Background: The global obese population is rapidly increasing, urgently requiring the development of effective and safe weight-loss medications. The classic Chinese medicine formulation Lingguizhugan Decoction has exerted a significant anti-obesity effect. However, the underlying mechanism is still unclear.
Objective: This study aimed to explore the mechanism of LGZGD in the treatment of obesity based on the gut microbiota and its metabolites.
Methods: Three different dosages of LGZGD were gavaged to ob/ob mice for 8 weeks. Body mass and visceral fat mass were evaluated. Additionally, the changes in gut microbiota, fecal and plasma metabolites in mice after LGZGD treatment were analyzed by metagenomics and non-targeted metabolomics.
Results: The results demonstrated a significant anti-obesity effect of LGZGD treatment in ob/ob mice. Furthermore, the metagenomic analysis revealed that LGZGD reduced the ratio of Firmicutes / Bacteroidetes (F to B) in the gut, restored gut microbiota diversity, and identified 3 enriched KEGG pathways, including energy metabolism, lipid metabolism, and energy production and conversion pathways. Based on non-targeted metabolomics analysis, 20 key metabolites in the feces and 30 key metabolites in the plasma responding to LGZGD treatment were identified, and the levels of Eicosapentaenoic acid (EPA) and Myristoleic acid (MA) might be the metabolites related to gut microbiota after LGZGD treatment. Their biological functions were mainly related to the metabolism pathway.
Conclusions: These findings suggested that LGZGD had therapeutic potential for obesity. The mechanism of LGZGD alleviating obesity was associated with improving dysbiosis of the gut microbiota. LDZGD affected gut microbiota-derived metabolites of EPA and MA and may act on energy metabolism pathways.
{"title":"Lingguizhugan Decoction Improved Obesity by Modulating the Gut Microbiota and its Metabolites in Mice.","authors":"Meiling Wang, Hairong Li, Chunmei Liu, Yuanyuan Zhang, Qian Wu, Yubin Yang","doi":"10.2174/0113892002289388240705113755","DOIUrl":"10.2174/0113892002289388240705113755","url":null,"abstract":"<p><strong>Background: </strong>The global obese population is rapidly increasing, urgently requiring the development of effective and safe weight-loss medications. The classic Chinese medicine formulation Lingguizhugan Decoction has exerted a significant anti-obesity effect. However, the underlying mechanism is still unclear.</p><p><strong>Objective: </strong>This study aimed to explore the mechanism of LGZGD in the treatment of obesity based on the gut microbiota and its metabolites.</p><p><strong>Methods: </strong>Three different dosages of LGZGD were gavaged to ob/ob mice for 8 weeks. Body mass and visceral fat mass were evaluated. Additionally, the changes in gut microbiota, fecal and plasma metabolites in mice after LGZGD treatment were analyzed by metagenomics and non-targeted metabolomics.</p><p><strong>Results: </strong>The results demonstrated a significant anti-obesity effect of LGZGD treatment in ob/ob mice. Furthermore, the metagenomic analysis revealed that LGZGD reduced the ratio of <i>Firmicutes / Bacteroidetes</i> (<i>F</i> to <i>B</i>) in the gut, restored gut microbiota diversity, and identified 3 enriched KEGG pathways, including energy metabolism, lipid metabolism, and energy production and conversion pathways. Based on non-targeted metabolomics analysis, 20 key metabolites in the feces and 30 key metabolites in the plasma responding to LGZGD treatment were identified, and the levels of Eicosapentaenoic acid (EPA) and Myristoleic acid (MA) might be the metabolites related to gut microbiota after LGZGD treatment. Their biological functions were mainly related to the metabolism pathway.</p><p><strong>Conclusions: </strong>These findings suggested that LGZGD had therapeutic potential for obesity. The mechanism of LGZGD alleviating obesity was associated with improving dysbiosis of the gut microbiota. LDZGD affected gut microbiota-derived metabolites of EPA and MA and may act on energy metabolism pathways.</p>","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":" ","pages":"276-287"},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141562878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.2174/0113892002300657240521094732
Karl-Uwe Petersen, Wolfgang Schmalix, Marija Pesic, Thomas Stöhr
Background: The ultra-short-acting benzodiazepine, remimazolam, is a new treatment modality for procedural sedation and general anesthesia. Its activity is terminated by carboxylesterase 1 (CES1).
Objective: The objective of this study was to determine the drug-drug interaction (DDI) potential of remimazolam through mechanisms unrelated to its metabolizing enzyme, CES1.
Methods: Conventional in vitro co-exposure experiments were conducted to study possible interactions of remimazolam and its primary metabolite, CNS7054, mediated by competitive binding to plasma protein or reactions with cytochrome P450 isoforms or drug transporters.
Results: No relevant interactions of remimazolam or its metabolite with cytochrome P450 (CYP) isoforms at clinically relevant concentrations were identified. Likewise, standard experiments revealed no clinically relevant interactions with drug transporters and plasma proteins.
Conclusion: The present data and analyses suggest a very low potential of remimazolam for pharmacokinetic DDIs mediated by CYP isoforms, drug transporters, and protein binding.
