1438.6 μg/L, which gradually decreased to 1.97 within 48 h and disappeared after 72 h. Cathinone levels in the lungs, liver, and heart were 859, 798.9, and 385.8 μg/L, respectively, within half an hour. However, within 2.5 hours, these levels decreased to 608.1, 429.3, and 309.1 μg/L and became undetectable after 24 h. In the rat brain, cathinone levels dropped quickly and were undetectable within six hours, decreasing from 712.7 μg/L after 30 min. In the brain and serum, cathine reached its highest levels at 2.5 hours, while in other organs, it peaked at 0.5 hours, indicating slower conversion of cathinone to cathine in the brain and serum.</p><p><strong>Conclusion: </strong>This study revealed a dynamic interplay between cathinone disposition kinetics and its impact on organ-specific metabolic profiles in rats. These results have significant implications for drug development, pharmacovigilance, and clinical practices involving cathinone. Investigating the correlation between the changes in biomarkers found in the brain and the levels of cathinone and cathine is essential for informed decision- making in medical practices and further research into the pharmacological properties of cathinone.</p>","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":" ","pages":"220-226"},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140944368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hydrogen Peroxide Induces Ethanol-inducible CYP2E1 via the NF-kB-classical Pathway: CYP2E1 mRNA Levels are not High in Alcoholic Hepatitis. 过氧化氢通过 NFkB 经典途径诱导乙醇诱导型 CYP2E1:酒精性肝炎的 CYP2E1 mRNA 水平并不高。
IF 2.1 4区 医学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-01-01 DOI: 10.2174/0113892002305174240805064406
Akiyoshi Tamura, Ferbian Milas Siswanto, Takumi Yoshimura, Ami Oguro, Susumu Imaoka

Aims: The aim of the present study is to elucidate the mechanism of CYP2E1 induction as a causative factor of Alcoholic Hepatitis (AH) and its relationship with inflammation.

Background: Chronic alcohol consumption induces CYP2E1, which is involved in the development of Alcoholic Hepatitis (AH). However, the mechanisms underlying the induction of CYP2E1 by alcohol remain unclear. Therefore, we herein investigated the induction of drug-metabolizing enzymes, particularly CYP2E1, by hydrogen peroxide (H2O2), the concentration of which is elevated under inflammatory conditions.

Objective: The mechanisms underlying the induction of CYP2E1 by H2O2 were examined with a focus on Keap1, a target factor of H2O2.

Methods: We assessed changes in the expression of drug-metabolizing enzymes in the human hepatoma cell line, Hep3B, following treatment with H2O2, and evaluated changes in the expression of the NF-kB-related factor RelA(p65) after the knockdown of Keap1, a regulator of Nrf2 expression by reactive oxygen species. We also performed a promoter analysis using the upstream region of the CYP2E1 gene. We herein used the GSE89632 series for non-alcoholic hepatitis (NASH) and the GSE28619 series for AH.

Results: The induction of CYP2E1 by H2O2 was significantly stronger than that of other drugmetabolizing enzymes. On the other hand, the knockdown of Keap1, a target of H2O2, markedly increased RelA(p65), an NFkB factor. Furthermore, the overexpression of RelA(p65) strongly induced the expression of CYP2E1. Four candidate p65-binding sequences were identified upstream of the CYP2E1 gene, and promoter activity assays showed that the third sequence was responsive to the overexpression of RelA(p65). We used the GSE89632 series for NASH and the GSE28619 series for AH in the present study. The expression of CYP2E1 mRNA in the liver was significantly lower in AH patients than in HC patients, but was similar in HC patients and NASH patients.

Conclusion: We herein demonstrated that the expression of CYP2E1 was induced by H2O2. The overexpression of RelA(p65) also induced CYP2E1 mRNA expression, whereas H2O2 did not after the knockdown of RelA. These results suggest that H2O2 acts on Keap1 to upregulate RelA (p65) in the NFkB system. One of the mechanisms underlying the induction of CYP2E1 was dependent on the H2O2-Keap1-RelA axis. The results of the database analysis revealed that the expression of CYP2E1 in the liver was significantly lower in AH patients than in NASH patients, suggesting that CYP2E1 is not the main cause of AH; however, CYP2E1 may exacerbate the pathogenesis of AH.

