Membrane proteins have evolved to function as part of specialized biological membranes, and their structures and activities are highly susceptible to their local environment. Detergents and lipid mimetics replicate certain aspects of biological membranes, and have been used to produce an exceptional body of structural data, but do not fully capture the complex, asymmetric properties of the native environment and can alter structure and function. Here, we review recent advances in nuclear magnetic resonance (NMR) that enable the examination of membrane protein structure and activity in situ, within native membranes. The development of optimized protein expression strategies, isotopic labeling schemes, powerful instrumentation and specialized pulse sequences offer new opportunities for exploring the new frontier of in situ structural biology. By outlining the framework for in situ NMR of membrane proteins from conceptualization to experiments we hope to inspire new research in this growing and important area.
Cryo-electron microscopy (cryo-EM) has emerged as a transformative tool in structural biology, enabling high-resolution visualization of macromolecules in their native states. Cryo-focused ion beam milling (cryo-FIB) and other advances in sample preparation have expanded the range of biological samples that can be studied with cryo-EM to include cells and tissues. While the dream of high-resolution structural analysis of proteins within their native, cellular context is now being realized, sample preparation, especially from tissues, is still labor-intensive and technically challenging. Here we review the latest innovations in cryo-EM sample preparation, including support fabrication and functionalization, cell micropatterning, and techniques for thinning frozen biological samples. Beyond streamlining and improving the repeatability of sample preparation, these advances are expanding the impact of cryo-EM by enabling unprecedented visualization of structures within cells and tissues in healthy and diseased states, as well as structural analysis of biological processes at well-controlled time points.