{"title":"Drug-Drug Interaction Potential of Remimazolam: CYP 450, Transporters, and Protein Binding.","authors":"Karl-Uwe Petersen, Wolfgang Schmalix, Marija Pesic, Thomas Stöhr","doi":"10.2174/0113892002300657240521094732","DOIUrl":"10.2174/0113892002300657240521094732","url":null,"abstract":"<p><strong>Background: </strong>The ultra-short-acting benzodiazepine, remimazolam, is a new treatment modality for procedural sedation and general anesthesia. Its activity is terminated by carboxylesterase 1 (CES1).</p><p><strong>Objective: </strong>The objective of this study was to determine the drug-drug interaction (DDI) potential of remimazolam through mechanisms unrelated to its metabolizing enzyme, CES1.</p><p><strong>Methods: </strong>Conventional in vitro co-exposure experiments were conducted to study possible interactions of remimazolam and its primary metabolite, CNS7054, mediated by competitive binding to plasma protein or reactions with cytochrome P450 isoforms or drug transporters.</p><p><strong>Results: </strong>No relevant interactions of remimazolam or its metabolite with cytochrome P450 (CYP) isoforms at clinically relevant concentrations were identified. Likewise, standard experiments revealed no clinically relevant interactions with drug transporters and plasma proteins.</p><p><strong>Conclusion: </strong>The present data and analyses suggest a very low potential of remimazolam for pharmacokinetic DDIs mediated by CYP isoforms, drug transporters, and protein binding.</p>","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":" ","pages":"266-275"},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141179117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
One of the biggest obstacles to the treatment of diseases, particularly serious conditions like cancer, is therapeutic resistance. The process of drug resistance is influenced by a number of important variables, including MDR genes, drug efflux, low-quality medications, inadequate dosage, etc. Drug resistance must be addressed, and new combinations based on the pharmacokinetics/pharmacodynamics (PK-PD) characteristics of the partner pharmaceuticals must be developed in order to extend the half-lives of already available medications. The primary mechanism of drug elimination is hepatic biotransformation of medicines by cytochrome P450 (CYP) enzymes; of these CYPs, CYP3A4 makes up 30-40% of all known cytochromes that metabolize medications. Induction or inhibition of CYP3A4-mediated metabolism affects the pharmacokinetics of most anticancer drugs, but these details are not fully understood and highlighted because of the complexity of tumor microenvironments and various influencing patient related factors. The involvement of CYPs, particularly CYP3A4 and other drug-metabolizing enzymes, in cancer medication resistance will be covered in the current review.
{"title":"Role of Cytochrome P450 3A4 in Cancer Drug Resistance: Challenges and Opportunities.","authors":"Swaroop Kumar Pandey, Sona Verma, Shobha Upreti, Anuja Mishra, Neha Yadav, Hemlata Dwivedi-Agnihotri","doi":"10.2174/0113892002312369240703102215","DOIUrl":"10.2174/0113892002312369240703102215","url":null,"abstract":"<p><p>One of the biggest obstacles to the treatment of diseases, particularly serious conditions like cancer, is therapeutic resistance. The process of drug resistance is influenced by a number of important variables, including MDR genes, drug efflux, low-quality medications, inadequate dosage, etc. Drug resistance must be addressed, and new combinations based on the pharmacokinetics/pharmacodynamics (PK-PD) characteristics of the partner pharmaceuticals must be developed in order to extend the half-lives of already available medications. The primary mechanism of drug elimination is hepatic biotransformation of medicines by cytochrome P450 (CYP) enzymes; of these CYPs, CYP3A4 makes up 30-40% of all known cytochromes that metabolize medications. Induction or inhibition of CYP3A4-mediated metabolism affects the pharmacokinetics of most anticancer drugs, but these details are not fully understood and highlighted because of the complexity of tumor microenvironments and various influencing patient related factors. The involvement of CYPs, particularly CYP3A4 and other drug-metabolizing enzymes, in cancer medication resistance will be covered in the current review.</p>","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":" ","pages":"235-247"},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141562879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Paclitaxel (PTX) is a key drug used for chemotherapy for various cancers. The hydroxylation metabolites of paclitaxel are different between humans and rats. Currently, there is little information available on the metabolic profiles of CYP450 enzymes in rats.
Objective: This study evaluated the dynamic metabolic profiles of PTX and its metabolites in rats and in vitro.
Methods: Ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS) and LC-MS/MS were applied to qualitative and quantitative analysis of PTX and its metabolites in rats, liver microsomes and recombinant enzyme CYP3A1/3A2. Ten specific inhibitors [NF (CYP1A1), FFL (CYP1A2), MOP (CYP2A6), OND (CYP2B6), QCT (CYP2C8), SFP (CYP2C9), NKT (CYP2C19), QND (CYP2D6), MPZ (CYP2E1) and KTZ (CYP3A4)] were used to identify the metabolic pathway in vitro.
Results: Four main hydroxylated metabolites of PTX were identified. Among them, 3'-p-OH PTX and 2-OH PTX were monohydroxylated metabolites identified in rats and liver microsome samples, and 6α-2-di-OH PTX and 6α-5"-di-OH PTX were dihydroxylated metabolites identified in rats. CYP3A recombinant enzyme studies showed that the CYP3A1/3A2 in rat liver microsomes was mainly responsible for metabolizing PTX into 3'-p- OH-PTX and 2-OH-PTX. However, 6α-OH PTX was not detected in rat plasma and liver microsome samples.