目的:本研究旨在阐明作为酒精性肝炎(AH)致病因素的 CYP2E1 诱导机制及其与炎症的关系:背景:长期饮酒会诱导 CYP2E1,而 CYP2E1 与酒精性肝炎(AH)的发病有关。然而,酒精诱导 CYP2E1 的机制仍不清楚。因此,我们在此研究了过氧化氢(H2O2)对药物代谢酶,尤其是 CYP2E1 的诱导作用:目的:研究 H2O2 诱导 CYP2E1 的机制,重点是 H2O2 的靶因子 Keap1:我们评估了人肝癌细胞系 Hep3B 在经 H2O2 处理后药物代谢酶表达的变化,并评估了在活性氧敲除 Keap1(Nrf2 表达的调节因子)后 NFkB 相关因子 RelA(p65) 表达的变化。我们还利用 CYP2E1 基因的上游区域进行了启动子分析。在此,我们使用了非酒精性肝炎(NASH)的 GSE89632 系列和 AH 的 GSE28619 系列:结果:H2O2 对 CYP2E1 的诱导作用明显强于其他药物代谢酶。另一方面,H2O2的靶标Keap1被敲除后,NFkB因子RelA(p65)明显增加。此外,RelA(p65)的过表达能强烈诱导 CYP2E1 的表达。我们在 CYP2E1 基因上游发现了四个候选 p65 结合序列,启动子活性测定显示第三个序列对 RelA(p65) 的过表达有反应。在本研究中,我们使用 GSE89632 系列检测 NASH,使用 GSE28619 系列检测 AH。AH患者肝脏中CYP2E1 mRNA的表达量明显低于HC患者,但HC患者和NASH患者的表达量相似:结论:我们在此证明了 H2O2 可诱导 CYP2E1 的表达。过表达 RelA(p65) 也会诱导 CYP2E1 mRNA 的表达,而在敲除 RelA 后,H2O2 不会诱导 CYP2E1 mRNA 的表达。这些结果表明,在 NFkB 系统中,H2O2 作用于 Keap1 上调 RelA(p65)。诱导 CYP2E1 的机制之一依赖于 H2O2-Keap1-RelA 轴。数据库分析结果显示,AHH 患者肝脏中 CYP2E1 的表达量明显低于 NASH 患者,这表明 CYP2E1 并非 AHH 的主要病因,但 CYP2E1 可能会加剧 AHH 的发病机制。
{"title":"Hydrogen Peroxide Induces Ethanol-inducible CYP2E1 <i>via</i> the NF-kB-classical Pathway: CYP2E1 mRNA Levels are not High in Alcoholic Hepatitis.","authors":"Akiyoshi Tamura, Ferbian Milas Siswanto, Takumi Yoshimura, Ami Oguro, Susumu Imaoka","doi":"10.2174/0113892002305174240805064406","DOIUrl":"10.2174/0113892002305174240805064406","url":null,"abstract":"<p><strong>Aims: </strong>The aim of the present study is to elucidate the mechanism of CYP2E1 induction as a causative factor of Alcoholic Hepatitis (AH) and its relationship with inflammation.</p><p><strong>Background: </strong>Chronic alcohol consumption induces CYP2E1, which is involved in the development of Alcoholic Hepatitis (AH). However, the mechanisms underlying the induction of CYP2E1 by alcohol remain unclear. Therefore, we herein investigated the induction of drug-metabolizing enzymes, particularly CYP2E1, by hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), the concentration of which is elevated under inflammatory conditions.</p><p><strong>Objective: </strong>The mechanisms underlying the induction of CYP2E1 by H<sub>2</sub>O<sub>2</sub> were examined with a focus on Keap1, a target factor of H<sub>2</sub>O<sub>2</sub>.</p><p><strong>Methods: </strong>We assessed changes in the expression of drug-metabolizing enzymes in the human hepatoma cell line, Hep3B, following treatment with H<sub>2</sub>O<sub>2</sub>, and evaluated changes in the expression of the NF-kB-related factor RelA(p65) after the knockdown of Keap1, a regulator of Nrf2 expression by reactive oxygen species. We also performed a promoter analysis using the upstream region of the CYP2E1 gene. We herein used the GSE89632 series for non-alcoholic hepatitis (NASH) and the GSE28619 series for AH.</p><p><strong>Results: </strong>The induction of CYP2E1 by H<sub>2</sub>O<sub>2</sub> was significantly stronger than that of other drugmetabolizing enzymes. On the other hand, the knockdown of Keap1, a target of H<sub>2</sub>O<sub>2</sub>, markedly increased RelA(p65), an NFkB factor. Furthermore, the overexpression of RelA(p65) strongly induced the expression of CYP2E1. Four candidate p65-binding sequences were identified upstream of the CYP2E1 gene, and promoter activity assays showed that the third sequence was responsive to the overexpression of RelA(p65). We used the GSE89632 series for NASH and the GSE28619 series for AH in the present study. The expression of CYP2E1 mRNA in the liver was significantly lower in AH patients than in HC patients, but was similar in HC patients and NASH patients.</p><p><strong>Conclusion: </strong>We herein demonstrated that the expression of CYP2E1 was induced by H<sub>2</sub>O<sub>2</sub>. The overexpression of RelA(p65) also induced CYP2E1 mRNA expression, whereas H<sub>2</sub>O<sub>2</sub> did not after the knockdown of RelA. These results suggest that H<sub>2</sub>O<sub>2</sub> acts on Keap1 to upregulate RelA (p65) in the NFkB system. One of the mechanisms underlying the induction of CYP2E1 was dependent on the H<sub>2</sub>O<sub>2</sub>-Keap1-RelA axis. The results of the database analysis revealed that the expression of CYP2E1 in the liver was significantly lower in AH patients than in NASH patients, suggesting that CYP2E1 is not the main cause of AH; however, CYP2E1 may exacerbate the pathogenesis of AH.</p>","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":" ","pages":"307-316"},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141916270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent Advances in Hepatic Metabolic Regulation by the Nuclear Factor Rev-erbɑ. 核因子 Rev-erbɑ 调节肝脏代谢的最新进展
IF 2.1 4区 医学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-01-01 DOI: 10.2174/0113892002290055240212074758
Qi Zhang, Yutong Chen, Jingqi Li, Haishan Xia, Yongbin Tong, Yuyu Liu

Rev-erbɑ (NR1D1) is a nuclear receptor superfamily member that plays a vital role in mammalian molecular clocks and metabolism. Rev-erbɑ can regulate the metabolism of drugs and the body's glucose metabolism, lipid metabolism, and adipogenesis. It is even one of the important regulatory factors regulating the occurrence of metabolic diseases (e.g., diabetes, fatty liver). Metabolic enzymes mediate most drug metabolic reactions in the body. Rev-erbɑ has been recognized to regulate drug metabolic enzymes (such as Cyp2b10 and Ugt1a9). Therefore, this paper mainly reviewed that Rev-erbɑ regulates I and II metabolic enzymes in the liver to affect drug pharmacokinetics. The expression of these drug metabolic enzymes (up-regulated or down-regulated) is related to drug exposure and effects/ toxicity. In addition, our discussion extends to Rev-erbɑ regulating some transporters (such as P-gp, Mrp2, and Bcrp), as they also play an essential role in drug metabolism. Finally, we briefly describe the role and mechanism of nuclear receptor Rev-erbɑ in lipid and glucose homeostasis, obesity, and metabolic disorders syndrome. In conclusion, this paper aims to understand better the role and mechanism of Rev-erbɑ in regulating drug metabolism, lipid, glucose homeostasis, obesity, and metabolic disorders syndrome, which explores how to target Rev-erbɑ to guide the design and development of new drugs and provide scientific reference for the molecular mechanism of new drug development, rational drug use, and drug interaction.

