Pub Date : 2024-08-14DOI: 10.1016/j.sbi.2024.102896
HIV-1, the causative agent of AIDS, is a retrovirus that packages two copies of unspliced viral RNA as a dimer into newly budding virions. The unspliced viral RNA also serves as an mRNA template for translation of two polyproteins. Recent studies suggest that the fate of the viral RNA (genome or mRNA) is determined at the level of transcription. RNA polymerase II uses heterogeneous transcription start sites to generate major transcripts that differ in only two guanosines at the 5ʹ end. Remarkably, this two-nucleotide difference is sufficient to alter the structure of the 5ʹ-untranslated region and generate two pools of RNA with distinct functions. The presence of both RNA species is needed for optimal viral replication and fitness.
{"title":"Transcription start site choice regulates HIV-1 RNA conformation and function","authors":"","doi":"10.1016/j.sbi.2024.102896","DOIUrl":"10.1016/j.sbi.2024.102896","url":null,"abstract":"<div><p>HIV-1, the causative agent of AIDS, is a retrovirus that packages two copies of unspliced viral RNA as a dimer into newly budding virions. The unspliced viral RNA also serves as an mRNA template for translation of two polyproteins. Recent studies suggest that the fate of the viral RNA (genome or mRNA) is determined at the level of transcription. RNA polymerase II uses heterogeneous transcription start sites to generate major transcripts that differ in only two guanosines at the 5ʹ end. Remarkably, this two-nucleotide difference is sufficient to alter the structure of the 5ʹ-untranslated region and generate two pools of RNA with distinct functions. The presence of both RNA species is needed for optimal viral replication and fitness.</p></div>","PeriodicalId":10887,"journal":{"name":"Current opinion in structural biology","volume":null,"pages":null},"PeriodicalIF":6.1,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141987611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-14DOI: 10.1016/j.sbi.2024.102908
RNA's ability to form and interconvert between multiple secondary and tertiary structures is critical to its functional versatility and the traditional view of RNA structures as static entities has shifted towards understanding them as dynamic conformational ensembles. In this review we discuss RNA structural ensembles and their dynamics, highlighting the concept of conformational energy landscapes as a unifying framework for understanding RNA processes such as folding, misfolding, conformational changes, and complex formation. Ongoing advancements in cryo-electron microscopy and chemical probing techniques are significantly enhancing our ability to investigate multiple structures adopted by conformationally dynamic RNAs, while traditional methods such as nuclear magnetic resonance spectroscopy continue to play a crucial role in providing high-resolution, quantitative spatial and temporal information. We discuss how these methods, when used synergistically, can provide a comprehensive understanding of RNA conformational ensembles, offering new insights into their regulatory functions.
{"title":"Structural and biophysical dissection of RNA conformational ensembles","authors":"","doi":"10.1016/j.sbi.2024.102908","DOIUrl":"10.1016/j.sbi.2024.102908","url":null,"abstract":"<div><p>RNA's ability to form and interconvert between multiple secondary and tertiary structures is critical to its functional versatility and the traditional view of RNA structures as static entities has shifted towards understanding them as dynamic conformational ensembles. In this review we discuss RNA structural ensembles and their dynamics, highlighting the concept of conformational energy landscapes as a unifying framework for understanding RNA processes such as folding, misfolding, conformational changes, and complex formation. Ongoing advancements in cryo-electron microscopy and chemical probing techniques are significantly enhancing our ability to investigate multiple structures adopted by conformationally dynamic RNAs, while traditional methods such as nuclear magnetic resonance spectroscopy continue to play a crucial role in providing high-resolution, quantitative spatial and temporal information. We discuss how these methods, when used synergistically, can provide a comprehensive understanding of RNA conformational ensembles, offering new insights into their regulatory functions.</p></div>","PeriodicalId":10887,"journal":{"name":"Current opinion in structural biology","volume":null,"pages":null},"PeriodicalIF":6.1,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0959440X24001350/pdfft?md5=bc1f80228c1ae22467485bb8f3608fdb&pid=1-s2.0-S0959440X24001350-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141985666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-13DOI: 10.1016/j.sbi.2024.102906
While the structure/function paradigm for folded domains was established decades ago, our understanding of how intrinsically disordered regions (IDRs) contribute to biological function is still evolving. IDRs exist as conformational ensembles that can range from highly compact to highly extended depending on their sequence composition. IDR sequences are less conserved than those of folded domains, but often display short, conserved segments termed short linear motifs (SLiMs), that often mediate protein–protein interactions and are often regulated by posttranslational modifications, giving rise to complex functionality when multiple, differently regulated SLiMs are combined. This combinatorial functionality was associated with signaling and regulation soon after IDRs were first recognized as functional elements within proteins. Here, we discuss roles for disorder in proteins that regulate cyclin-dependent kinases, the master timekeepers of the eukaryotic cell cycle. We illustrate the importance of intrinsic flexibility in the transmission of regulatory signals by these entirely disordered proteins.