Conclusion: The results indicated that the CYP3A1/3A2 enzyme, metabolizing PTX into 3'-p-OH-PTX and 2- OH-PTX, is responsible for the metabolic of PTX in rats. The CYP2C8 metabolite 6α-OH PTX in humans was not detected in rat plasma in this study, which might account for the interspecies metabolic differences between rats and humans. This study will provide evidence for drug-drug interaction research in rats.
{"title":"Study on Cytochrome P450 Metabolic Profile of Paclitaxel on Rats using QTOF-MS.","authors":"Zhaoyang Meng, Junjun Chen, Lingyan Xu, Xiao Xiao, Ling Zong, Yonglong Han, Bo Jiang","doi":"10.2174/0113892002308509240711100502","DOIUrl":"10.2174/0113892002308509240711100502","url":null,"abstract":"<p><strong>Background: </strong>Paclitaxel (PTX) is a key drug used for chemotherapy for various cancers. The hydroxylation metabolites of paclitaxel are different between humans and rats. Currently, there is little information available on the metabolic profiles of CYP450 enzymes in rats.</p><p><strong>Objective: </strong>This study evaluated the dynamic metabolic profiles of PTX and its metabolites in rats and <i>in vitro</i>.</p><p><strong>Methods: </strong>Ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS) and LC-MS/MS were applied to qualitative and quantitative analysis of PTX and its metabolites in rats, liver microsomes and recombinant enzyme CYP3A1/3A2. Ten specific inhibitors [NF (CYP1A1), FFL (CYP1A2), MOP (CYP2A6), OND (CYP2B6), QCT (CYP2C8), SFP (CYP2C9), NKT (CYP2C19), QND (CYP2D6), MPZ (CYP2E1) and KTZ (CYP3A4)] were used to identify the metabolic pathway <i>in vitro</i>.</p><p><strong>Results: </strong>Four main hydroxylated metabolites of PTX were identified. Among them, 3'-p-OH PTX and 2-OH PTX were monohydroxylated metabolites identified in rats and liver microsome samples, and 6α-2-di-OH PTX and 6α-5\"-di-OH PTX were dihydroxylated metabolites identified in rats. CYP3A recombinant enzyme studies showed that the CYP3A1/3A2 in rat liver microsomes was mainly responsible for metabolizing PTX into 3'-p- OH-PTX and 2-OH-PTX. However, 6α-OH PTX was not detected in rat plasma and liver microsome samples.</p><p><strong>Conclusion: </strong>The results indicated that the CYP3A1/3A2 enzyme, metabolizing PTX into 3'-p-OH-PTX and 2- OH-PTX, is responsible for the metabolic of PTX in rats. The CYP2C8 metabolite 6α-OH PTX in humans was not detected in rat plasma in this study, which might account for the interspecies metabolic differences between rats and humans. This study will provide evidence for drug-drug interaction research in rats.</p>","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":" ","pages":"330-339"},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141747621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.2174/0113892002293952240315064943
Kannan Sridharan, Anfal Jassim, Ali Mohammed Qader, Sheikh Abdul Azeez Pasha
Aims: To evaluate the association between rs4680 polymorphism in the COMT gene and the vasoconstrictive effects of commonly used vasopressors.
Background: Dopamine is a medication that is given intravenously to critically ill patients to help increase blood pressure. Catechol O-Methyl Transferase (COMT) breaks down dopamine and other catecholamines. There is a genetic variation in the COMT gene called rs4680 that can affect how well the enzyme works. Studies have shown that people with this genetic variation may have different blood pressure levels. However, no one has looked at how this genetic variation affects the way dopamine works to increase blood pressure.
Objectives: To investigate the impact of the rs4680 polymorphism in the COMT gene on the pharmacodynamic response to dopamine.
Methods: Critically ill patients administered dopamine were included following the consent of their legally acceptable representatives. Details on their demographic characteristics, diagnosis, drug-related details, changes in the heart rate, blood pressure, and urinary output were obtained. The presence of rs4680 polymorphism in the COMT gene was evaluated using a validated method.
Results: One hundred and seventeen patients were recruited, and we observed a prevalence of rs4680 polymorphism in 57.3% of our critically ill patients. Those with mutant genotypes were observed with an increase in the median rate of change in mean arterial pressure (mm Hg/hour) [wild: 8.9 (-22.6 to 49.1); heterozygous mutant: 5.9 (-34.1 to 61.6); and homozygous mutant: 19.5 (-2.5 to 129.2)] and lowered urine output (ml/day) [wild: 1080 (21.4 to 5900); heterozygous mutant: 380 (23.7 to 15800); and homozygous mutant: 316.7 (5.8 to 2308.3)].
Conclusion: V158M (rs4680) polymorphism is widely prevalent in the population and was significantly associated with altered effects as observed clinically. This finding suggests valuable insights into the molecular basis of COMT function and its potential impact on neurotransmitter metabolism and related disorders. Large-scale studies delineating the effect of these polymorphisms on various vasopressors are the need of the hour.