Rev-erbɑ(NR1D1)是一种核受体超家族成员,在哺乳动物的分子时钟和新陈代谢中发挥着重要作用。Rev-erbɑ可以调节药物代谢和机体的糖代谢、脂代谢和脂肪生成。它甚至是调节代谢性疾病(如糖尿病、脂肪肝)发生的重要调节因子之一。代谢酶介导了体内大多数药物代谢反应。Rev-erbɑ已被认为能调节药物代谢酶(如Cyp2b10和Ugt1a9)。因此,本文主要综述了 Rev-erbɑ 对肝脏中 I 和 II 代谢酶的调控,从而影响药物的药代动力学。这些药物代谢酶的表达(上调或下调)与药物暴露和作用/毒性有关。此外,我们还讨论了 Rev-erbɑ 对一些转运体(如 P-gp、Mrp2 和 Bcrp)的调节作用,因为它们在药物代谢中也发挥着重要作用。最后,我们简要介绍了核受体 Rev-erbɑ 在血脂和血糖平衡、肥胖和代谢紊乱综合征中的作用和机制。总之,本文旨在更好地了解Rev-erbɑ在调控药物代谢、血脂、血糖平衡、肥胖和代谢紊乱综合征中的作用和机制,从而探讨如何以Rev-erbɑ为靶点指导新药的设计和开发,为新药开发、合理用药和药物相互作用的分子机制提供科学参考。
{"title":"Recent Advances in Hepatic Metabolic Regulation by the Nuclear Factor Rev-erbɑ.","authors":"Qi Zhang, Yutong Chen, Jingqi Li, Haishan Xia, Yongbin Tong, Yuyu Liu","doi":"10.2174/0113892002290055240212074758","DOIUrl":"10.2174/0113892002290055240212074758","url":null,"abstract":"<p><p>Rev-erbɑ (NR1D1) is a nuclear receptor superfamily member that plays a vital role in mammalian molecular clocks and metabolism. Rev-erbɑ can regulate the metabolism of drugs and the body's glucose metabolism, lipid metabolism, and adipogenesis. It is even one of the important regulatory factors regulating the occurrence of metabolic diseases (e.g., diabetes, fatty liver). Metabolic enzymes mediate most drug metabolic reactions in the body. Rev-erbɑ has been recognized to regulate drug metabolic enzymes (such as Cyp2b10 and Ugt1a9). Therefore, this paper mainly reviewed that Rev-erbɑ regulates I and II metabolic enzymes in the liver to affect drug pharmacokinetics. The expression of these drug metabolic enzymes (up-regulated or down-regulated) is related to drug exposure and effects/ toxicity. In addition, our discussion extends to Rev-erbɑ regulating some transporters (such as P-gp, Mrp2, and Bcrp), as they also play an essential role in drug metabolism. Finally, we briefly describe the role and mechanism of nuclear receptor Rev-erbɑ in lipid and glucose homeostasis, obesity, and metabolic disorders syndrome. In conclusion, this paper aims to understand better the role and mechanism of Rev-erbɑ in regulating drug metabolism, lipid, glucose homeostasis, obesity, and metabolic disorders syndrome, which explores how to target Rev-erbɑ to guide the design and development of new drugs and provide scientific reference for the molecular mechanism of new drug development, rational drug use, and drug interaction.</p>","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":" ","pages":"2-12"},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139971187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unraveling the Role of COMT Polymorphism in Dopamine-Mediated Vasopressor Effects: An Observational Cross-Sectional Study. 揭示 COMT 多态性在多巴胺介导的血管加压效应中的作用:一项观察性横断面研究。
IF 2.1 4区 医学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-01-01 DOI: 10.2174/0113892002293952240315064943
Kannan Sridharan, Anfal Jassim, Ali Mohammed Qader, Sheikh Abdul Azeez Pasha

Aims: To evaluate the association between rs4680 polymorphism in the COMT gene and the vasoconstrictive effects of commonly used vasopressors.

Background: Dopamine is a medication that is given intravenously to critically ill patients to help increase blood pressure. Catechol O-Methyl Transferase (COMT) breaks down dopamine and other catecholamines. There is a genetic variation in the COMT gene called rs4680 that can affect how well the enzyme works. Studies have shown that people with this genetic variation may have different blood pressure levels. However, no one has looked at how this genetic variation affects the way dopamine works to increase blood pressure.

Objectives: To investigate the impact of the rs4680 polymorphism in the COMT gene on the pharmacodynamic response to dopamine.

Methods: Critically ill patients administered dopamine were included following the consent of their legally acceptable representatives. Details on their demographic characteristics, diagnosis, drug-related details, changes in the heart rate, blood pressure, and urinary output were obtained. The presence of rs4680 polymorphism in the COMT gene was evaluated using a validated method.

Results: One hundred and seventeen patients were recruited, and we observed a prevalence of rs4680 polymorphism in 57.3% of our critically ill patients. Those with mutant genotypes were observed with an increase in the median rate of change in mean arterial pressure (mm Hg/hour) [wild: 8.9 (-22.6 to 49.1); heterozygous mutant: 5.9 (-34.1 to 61.6); and homozygous mutant: 19.5 (-2.5 to 129.2)] and lowered urine output (ml/day) [wild: 1080 (21.4 to 5900); heterozygous mutant: 380 (23.7 to 15800); and homozygous mutant: 316.7 (5.8 to 2308.3)].

Conclusion: V158M (rs4680) polymorphism is widely prevalent in the population and was significantly associated with altered effects as observed clinically. This finding suggests valuable insights into the molecular basis of COMT function and its potential impact on neurotransmitter metabolism and related disorders. Large-scale studies delineating the effect of these polymorphisms on various vasopressors are the need of the hour.

目的:评估 COMT 基因 rs4680 多态性与常用血管加压药的血管收缩效应之间的关联:背景:多巴胺是一种静脉注射给危重病人以帮助升高血压的药物。儿茶酚 O-甲基转移酶(COMT)可分解多巴胺和其他儿茶酚胺。COMT 基因中有一种名为 rs4680 的遗传变异,会影响这种酶的工作效率。研究表明,有这种基因变异的人可能会有不同的血压水平。然而,还没有人研究过这种基因变异如何影响多巴胺增加血压的作用方式:研究 COMT 基因 rs4680 多态性对多巴胺药效学反应的影响:方法:在征得合法代表的同意后,纳入使用多巴胺的重症患者。研究人员详细了解了患者的人口统计学特征、诊断、药物相关细节、心率、血压和尿量的变化。采用一种有效的方法评估了 COMT 基因中 rs4680 多态性的存在:我们共招募了 117 名患者,观察到 57.3% 的重症患者存在 rs4680 多态性。观察到突变基因型患者的平均动脉压(毫米汞柱/小时)中位数变化率增加[野生型:8.9(-22.6 至 49.1);杂合子突变型:5.9(-34.1 至 61.6);杂合子突变体:19.5(-2.5 至 129.2)]和尿量减少(毫升/天)[野生:1080(21.4 至 5900);杂合子突变体:380(23.7 至 15800);杂合子突变体:316.7(5.8 至 2308.3)]:V158M(rs4680)多态性在人群中广泛流行,与临床观察到的效应改变有显著关联。这一发现有助于深入了解 COMT 功能的分子基础及其对神经递质代谢和相关疾病的潜在影响。目前需要进行大规模研究,以确定这些多态性对各种血管加压素的影响。
{"title":"Unraveling the Role of COMT Polymorphism in Dopamine-Mediated Vasopressor Effects: An Observational Cross-Sectional Study.","authors":"Kannan Sridharan, Anfal Jassim, Ali Mohammed Qader, Sheikh Abdul Azeez Pasha","doi":"10.2174/0113892002293952240315064943","DOIUrl":"10.2174/0113892002293952240315064943","url":null,"abstract":"<p><strong>Aims: </strong>To evaluate the association between rs4680 polymorphism in the COMT gene and the vasoconstrictive effects of commonly used vasopressors.</p><p><strong>Background: </strong>Dopamine is a medication that is given intravenously to critically ill patients to help increase blood pressure. Catechol O-Methyl Transferase (COMT) breaks down dopamine and other catecholamines. There is a genetic variation in the COMT gene called rs4680 that can affect how well the enzyme works. Studies have shown that people with this genetic variation may have different blood pressure levels. However, no one has looked at how this genetic variation affects the way dopamine works to increase blood pressure.</p><p><strong>Objectives: </strong>To investigate the impact of the rs4680 polymorphism in the COMT gene on the pharmacodynamic response to dopamine.</p><p><strong>Methods: </strong>Critically ill patients administered dopamine were included following the consent of their legally acceptable representatives. Details on their demographic characteristics, diagnosis, drug-related details, changes in the heart rate, blood pressure, and urinary output were obtained. The presence of rs4680 polymorphism in the COMT gene was evaluated using a validated method.</p><p><strong>Results: </strong>One hundred and seventeen patients were recruited, and we observed a prevalence of rs4680 polymorphism in 57.3% of our critically ill patients. Those with mutant genotypes were observed with an increase in the median rate of change in mean arterial pressure (mm Hg/hour) [wild: 8.9 (-22.6 to 49.1); heterozygous mutant: 5.9 (-34.1 to 61.6); and homozygous mutant: 19.5 (-2.5 to 129.2)] and lowered urine output (ml/day) [wild: 1080 (21.4 to 5900); heterozygous mutant: 380 (23.7 to 15800); and homozygous mutant: 316.7 (5.8 to 2308.3)].</p><p><strong>Conclusion: </strong>V158M (rs4680) polymorphism is widely prevalent in the population and was significantly associated with altered effects as observed clinically. This finding suggests valuable insights into the molecular basis of COMT function and its potential impact on neurotransmitter metabolism and related disorders. Large-scale studies delineating the effect of these polymorphisms on various vasopressors are the need of the hour.</p>","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":" ","pages":"152-156"},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140174064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Association of UGT1A Gene Polymorphisms with BKV Infection in Renal Transplantation Recipients. 肾移植受者 UGT1A 基因多态性与 BKV 感染的关系
IF 2.1 4区 医学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-01-01 DOI: 10.2174/0113892002282727240307072255
Jingwen Yuan, Shuang Fei, Zeping Gui, Zijie Wang, Hao Chen, Li Sun, Jun Tao, Zhijian Han, Xiaobing Ju, Ruoyun Tan, Min Gu, Zhengkai Huang

Background: BK virus (BKV) infection is an opportunistic infectious complication and constitutes a risk factor for premature graft failure in kidney transplantation. Our research aimed to identify associations and assess the impact of single-nucleotide polymorphisms (SNPs) on metabolism-related genes in patients who have undergone kidney transplantation with BKV infection.

Material/methods: The DNA samples of 200 eligible kidney transplant recipients from our center, meeting the inclusion criteria, have been collected and extracted. Next-generation sequencing was used to genotype SNPs on metabolism-associated genes (CYP3A4/5/7, UGT1A4/7/8/9, UGT2B7). A general linear model (GLM) was used to identify and eliminate confounding factors that may influence the outcome events. Multiple inheritance models and haplotype analyses were utilized to identify variation loci associated with infection caused by BKV and ascertain haplotypes, respectively.

Results: A total of 141 SNPs located on metabolism-related genes were identified. After Hardy-Weinberg equilibrium (HWE) and minor allele frequency (MAF) analysis, 21 tagger SNPs were selected for further association analysis. Based on GLM results, no confounding factor was significant in predicting the incidence of BK polyomavirus-associated infection. Then, multiple inheritance model analyses revealed that the risk of BKV infection was significantly associated with rs3732218 and rs4556969. Finally, we detect significant associations between haplotype T-A-C of block 2 (rs4556969, rs3732218, rs12468274) and infection caused by BKV (P = 0.0004).

Conclusion: We found that genetic variants in the UGT1A gene confer BKV infection susceptibility after kidney transplantation.