{"title":"Unraveling the Role of COMT Polymorphism in Dopamine-Mediated Vasopressor Effects: An Observational Cross-Sectional Study.","authors":"Kannan Sridharan, Anfal Jassim, Ali Mohammed Qader, Sheikh Abdul Azeez Pasha","doi":"10.2174/0113892002293952240315064943","DOIUrl":"10.2174/0113892002293952240315064943","url":null,"abstract":"<p><strong>Aims: </strong>To evaluate the association between rs4680 polymorphism in the COMT gene and the vasoconstrictive effects of commonly used vasopressors.</p><p><strong>Background: </strong>Dopamine is a medication that is given intravenously to critically ill patients to help increase blood pressure. Catechol O-Methyl Transferase (COMT) breaks down dopamine and other catecholamines. There is a genetic variation in the COMT gene called rs4680 that can affect how well the enzyme works. Studies have shown that people with this genetic variation may have different blood pressure levels. However, no one has looked at how this genetic variation affects the way dopamine works to increase blood pressure.</p><p><strong>Objectives: </strong>To investigate the impact of the rs4680 polymorphism in the COMT gene on the pharmacodynamic response to dopamine.</p><p><strong>Methods: </strong>Critically ill patients administered dopamine were included following the consent of their legally acceptable representatives. Details on their demographic characteristics, diagnosis, drug-related details, changes in the heart rate, blood pressure, and urinary output were obtained. The presence of rs4680 polymorphism in the COMT gene was evaluated using a validated method.</p><p><strong>Results: </strong>One hundred and seventeen patients were recruited, and we observed a prevalence of rs4680 polymorphism in 57.3% of our critically ill patients. Those with mutant genotypes were observed with an increase in the median rate of change in mean arterial pressure (mm Hg/hour) [wild: 8.9 (-22.6 to 49.1); heterozygous mutant: 5.9 (-34.1 to 61.6); and homozygous mutant: 19.5 (-2.5 to 129.2)] and lowered urine output (ml/day) [wild: 1080 (21.4 to 5900); heterozygous mutant: 380 (23.7 to 15800); and homozygous mutant: 316.7 (5.8 to 2308.3)].</p><p><strong>Conclusion: </strong>V158M (rs4680) polymorphism is widely prevalent in the population and was significantly associated with altered effects as observed clinically. This finding suggests valuable insights into the molecular basis of COMT function and its potential impact on neurotransmitter metabolism and related disorders. Large-scale studies delineating the effect of these polymorphisms on various vasopressors are the need of the hour.</p>","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":" ","pages":"152-156"},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140174064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.2174/0113892002288312240521092054
Xin Lv, Zhen Wang, Zhe Wang, Hang Yin, Yangliu Xia, Lili Jiang, Yong Liu
Background: Avapritinib is the only drug for adult patients with PDGFRA exon 18 mutated unresectable or metastatic gastrointestinal stromal tumor (GIST). Although avapritinib has been approved by the FDA for four years, little is known about the risk of drug-drug interactions (DDIs) via UDP-glucuronyltransferases (UGTs) inhibition.
Objective: The aim of the present study was to systematically evaluate the inhibitory effects of avapritinib against UGTs and to quantitatively estimate its potential DDIs risk in vivo.
Methods: Recombinant human UGTs were employed to catalyze the glucuronidation of substrates in a range of concentrations of avapritinib. The kinetics analysis was performed to evaluate the inhibition types of avapritinib against UGTs. The quantitative prediction of DDIs was done using in vitro-in vivo extrapolation (IVIVE).
Results: Avapritinib had a potent competitive inhibitory effect on UGT1A1. Quantitative prediction results showed that avapritinib administered at clinical doses might result in a 14.85% increase in area under the curve (AUC) of drugs primarily cleared by UGT1A1. Moreover, the Rgut value was calculated to be 18.44.
Conclusion: Avapritinib has the potential to cause intestinal DDIs via the inhibition of UGT1A1. Additional attention should be paid when avapritinib is coadministered with UGT1A1 substrates.