背景:BK病毒(BKV)感染是一种机会性感染并发症,也是肾移植中移植物过早衰竭的一个危险因素。我们的研究旨在确定BKV感染肾移植患者代谢相关基因的单核苷酸多态性(SNPs)的关联并评估其影响。 材料/方法:收集并提取本中心符合纳入标准的 200 名肾移植受者的 DNA 样本。采用新一代测序技术对代谢相关基因(CYP3A4/5/7、UGT1A4/7/8/9、UGT2B7)的 SNPs 进行基因分型。一般线性模型(GLM)用于识别和消除可能影响结果事件的混杂因素。利用多重遗传模型和单倍型分析分别确定与 BKV 感染相关的变异位点和确定单倍型。 结果共鉴定出 141 个位于代谢相关基因上的 SNPs。在进行哈代-温伯格平衡(HWE)和小等位基因频率(MAF)分析后,选择了 21 个标记 SNPs 进行进一步关联分析。根据 GLM 结果,没有混杂因素对预测 BK 多瘤病毒相关感染的发生率有显著影响。然后,多重遗传模型分析显示,BKV 感染风险与 rs3732218 和 rs4556969 显著相关。最后,我们检测到第 2 组的单倍型 T-A-C(rs4556969、rs3732218、rs12468274)与 BKV 感染之间存在明显关联(P = 0.0004)。 结论我们发现 UGT1A 基因的遗传变异会导致肾移植后易感染 BKV。
{"title":"Association of <i>UGT1A</i> Gene Polymorphisms with BKV Infection in Renal Transplantation Recipients.","authors":"Jingwen Yuan, Shuang Fei, Zeping Gui, Zijie Wang, Hao Chen, Li Sun, Jun Tao, Zhijian Han, Xiaobing Ju, Ruoyun Tan, Min Gu, Zhengkai Huang","doi":"10.2174/0113892002282727240307072255","DOIUrl":"10.2174/0113892002282727240307072255","url":null,"abstract":"<p><strong>Background: </strong>BK virus (BKV) infection is an opportunistic infectious complication and constitutes a risk factor for premature graft failure in kidney transplantation. Our research aimed to identify associations and assess the impact of single-nucleotide polymorphisms (SNPs) on metabolism-related genes in patients who have undergone kidney transplantation with BKV infection.</p><p><strong>Material/methods: </strong>The DNA samples of 200 eligible kidney transplant recipients from our center, meeting the inclusion criteria, have been collected and extracted. Next-generation sequencing was used to genotype SNPs on metabolism-associated genes (CYP3A4/5/7, UGT1A4/7/8/9, UGT2B7). A general linear model (GLM) was used to identify and eliminate confounding factors that may influence the outcome events. Multiple inheritance models and haplotype analyses were utilized to identify variation loci associated with infection caused by BKV and ascertain haplotypes, respectively.</p><p><strong>Results: </strong>A total of 141 SNPs located on metabolism-related genes were identified. After Hardy-Weinberg equilibrium (HWE) and minor allele frequency (MAF) analysis, 21 tagger SNPs were selected for further association analysis. Based on GLM results, no confounding factor was significant in predicting the incidence of BK polyomavirus-associated infection. Then, multiple inheritance model analyses revealed that the risk of BKV infection was significantly associated with rs3732218 and rs4556969. Finally, we detect significant associations between haplotype T-A-C of block 2 (rs4556969, rs3732218, rs12468274) and infection caused by BKV (P = 0.0004).</p><p><strong>Conclusion: </strong>We found that genetic variants in the UGT1A gene confer BKV infection susceptibility after kidney transplantation.</p>","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":" ","pages":"188-196"},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140174062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Safety Aspects of Herb Interactions: Current Understanding and Future Prospects. 草药相互作用的安全问题:当前认识与未来展望》。
IF 2.1 4区 医学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-01-01 DOI: 10.2174/0113892002289753240305062601
Subhajit Hazra, Preet Amol Singh

Background: The use of herbal medicines is on the rise throughout the world due to their perceived safety profile. However, incidences of herb-drug, herb-herb and herb-food interactions considering safety aspects have opened new arenas for discussion.

Objective: The current study aims to provide comprehensive insights into the various types of herb interactions, the mechanisms involved, their assessment, and historical developments, keeping herbal safety at the central point of discussion.

Methods: The authors undertook a focused/targeted literature review and collected data from various databases, including Science Direct, Wiley Online Library, Springer, PubMed, and Google Scholar. Conventional literature on herbal remedies, such as those by the WHO and other international or national organizations.

Results: The article considered reviewing the regulations, interaction mechanisms, and detection of herb-herb, herb-drug and herb-food interactions in commonly used yet vital plants, including Glycyrrhiza glabra, Mentha piperita, Aloe barbadensis, Zingiber officinale, Gingko biloba, Withania somnifera, etc. The study found that healthcare professionals worry about patients not informing them about their herbal prescriptions (primarily used with conventional treatment), which can cause herb-drug/herb-food/herb-herb interactions. These interactions were caused by altered pharmacodynamic and pharmacokinetic processes, which might be explained using in-vivo, in-vitro, in-silico, pharmacogenomics, and pharmacogenetics. Nutrivigilance may be the greatest method to monitor herb-food interactions, but its adoption is limited worldwide.

Conclusion: This article can serve as a lead for clinicians, guiding them regarding herb-drug, herb-food, and herb-herb interactions induced by commonly consumed plant species. Patients may also be counseled to avoid conventional drugs, botanicals, and foods with a restricted therapeutic window.