{"title":"Avapritinib Carries the Risk of Drug Interaction <i>via</i> Inhibition of UDP-Glucuronyltransferase (UGT) 1A1.","authors":"Xin Lv, Zhen Wang, Zhe Wang, Hang Yin, Yangliu Xia, Lili Jiang, Yong Liu","doi":"10.2174/0113892002288312240521092054","DOIUrl":"10.2174/0113892002288312240521092054","url":null,"abstract":"<p><strong>Background: </strong>Avapritinib is the only drug for adult patients with PDGFRA exon 18 mutated unresectable or metastatic gastrointestinal stromal tumor (GIST). Although avapritinib has been approved by the FDA for four years, little is known about the risk of drug-drug interactions (DDIs) via UDP-glucuronyltransferases (UGTs) inhibition.</p><p><strong>Objective: </strong>The aim of the present study was to systematically evaluate the inhibitory effects of avapritinib against UGTs and to quantitatively estimate its potential DDIs risk <i>in vivo</i>.</p><p><strong>Methods: </strong>Recombinant human UGTs were employed to catalyze the glucuronidation of substrates in a range of concentrations of avapritinib. The kinetics analysis was performed to evaluate the inhibition types of avapritinib against UGTs. The quantitative prediction of DDIs was done using <i>in vitro-in vivo</i> extrapolation (IVIVE).</p><p><strong>Results: </strong>Avapritinib had a potent competitive inhibitory effect on UGT1A1. Quantitative prediction results showed that avapritinib administered at clinical doses might result in a 14.85% increase in area under the curve (AUC) of drugs primarily cleared by UGT1A1. Moreover, the Rgut value was calculated to be 18.44.</p><p><strong>Conclusion: </strong>Avapritinib has the potential to cause intestinal DDIs <i>via</i> the inhibition of UGT1A1. Additional attention should be paid when avapritinib is coadministered with UGT1A1 substrates.</p>","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":" ","pages":"197-204"},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141157928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.2174/0113892002300638240513065512
Fahad Y Sabei, Ibrahim Khardali, Mohamed A Al-Kasim, Emad Sayed Shaheen, Magbool Oraiby, Ahmad Alamir, Banji David, Saeed Alshahrani, Abdulmajeed M Jali, Mohammed Attafi, Mohammed Y Albeishy, Ibraheem Attafi
Background: Cathinone is a natural stimulant found in the Catha edulis plant. Its derivatives make up the largest group of new psychoactive substances. In order to better understand its effects, it is imperative to investigate its distribution, pharmacokinetics, and metabolic profile. However, the existing literature on cathinone remains limited.
Objective: This study aimed to investigate the disposition kinetics and metabolic profile of cathinone and its metabolite cathine through a single oral dose of cathinone administration in rats.
Methods: Cathinone and cathine concentrations were identified and quantified using ion trap liquid chromatography- mass spectrometry (LC-IT/MS). The metabolic profile in the serum, brain, lung, liver, kidney, and heart was analyzed at specific time points (0, 0.5, 2.5, 6, 12, 24, 48, and 72 hours) using the ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF/MS) method.
Results: The highest concentration of cathinone was found in the kidney (1438.6 μg/L, which gradually decreased to 1.97 within 48 h and disappeared after 72 h. Cathinone levels in the lungs, liver, and heart were 859, 798.9, and 385.8 μg/L, respectively, within half an hour. However, within 2.5 hours, these levels decreased to 608.1, 429.3, and 309.1 μg/L and became undetectable after 24 h. In the rat brain, cathinone levels dropped quickly and were undetectable within six hours, decreasing from 712.7 μg/L after 30 min. In the brain and serum, cathine reached its highest levels at 2.5 hours, while in other organs, it peaked at 0.5 hours, indicating slower conversion of cathinone to cathine in the brain and serum.
Conclusion: This study revealed a dynamic interplay between cathinone disposition kinetics and its impact on organ-specific metabolic profiles in rats. These results have significant implications for drug development, pharmacovigilance, and clinical practices involving cathinone. Investigating the correlation between the changes in biomarkers found in the brain and the levels of cathinone and cathine is essential for informed decision- making in medical practices and further research into the pharmacological properties of cathinone.
{"title":"Disposition Kinetics of Cathinone and its Metabolites after Oral Administration in Rats.","authors":"Fahad Y Sabei, Ibrahim Khardali, Mohamed A Al-Kasim, Emad Sayed Shaheen, Magbool Oraiby, Ahmad Alamir, Banji David, Saeed Alshahrani, Abdulmajeed M Jali, Mohammed Attafi, Mohammed Y Albeishy, Ibraheem Attafi","doi":"10.2174/0113892002300638240513065512","DOIUrl":"10.2174/0113892002300638240513065512","url":null,"abstract":"<p><strong>Background: </strong>Cathinone is a natural stimulant found in the Catha edulis plant. Its derivatives make up the largest group of new psychoactive substances. In order to better understand its effects, it is imperative to investigate its distribution, pharmacokinetics, and metabolic profile. However, the existing literature on cathinone remains limited.</p><p><strong>Objective: </strong>This study aimed to investigate the disposition kinetics and metabolic profile of cathinone and its metabolite cathine through a single oral dose of cathinone administration in rats.</p><p><strong>Methods: </strong>Cathinone and cathine concentrations were identified and quantified using ion trap liquid chromatography- mass spectrometry (LC-IT/MS). The metabolic profile in the serum, brain, lung, liver, kidney, and heart was analyzed at specific time points (0, 0.5, 2.5, 6, 12, 24, 48, and 72 hours) using the ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF/MS) method.</p><p><strong>Results: </strong>The highest concentration of cathinone was found in the kidney (1438.6 μg/L, which gradually decreased to 1.97 within 48 h and disappeared after 72 h. Cathinone levels in the lungs, liver, and heart were 859, 798.9, and 385.8 μg/L, respectively, within half an hour. However, within 2.5 hours, these levels decreased to 608.1, 429.3, and 309.1 μg/L and became undetectable after 24 h. In the rat brain, cathinone levels dropped quickly and were undetectable within six hours, decreasing from 712.7 μg/L after 30 min. In the brain and serum, cathine reached its highest levels at 2.5 hours, while in other organs, it peaked at 0.5 hours, indicating slower conversion of cathinone to cathine in the brain and serum.</p><p><strong>Conclusion: </strong>This study revealed a dynamic interplay between cathinone disposition kinetics and its impact on organ-specific metabolic profiles in rats. These results have significant implications for drug development, pharmacovigilance, and clinical practices involving cathinone. Investigating the correlation between the changes in biomarkers found in the brain and the levels of cathinone and cathine is essential for informed decision- making in medical practices and further research into the pharmacological properties of cathinone.</p>","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":" ","pages":"220-226"},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140944368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rev-erbɑ (NR1D1) is a nuclear receptor superfamily member that plays a vital role in mammalian molecular clocks and metabolism. Rev-erbɑ can regulate the metabolism of drugs and the body's glucose metabolism, lipid metabolism, and adipogenesis. It is even one of the important regulatory factors regulating the occurrence of metabolic diseases (e.g., diabetes, fatty liver). Metabolic enzymes mediate most drug metabolic reactions in the body. Rev-erbɑ has been recognized to regulate drug metabolic enzymes (such as Cyp2b10 and Ugt1a9). Therefore, this paper mainly reviewed that Rev-erbɑ regulates I and II metabolic enzymes in the liver to affect drug pharmacokinetics. The expression of these drug metabolic enzymes (up-regulated or down-regulated) is related to drug exposure and effects/ toxicity. In addition, our discussion extends to Rev-erbɑ regulating some transporters (such as P-gp, Mrp2, and Bcrp), as they also play an essential role in drug metabolism. Finally, we briefly describe the role and mechanism of nuclear receptor Rev-erbɑ in lipid and glucose homeostasis, obesity, and metabolic disorders syndrome. In conclusion, this paper aims to understand better the role and mechanism of Rev-erbɑ in regulating drug metabolism, lipid, glucose homeostasis, obesity, and metabolic disorders syndrome, which explores how to target Rev-erbɑ to guide the design and development of new drugs and provide scientific reference for the molecular mechanism of new drug development, rational drug use, and drug interaction.
Rev-erbɑ(NR1D1)是一种核受体超家族成员,在哺乳动物的分子时钟和新陈代谢中发挥着重要作用。Rev-erbɑ可以调节药物代谢和机体的糖代谢、脂代谢和脂肪生成。它甚至是调节代谢性疾病(如糖尿病、脂肪肝)发生的重要调节因子之一。代谢酶介导了体内大多数药物代谢反应。Rev-erbɑ已被认为能调节药物代谢酶(如Cyp2b10和Ugt1a9)。因此,本文主要综述了 Rev-erbɑ 对肝脏中 I 和 II 代谢酶的调控,从而影响药物的药代动力学。这些药物代谢酶的表达(上调或下调)与药物暴露和作用/毒性有关。此外,我们还讨论了 Rev-erbɑ 对一些转运体(如 P-gp、Mrp2 和 Bcrp)的调节作用,因为它们在药物代谢中也发挥着重要作用。最后,我们简要介绍了核受体 Rev-erbɑ 在血脂和血糖平衡、肥胖和代谢紊乱综合征中的作用和机制。总之,本文旨在更好地了解Rev-erbɑ在调控药物代谢、血脂、血糖平衡、肥胖和代谢紊乱综合征中的作用和机制,从而探讨如何以Rev-erbɑ为靶点指导新药的设计和开发,为新药开发、合理用药和药物相互作用的分子机制提供科学参考。
{"title":"Recent Advances in Hepatic Metabolic Regulation by the Nuclear Factor Rev-erbɑ.","authors":"Qi Zhang, Yutong Chen, Jingqi Li, Haishan Xia, Yongbin Tong, Yuyu Liu","doi":"10.2174/0113892002290055240212074758","DOIUrl":"10.2174/0113892002290055240212074758","url":null,"abstract":"<p><p>Rev-erbɑ (NR1D1) is a nuclear receptor superfamily member that plays a vital role in mammalian molecular clocks and metabolism. Rev-erbɑ can regulate the metabolism of drugs and the body's glucose metabolism, lipid metabolism, and adipogenesis. It is even one of the important regulatory factors regulating the occurrence of metabolic diseases (e.g., diabetes, fatty liver). Metabolic enzymes mediate most drug metabolic reactions in the body. Rev-erbɑ has been recognized to regulate drug metabolic enzymes (such as Cyp2b10 and Ugt1a9). Therefore, this paper mainly reviewed that Rev-erbɑ regulates I and II metabolic enzymes in the liver to affect drug pharmacokinetics. The expression of these drug metabolic enzymes (up-regulated or down-regulated) is related to drug exposure and effects/ toxicity. In addition, our discussion extends to Rev-erbɑ regulating some transporters (such as P-gp, Mrp2, and Bcrp), as they also play an essential role in drug metabolism. Finally, we briefly describe the role and mechanism of nuclear receptor Rev-erbɑ in lipid and glucose homeostasis, obesity, and metabolic disorders syndrome. In conclusion, this paper aims to understand better the role and mechanism of Rev-erbɑ in regulating drug metabolism, lipid, glucose homeostasis, obesity, and metabolic disorders syndrome, which explores how to target Rev-erbɑ to guide the design and development of new drugs and provide scientific reference for the molecular mechanism of new drug development, rational drug use, and drug interaction.</p>","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":" ","pages":"2-12"},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139971187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aims: The aim of the present study is to elucidate the mechanism of CYP2E1 induction as a causative factor of Alcoholic Hepatitis (AH) and its relationship with inflammation.