背景:由于草药的安全性,草药的使用在全世界呈上升趋势。然而,考虑到安全性问题,草药与药物、草药与草药以及草药与食物之间相互作用的发生率为讨论开辟了新的领域:目前的研究旨在全面了解各种类型的草药相互作用、相关机制、评估及其历史发展,并将草药安全性作为讨论的中心点:作者进行了有重点/有针对性的文献综述,并从各种数据库中收集数据,包括 Science Direct、Wiley Online Library、Springer、PubMed 和 Google Scholar。有关草药疗法的传统文献,如世界卫生组织和其他国际或国家组织的文献:文章对甘草、薄荷、芦荟、银杏、银杏叶等常用而又重要的植物中的草药-草药、草药-药物和草药-食物相互作用的规定、相互作用机制和检测进行了综述。研究发现,医护人员担心患者不告知他们草药处方(主要用于常规治疗),从而导致草药-药物/草药-食物/草药-草药之间的相互作用。这些相互作用是由药效学和药代动力学过程的改变引起的,可以用体内、体外、硅内、药物基因组学和药物遗传学来解释。营养警戒可能是监测草药与食物相互作用的最佳方法,但其在全球的应用还很有限:本文可为临床医生提供指导,帮助他们了解常见植物物种引起的草药与药物、草药与食物以及草药与草药之间的相互作用。还可以建议患者避免服用传统药物、植物药和治疗窗口期受限的食物。
{"title":"Safety Aspects of Herb Interactions: Current Understanding and Future Prospects.","authors":"Subhajit Hazra, Preet Amol Singh","doi":"10.2174/0113892002289753240305062601","DOIUrl":"10.2174/0113892002289753240305062601","url":null,"abstract":"<p><strong>Background: </strong>The use of herbal medicines is on the rise throughout the world due to their perceived safety profile. However, incidences of herb-drug, herb-herb and herb-food interactions considering safety aspects have opened new arenas for discussion.</p><p><strong>Objective: </strong>The current study aims to provide comprehensive insights into the various types of herb interactions, the mechanisms involved, their assessment, and historical developments, keeping herbal safety at the central point of discussion.</p><p><strong>Methods: </strong>The authors undertook a focused/targeted literature review and collected data from various databases, including Science Direct, Wiley Online Library, Springer, PubMed, and Google Scholar. Conventional literature on herbal remedies, such as those by the WHO and other international or national organizations.</p><p><strong>Results: </strong>The article considered reviewing the regulations, interaction mechanisms, and detection of herb-herb, herb-drug and herb-food interactions in commonly used yet vital plants, including <i>Glycyrrhiza glabra, Mentha piperita, Aloe barbadensis, Zingiber officinale, Gingko biloba, Withania somnifera, etc</i>. The study found that healthcare professionals worry about patients not informing them about their herbal prescriptions (primarily used with conventional treatment), which can cause herb-drug/herb-food/herb-herb interactions. These interactions were caused by altered pharmacodynamic and pharmacokinetic processes, which might be explained using <i>in-vivo, in-vitro, in-silico</i>, pharmacogenomics, and pharmacogenetics. Nutrivigilance may be the greatest method to monitor herb-food interactions, but its adoption is limited worldwide.</p><p><strong>Conclusion: </strong>This article can serve as a lead for clinicians, guiding them regarding herb-drug, herb-food, and herb-herb interactions induced by commonly consumed plant species. Patients may also be counseled to avoid conventional drugs, botanicals, and foods with a restricted therapeutic window.</p>","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":" ","pages":"28-53"},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140119027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Where will Medicines that Serve the Global South and Economically Disadvantaged People Come From? 服务于全球南部和经济弱势人群的药品从何而来?
IF 2.1 4区 医学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-01-01 DOI: 10.2174/138920022501240507141919
Ming Hu
{"title":"Where will Medicines that Serve the Global South and Economically Disadvantaged People Come From?","authors":"Ming Hu","doi":"10.2174/138920022501240507141919","DOIUrl":"https://doi.org/10.2174/138920022501240507141919","url":null,"abstract":"","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":"25 1","pages":"1"},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141491227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of High-altitude Hypoxia on Drug Metabolism and Pharmacokinetics of Sedative-hypnotic Drugs and Regulatory Mechanism. 高海拔缺氧对镇静催眠药物代谢和药代动力学的影响及调节机制。
IF 2.1 4区 医学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-01-01 DOI: 10.2174/0113892002318723240802100729
Lu Tian, Guiqin Liu, Junjun Han, Xiangyang Li

Sedative hypnotics effectively improve sleep quality under high-altitude hypoxia by reducing central nervous system excitability. High-altitude hypoxia causes sleep disorders and modifies the metabolism and mechanisms of drug action, impacting medication therapy's effectiveness. This review aims to provide a theoretical basis for the treatment of central nervous system diseases in high-altitude areas by summarizing the progress and mechanism of sedative-hypnotics in hypoxic environments, as well as the impact of high-altitude hypoxia on sleep.

镇静催眠药通过降低中枢神经系统的兴奋性,有效改善高海拔缺氧条件下的睡眠质量。高海拔缺氧会导致睡眠障碍,并改变药物的代谢和作用机制,影响药物治疗的效果。本综述旨在通过总结缺氧环境下镇静催眠药的研究进展和机制,以及高海拔缺氧对睡眠的影响,为高海拔地区中枢神经系统疾病的治疗提供理论依据。
{"title":"Effects of High-altitude Hypoxia on Drug Metabolism and Pharmacokinetics of Sedative-hypnotic Drugs and Regulatory Mechanism.","authors":"Lu Tian, Guiqin Liu, Junjun Han, Xiangyang Li","doi":"10.2174/0113892002318723240802100729","DOIUrl":"10.2174/0113892002318723240802100729","url":null,"abstract":"<p><p>Sedative hypnotics effectively improve sleep quality under high-altitude hypoxia by reducing central nervous system excitability. High-altitude hypoxia causes sleep disorders and modifies the metabolism and mechanisms of drug action, impacting medication therapy's effectiveness. This review aims to provide a theoretical basis for the treatment of central nervous system diseases in high-altitude areas by summarizing the progress and mechanism of sedative-hypnotics in hypoxic environments, as well as the impact of high-altitude hypoxia on sleep.</p>","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":" ","pages":"416-424"},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141897014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Prediction of Protein-Drug Interactions, Pharmacophore Modeling, and Toxicokinetics of Novel Leads for Type 2 Diabetes Treatment. 用于 2 型糖尿病治疗的新型先导药物的蛋白质-药物相互作用预测、药理模型和毒代动力学。
IF 2.1 4区 医学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-01-01 DOI: 10.2174/0113892002321919240801065905
Anuradha Mehra, Amit Mittal, Prakhar Kumar Vishwakarma
<p><strong>Background: </strong>Small heterocyclic compounds have been crucial in pioneering advances in type 2 diabetes treatment. There has been a dramatic increase in the pharmacological development of novel heterocyclic derivatives aimed at stimulating the activation of Glucokinase (GK). A pharmaceutical intervention for diabetes is increasingly targeting GK as a legitimate target. Diabetes type 2 compromises Glucokinase's function, an enzyme vital for maintaining the balance of blood glucose levels. Medicinal substances strategically positioned to improve type 2 diabetes management are used to stimulate the GK enzyme using heterocyclic derivatives.</p><p><strong>Objective: </strong>The research endeavor aimed to craft novel compounds, drawing inspiration from the inherent coumarin nucleus found in nature. The goal was to evoke the activity of the glucokinase enzyme, offering a tailored approach to mitigate the undesired side effects typically associated with conventional therapies employed in the treatment of type 2 diabetes.</p><p><strong>Methods: </strong>Coumarin, sourced from nature's embrace, unfolds as a potent and naturally derived ally in the quest for innovative antidiabetic interventions. Coumarin was extracted from a variety of botanical origins, including Artemisia keiskeana, Mallotus resinosus, Jatropha integerrima, Ferula tingitana, Zanthoxylum schinifolium, Phebalium clavatum, and Mammea siamensis. This inclusive evaluation was conducted on Muybridge's digital database containing 53,000 hit compounds. The presence of the coumarin nucleus was found in 100 compounds, that were selected from this extensive repository. Utilizing Auto Dock Vina 1.5.6 and ChemBioDraw Ultra, structures generated through this process underwent docking analysis. Furthermore, these compounds were accurately predicted online log P using the Swiss ADME algorithm. A predictive analysis was conducted using PKCSM software on the primary compounds to assess potential toxicity.</p><p><strong>Results: </strong>Using Auto Dock Vina 1.5.6, 100 coumarin derivatives were assessed for docking. Glucokinase (GK) binding was significantly enhanced by most of these compounds. Based on superior binding characteristics compared with Dorzagliatin (standard GKA) and MRK (co-crystallized ligand), the top eight molecules were identified. After further evaluation through ADMET analysis of these eight promising candidates, it was confirmed that they met the Lipinski rule of five and their pharmacokinetic profile was enhanced. The highest binding affinity was demonstrated by APV16 at -10.6 kcal/mol. A comparison between the APV16, Dorzagliatin and MRK in terms of toxicity predictions using PKCSM indicated that the former exhibited less skin sensitization, AMES toxicity, and hepatotoxicity.</p><p><strong>Conclusion: </strong>Glucokinase is most potently activated by 100 of the compound leads in the database of 53,000 compounds that contain the coumarin nucleus. APV12, with its hi
背景:小型杂环化合物在 2 型糖尿病治疗领域取得了开创性进展。以刺激葡萄糖激酶(GK)活化为目的的新型杂环衍生物的药理开发急剧增加。治疗糖尿病的药物越来越多地将 GK 作为合法靶点。2 型糖尿病会损害葡萄糖激酶的功能,而这种酶对维持血糖水平的平衡至关重要。战略性定位为改善 2 型糖尿病管理的药物是利用杂环衍生物来刺激 GK 酶:研究工作旨在从自然界中固有的香豆素核中汲取灵感,制作新型化合物。目标:研究工作旨在从自然界中固有的香豆素核中汲取灵感,制作新型化合物,目的是唤起葡萄糖激酶的活性,提供一种量身定制的方法,以减轻治疗 2 型糖尿病的传统疗法通常会产生的不良副作用:方法:香豆素来自大自然的怀抱,是寻求创新型抗糖尿病干预措施的有效天然盟友。香豆素是从多种植物中提取出来的,其中包括鸢尾蒿(Artemisia keiskeana)、野蔺草(Mallotus resinosus)、麻风树(Jatropha integerrima)、廷根阿魏(Ferula tingitana)、五味子(Zanthoxylum schinifolium)、茜草(Phebalium clavatum)和暹罗犸(Mammea siamensis)。这一包容性评估是在穆布里奇的数字数据库中进行的,该数据库包含 53,000 个命中化合物。从这个庞大的数据库中筛选出的 100 种化合物中发现了香豆素核。利用 Auto Dock Vina 1.5.6 和 ChemBioDraw Ultra,对通过这一过程生成的结构进行了对接分析。此外,还利用瑞士 ADME 算法在线准确预测了这些化合物的对数 P。使用 PKCSM 软件对主要化合物进行了预测分析,以评估潜在的毒性:使用 Auto Dock Vina 1.5.6 对 100 种香豆素衍生物进行了对接评估。大多数这些化合物都能显著增强葡萄糖激酶(GK)的结合力。根据与 Dorzagliatin(标准 GKA)和 MRK(共结晶配体)相比更优越的结合特性,确定了前 8 个分子。在通过 ADMET 分析对这 8 个有希望的候选化合物进行进一步评估后,确认它们符合利宾斯基 5 规则,而且其药代动力学特征也得到了增强。APV16 的结合亲和力最高,为 -10.6 kcal/mol。使用 PKCSM 对 APV16、Dorzagliatin 和 MRK 的毒性预测进行比较后发现,前者的皮肤过敏性、AMES 毒性和肝毒性较低:结论:在含有香豆素核的 53,000 种化合物数据库中,100 种化合物线索对葡萄糖激酶的激活作用最强。APV12 具有高结合亲和力、良好的 ADMET(调整药物代谢当量)、最小毒性和良好的药代动力学特征,值得考虑进行体外试验。不过,要发现其潜在的治疗意义,特别是在 2 型糖尿病方面,在治疗使用之前,有必要进行彻底的调查和体内评估,特别是涉及 STZ 糖尿病大鼠模型的实验。
{"title":"Prediction of Protein-Drug Interactions, Pharmacophore Modeling, and Toxicokinetics of Novel Leads for Type 2 Diabetes Treatment.","authors":"Anuradha Mehra, Amit Mittal, Prakhar Kumar Vishwakarma","doi":"10.2174/0113892002321919240801065905","DOIUrl":"10.2174/0113892002321919240801065905","url":null,"abstract":"&lt;p&gt;&lt;strong&gt;Background: &lt;/strong&gt;Small heterocyclic compounds have been crucial in pioneering advances in type 2 diabetes treatment. There has been a dramatic increase in the pharmacological development of novel heterocyclic derivatives aimed at stimulating the activation of Glucokinase (GK). A pharmaceutical intervention for diabetes is increasingly targeting GK as a legitimate target. Diabetes type 2 compromises Glucokinase's function, an enzyme vital for maintaining the balance of blood glucose levels. Medicinal substances strategically positioned to improve type 2 diabetes management are used to stimulate the GK enzyme using heterocyclic derivatives.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Objective: &lt;/strong&gt;The research endeavor aimed to craft novel compounds, drawing inspiration from the inherent coumarin nucleus found in nature. The goal was to evoke the activity of the glucokinase enzyme, offering a tailored approach to mitigate the undesired side effects typically associated with conventional therapies employed in the treatment of type 2 diabetes.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Methods: &lt;/strong&gt;Coumarin, sourced from nature's embrace, unfolds as a potent and naturally derived ally in the quest for innovative antidiabetic interventions. Coumarin was extracted from a variety of botanical origins, including Artemisia keiskeana, Mallotus resinosus, Jatropha integerrima, Ferula tingitana, Zanthoxylum schinifolium, Phebalium clavatum, and Mammea siamensis. This inclusive evaluation was conducted on Muybridge's digital database containing 53,000 hit compounds. The presence of the coumarin nucleus was found in 100 compounds, that were selected from this extensive repository. Utilizing Auto Dock Vina 1.5.6 and ChemBioDraw Ultra, structures generated through this process underwent docking analysis. Furthermore, these compounds were accurately predicted online log P using the Swiss ADME algorithm. A predictive analysis was conducted using PKCSM software on the primary compounds to assess potential toxicity.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Results: &lt;/strong&gt;Using Auto Dock Vina 1.5.6, 100 coumarin derivatives were assessed for docking. Glucokinase (GK) binding was significantly enhanced by most of these compounds. Based on superior binding characteristics compared with Dorzagliatin (standard GKA) and MRK (co-crystallized ligand), the top eight molecules were identified. After further evaluation through ADMET analysis of these eight promising candidates, it was confirmed that they met the Lipinski rule of five and their pharmacokinetic profile was enhanced. The highest binding affinity was demonstrated by APV16 at -10.6 kcal/mol. A comparison between the APV16, Dorzagliatin and MRK in terms of toxicity predictions using PKCSM indicated that the former exhibited less skin sensitization, AMES toxicity, and hepatotoxicity.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Conclusion: &lt;/strong&gt;Glucokinase is most potently activated by 100 of the compound leads in the database of 53,000 compounds that contain the coumarin nucleus. APV12, with its hi","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":" ","pages":"355-380"},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141897016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Metabolism of the New Benzodiazepine Remimazolam. 新型苯并二氮杂卓 Remimazolam 的代谢。
IF 2.1 4区 医学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-01-01 DOI: 10.2174/0113892002301026240318060307
Wolfgang Schmalix, Karl-Uwe Petersen, Marija Pesic, Thomas Stöhr