Background: Chronic alcohol consumption induces CYP2E1, which is involved in the development of Alcoholic Hepatitis (AH). However, the mechanisms underlying the induction of CYP2E1 by alcohol remain unclear. Therefore, we herein investigated the induction of drug-metabolizing enzymes, particularly CYP2E1, by hydrogen peroxide (H2O2), the concentration of which is elevated under inflammatory conditions.
Objective: The mechanisms underlying the induction of CYP2E1 by H2O2 were examined with a focus on Keap1, a target factor of H2O2.
Methods: We assessed changes in the expression of drug-metabolizing enzymes in the human hepatoma cell line, Hep3B, following treatment with H2O2, and evaluated changes in the expression of the NF-kB-related factor RelA(p65) after the knockdown of Keap1, a regulator of Nrf2 expression by reactive oxygen species. We also performed a promoter analysis using the upstream region of the CYP2E1 gene. We herein used the GSE89632 series for non-alcoholic hepatitis (NASH) and the GSE28619 series for AH.
Results: The induction of CYP2E1 by H2O2 was significantly stronger than that of other drugmetabolizing enzymes. On the other hand, the knockdown of Keap1, a target of H2O2, markedly increased RelA(p65), an NFkB factor. Furthermore, the overexpression of RelA(p65) strongly induced the expression of CYP2E1. Four candidate p65-binding sequences were identified upstream of the CYP2E1 gene, and promoter activity assays showed that the third sequence was responsive to the overexpression of RelA(p65). We used the GSE89632 series for NASH and the GSE28619 series for AH in the present study. The expression of CYP2E1 mRNA in the liver was significantly lower in AH patients than in HC patients, but was similar in HC patients and NASH patients.
Conclusion: We herein demonstrated that the expression of CYP2E1 was induced by H2O2. The overexpression of RelA(p65) also induced CYP2E1 mRNA expression, whereas H2O2 did not after the knockdown of RelA. These results suggest that H2O2 acts on Keap1 to upregulate RelA (p65) in the NFkB system. One of the mechanisms underlying the induction of CYP2E1 was dependent on the H2O2-Keap1-RelA axis. The results of the database analysis revealed that the expression of CYP2E1 in the liver was significantly lower in AH patients than in NASH patients, suggesting that CYP2E1 is not the main cause of AH; however, CYP2E1 may exacerbate the pathogenesis of AH.
{"title":"Hydrogen Peroxide Induces Ethanol-inducible CYP2E1 <i>via</i> the NF-kB-classical Pathway: CYP2E1 mRNA Levels are not High in Alcoholic Hepatitis.","authors":"Akiyoshi Tamura, Ferbian Milas Siswanto, Takumi Yoshimura, Ami Oguro, Susumu Imaoka","doi":"10.2174/0113892002305174240805064406","DOIUrl":"10.2174/0113892002305174240805064406","url":null,"abstract":"<p><strong>Aims: </strong>The aim of the present study is to elucidate the mechanism of CYP2E1 induction as a causative factor of Alcoholic Hepatitis (AH) and its relationship with inflammation.</p><p><strong>Background: </strong>Chronic alcohol consumption induces CYP2E1, which is involved in the development of Alcoholic Hepatitis (AH). However, the mechanisms underlying the induction of CYP2E1 by alcohol remain unclear. Therefore, we herein investigated the induction of drug-metabolizing enzymes, particularly CYP2E1, by hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), the concentration of which is elevated under inflammatory conditions.</p><p><strong>Objective: </strong>The mechanisms underlying the induction of CYP2E1 by H<sub>2</sub>O<sub>2</sub> were examined with a focus on Keap1, a target factor of H<sub>2</sub>O<sub>2</sub>.</p><p><strong>Methods: </strong>We assessed changes in the expression of drug-metabolizing enzymes in the human hepatoma cell line, Hep3B, following treatment with H<sub>2</sub>O<sub>2</sub>, and evaluated changes in the expression of the NF-kB-related factor RelA(p65) after the knockdown of Keap1, a regulator of Nrf2 expression by reactive oxygen species. We also performed a promoter analysis using the upstream region of the CYP2E1 gene. We herein used the GSE89632 series for non-alcoholic hepatitis (NASH) and the GSE28619 series for AH.</p><p><strong>Results: </strong>The induction of CYP2E1 by H<sub>2</sub>O<sub>2</sub> was significantly stronger than that of other drugmetabolizing enzymes. On the other hand, the knockdown of Keap1, a target of H<sub>2</sub>O<sub>2</sub>, markedly increased RelA(p65), an NFkB factor. Furthermore, the overexpression of RelA(p65) strongly induced the expression of CYP2E1. Four candidate p65-binding sequences were identified upstream of the CYP2E1 gene, and promoter activity assays showed that the third sequence was responsive to the overexpression of RelA(p65). We used the GSE89632 series for NASH and the GSE28619 series for AH in the present study. The expression of CYP2E1 mRNA in the liver was significantly lower in AH patients than in HC patients, but was similar in HC patients and NASH patients.</p><p><strong>Conclusion: </strong>We herein demonstrated that the expression of CYP2E1 was induced by H<sub>2</sub>O<sub>2</sub>. The overexpression of RelA(p65) also induced CYP2E1 mRNA expression, whereas H<sub>2</sub>O<sub>2</sub> did not after the knockdown of RelA. These results suggest that H<sub>2</sub>O<sub>2</sub> acts on Keap1 to upregulate RelA (p65) in the NFkB system. One of the mechanisms underlying the induction of CYP2E1 was dependent on the H<sub>2</sub>O<sub>2</sub>-Keap1-RelA axis. The results of the database analysis revealed that the expression of CYP2E1 in the liver was significantly lower in AH patients than in NASH patients, suggesting that CYP2E1 is not the main cause of AH; however, CYP2E1 may exacerbate the pathogenesis of AH.</p>","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":" ","pages":"307-316"},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141916270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.2174/0113892002282727240307072255
Jingwen Yuan, Shuang Fei, Zeping Gui, Zijie Wang, Hao Chen, Li Sun, Jun Tao, Zhijian Han, Xiaobing Ju, Ruoyun Tan, Min Gu, Zhengkai Huang
Background: BK virus (BKV) infection is an opportunistic infectious complication and constitutes a risk factor for premature graft failure in kidney transplantation. Our research aimed to identify associations and assess the impact of single-nucleotide polymorphisms (SNPs) on metabolism-related genes in patients who have undergone kidney transplantation with BKV infection.
Material/methods: The DNA samples of 200 eligible kidney transplant recipients from our center, meeting the inclusion criteria, have been collected and extracted. Next-generation sequencing was used to genotype SNPs on metabolism-associated genes (CYP3A4/5/7, UGT1A4/7/8/9, UGT2B7). A general linear model (GLM) was used to identify and eliminate confounding factors that may influence the outcome events. Multiple inheritance models and haplotype analyses were utilized to identify variation loci associated with infection caused by BKV and ascertain haplotypes, respectively.
Results: A total of 141 SNPs located on metabolism-related genes were identified. After Hardy-Weinberg equilibrium (HWE) and minor allele frequency (MAF) analysis, 21 tagger SNPs were selected for further association analysis. Based on GLM results, no confounding factor was significant in predicting the incidence of BK polyomavirus-associated infection. Then, multiple inheritance model analyses revealed that the risk of BKV infection was significantly associated with rs3732218 and rs4556969. Finally, we detect significant associations between haplotype T-A-C of block 2 (rs4556969, rs3732218, rs12468274) and infection caused by BKV (P = 0.0004).
Conclusion: We found that genetic variants in the UGT1A gene confer BKV infection susceptibility after kidney transplantation.
{"title":"Association of <i>UGT1A</i> Gene Polymorphisms with BKV Infection in Renal Transplantation Recipients.","authors":"Jingwen Yuan, Shuang Fei, Zeping Gui, Zijie Wang, Hao Chen, Li Sun, Jun Tao, Zhijian Han, Xiaobing Ju, Ruoyun Tan, Min Gu, Zhengkai Huang","doi":"10.2174/0113892002282727240307072255","DOIUrl":"10.2174/0113892002282727240307072255","url":null,"abstract":"<p><strong>Background: </strong>BK virus (BKV) infection is an opportunistic infectious complication and constitutes a risk factor for premature graft failure in kidney transplantation. Our research aimed to identify associations and assess the impact of single-nucleotide polymorphisms (SNPs) on metabolism-related genes in patients who have undergone kidney transplantation with BKV infection.</p><p><strong>Material/methods: </strong>The DNA samples of 200 eligible kidney transplant recipients from our center, meeting the inclusion criteria, have been collected and extracted. Next-generation sequencing was used to genotype SNPs on metabolism-associated genes (CYP3A4/5/7, UGT1A4/7/8/9, UGT2B7). A general linear model (GLM) was used to identify and eliminate confounding factors that may influence the outcome events. Multiple inheritance models and haplotype analyses were utilized to identify variation loci associated with infection caused by BKV and ascertain haplotypes, respectively.</p><p><strong>Results: </strong>A total of 141 SNPs located on metabolism-related genes were identified. After Hardy-Weinberg equilibrium (HWE) and minor allele frequency (MAF) analysis, 21 tagger SNPs were selected for further association analysis. Based on GLM results, no confounding factor was significant in predicting the incidence of BK polyomavirus-associated infection. Then, multiple inheritance model analyses revealed that the risk of BKV infection was significantly associated with rs3732218 and rs4556969. Finally, we detect significant associations between haplotype T-A-C of block 2 (rs4556969, rs3732218, rs12468274) and infection caused by BKV (P = 0.0004).</p><p><strong>Conclusion: </strong>We found that genetic variants in the UGT1A gene confer BKV infection susceptibility after kidney transplantation.</p>","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":" ","pages":"188-196"},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140174062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}