Background: Remimazolam (RMZ) is a novel ultrashort-acting benzodiazepine used for sedation by intravenous administration. The pharmacophore of RMZ includes a carboxyl ester group sensitive to esterase- mediated hydrolysis, which is the primary path of metabolic elimination. However, for the sake of drug safety, a deeper and broader knowledge of the involved metabolic pathways and the evolving metabolites is required. Information is needed on both humans and experimental animals to evaluate the possibility that humans form harmful metabolites not encountered in animal toxicity studies.

Objective: The current study aimed at identifying the mechanisms of remimazolam's metabolism and any potential clinically significant metabolites.

Methods: Using tissue homogenates from various animals and humans, the liver was identified as the tissue primarily responsible for the elimination of RMZ. CNS7054, the hydrolysis product of remimazolam, was identified as the only clinically relevant metabolite. Using bacterial or eukaryotic over-expression systems, carboxylesterase 1 (CES1) was identified as the iso-enzyme predominantly involved in RMZ metabolism, with no role for carboxylesterase 2. Using a variety of inhibitors of other esterases, the contribution to elimination mediated by esterases other than CES1 was excluded.

Results: Besides tissue carboxylesterases, rodents expressed an RMZ esterase in plasma, which was not present in this compartment in other laboratory animals and humans, hampering direct comparisons. Other pathways of metabolic elimination, such as oxidation and glucuronidation, also occurred, but their contribution to overall elimination was minimal.

Conclusion: Besides the pharmacologically non-active metabolite CNS7054, no other clinically significant metabolite of remimazolam could be identified.

背景:雷马唑仑(RMZ)是一种新型超短效苯并二氮杂卓,用于静脉注射镇静。雷马唑仑的药理作用包括一个羧基酯基对酯酶介导的水解敏感,而酯酶介导的水解是代谢消除的主要途径。然而,为了保证用药安全,需要对所涉及的代谢途径和不断变化的代谢物有更深入、更广泛的了解。需要同时获得人类和实验动物的信息,以评估人类形成动物毒性研究中未遇到的有害代谢物的可能性:本研究旨在确定雷马唑仑的代谢机制以及任何潜在的具有临床意义的代谢物:方法:利用各种动物和人体的组织匀浆,确定肝脏是消除雷马唑仑的主要组织。经鉴定,雷马唑仑的水解产物 CNS7054 是唯一与临床相关的代谢物。利用细菌或真核生物过度表达系统,羧基酯酶 1 (CES1) 被确定为主要参与 RMZ 代谢的同功酶,而羧基酯酶 2 则不起作用。通过使用其他酯酶的各种抑制剂,排除了由 CES1 以外的酯酶介导的消除作用:结果:除了组织羧酸酯酶外,啮齿动物的血浆中还表达了一种 RMZ 酯酶,而其他实验动物和人类的血浆中都没有这种酯酶,因此无法进行直接比较。其他代谢消除途径,如氧化和葡萄糖醛酸化,也会发生,但它们对总体消除的贡献微乎其微:结论:除了无药理活性的代谢物 CNS7054 外,未发现其他具有临床意义的雷马唑仑代谢物。
{"title":"The Metabolism of the New Benzodiazepine Remimazolam.","authors":"Wolfgang Schmalix, Karl-Uwe Petersen, Marija Pesic, Thomas Stöhr","doi":"10.2174/0113892002301026240318060307","DOIUrl":"10.2174/0113892002301026240318060307","url":null,"abstract":"<p><strong>Background: </strong>Remimazolam (RMZ) is a novel ultrashort-acting benzodiazepine used for sedation by intravenous administration. The pharmacophore of RMZ includes a carboxyl ester group sensitive to esterase- mediated hydrolysis, which is the primary path of metabolic elimination. However, for the sake of drug safety, a deeper and broader knowledge of the involved metabolic pathways and the evolving metabolites is required. Information is needed on both humans and experimental animals to evaluate the possibility that humans form harmful metabolites not encountered in animal toxicity studies.</p><p><strong>Objective: </strong>The current study aimed at identifying the mechanisms of remimazolam's metabolism and any potential clinically significant metabolites.</p><p><strong>Methods: </strong>Using tissue homogenates from various animals and humans, the liver was identified as the tissue primarily responsible for the elimination of RMZ. CNS7054, the hydrolysis product of remimazolam, was identified as the only clinically relevant metabolite. Using bacterial or eukaryotic over-expression systems, carboxylesterase 1 (CES1) was identified as the iso-enzyme predominantly involved in RMZ metabolism, with no role for carboxylesterase 2. Using a variety of inhibitors of other esterases, the contribution to elimination mediated by esterases other than CES1 was excluded.</p><p><strong>Results: </strong>Besides tissue carboxylesterases, rodents expressed an RMZ esterase in plasma, which was not present in this compartment in other laboratory animals and humans, hampering direct comparisons. Other pathways of metabolic elimination, such as oxidation and glucuronidation, also occurred, but their contribution to overall elimination was minimal.</p><p><strong>Conclusion: </strong>Besides the pharmacologically non-active metabolite CNS7054, no other clinically significant metabolite of remimazolam could be identified.</p>","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":" ","pages":"164-173"},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140206418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Current drug metabolism
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1