{"title":"The role of intrinsic protein disorder in regulation of cyclin-dependent kinases","authors":"","doi":"10.1016/j.sbi.2024.102906","DOIUrl":"10.1016/j.sbi.2024.102906","url":null,"abstract":"<div><p>While the structure/function paradigm for folded domains was established decades ago, our understanding of how intrinsically disordered regions (IDRs) contribute to biological function is still evolving. IDRs exist as conformational ensembles that can range from highly compact to highly extended depending on their sequence composition. IDR sequences are less conserved than those of folded domains, but often display short, conserved segments termed short linear motifs (SLiMs), that often mediate protein–protein interactions and are often regulated by posttranslational modifications, giving rise to complex functionality when multiple, differently regulated SLiMs are combined. This combinatorial functionality was associated with signaling and regulation soon after IDRs were first recognized as functional elements within proteins. Here, we discuss roles for disorder in proteins that regulate cyclin-dependent kinases, the master timekeepers of the eukaryotic cell cycle. We illustrate the importance of intrinsic flexibility in the transmission of regulatory signals by these entirely disordered proteins.</p></div>","PeriodicalId":10887,"journal":{"name":"Current opinion in structural biology","volume":null,"pages":null},"PeriodicalIF":6.1,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141979665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-12DOI: 10.1016/j.sbi.2024.102895
Evolution has fostered robust DNA damage response (DDR) mechanisms to combat DNA lesions. However, disruptions in this intricate machinery can render cells overly reliant on the remaining functional but often less accurate DNA repair pathways. This increased dependence on error-prone pathways may result in improper repair and the accumulation of mutations, fostering genomic instability and facilitating the uncontrolled cell proliferation characteristic of cancer initiation and progression. Strategies based on the concept of synthetic lethality (SL) leverage the inherent genomic instability of cancer cells by targeting alternative pathways, thereby inducing selective death of cancer cells. This review emphasizes recent advancements in structural investigations of pivotal SL targets. The significant contribution of structure-based methodologies to SL research underscores their potential impact in characterizing the growing number of SL targets, largely due to advances in next-generation sequencing. Harnessing these approaches is essential for advancing the development of precise and personalized SL therapeutic strategies.
进化促进了强大的 DNA 损伤应答(DDR)机制,以应对 DNA 病变。然而,这一复杂机制的破坏会使细胞过度依赖剩余的功能性DNA修复途径,但其准确性往往较低。这种对易出错途径的依赖性增加,可能会导致修复不当和突变积累,加剧基因组的不稳定性,促进癌症发生和发展过程中特有的不受控制的细胞增殖。基于合成致死(SL)概念的策略通过靶向替代途径,利用癌细胞固有的基因组不稳定性,从而诱导癌细胞选择性死亡。本综述强调了最近在关键合成致死靶点结构研究方面取得的进展。基于结构的方法对 SL 研究的重大贡献凸显了它们在表征日益增多的 SL 靶点方面的潜在影响,这主要归功于下一代测序技术的进步。利用这些方法对于推动精准和个性化 SL 治疗策略的发展至关重要。
{"title":"Structure-based approaches in synthetic lethality strategies","authors":"","doi":"10.1016/j.sbi.2024.102895","DOIUrl":"10.1016/j.sbi.2024.102895","url":null,"abstract":"<div><p>Evolution has fostered robust DNA damage response (DDR) mechanisms to combat DNA lesions. However, disruptions in this intricate machinery can render cells overly reliant on the remaining functional but often less accurate DNA repair pathways. This increased dependence on error-prone pathways may result in improper repair and the accumulation of mutations, fostering genomic instability and facilitating the uncontrolled cell proliferation characteristic of cancer initiation and progression. Strategies based on the concept of synthetic lethality (SL) leverage the inherent genomic instability of cancer cells by targeting alternative pathways, thereby inducing selective death of cancer cells. This review emphasizes recent advancements in structural investigations of pivotal SL targets. The significant contribution of structure-based methodologies to SL research underscores their potential impact in characterizing the growing number of SL targets, largely due to advances in next-generation sequencing. Harnessing these approaches is essential for advancing the development of precise and personalized SL therapeutic strategies.</p></div>","PeriodicalId":10887,"journal":{"name":"Current opinion in structural biology","volume":null,"pages":null},"PeriodicalIF":6.1,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0959440X24001222/pdfft?md5=c8115c810565f45aed7da20325db8917&pid=1-s2.0-S0959440X24001222-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141964629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-08DOI: 10.1016/j.sbi.2024.102894
RNAs are remarkably versatile molecules that can fold into intricate three-dimensional (3D) structures to perform diverse cellular and viral functions. Despite their biological importance, relatively few RNA 3D structures have been solved, and our understanding of RNA structure–function relationships remains in its infancy. This limitation partly arises from challenges posed by RNA's complex conformational landscape, characterized by structural flexibility, formation of multiple states, and a propensity to misfold. Recently, cryo-electron microscopy (cryo-EM) has emerged as a powerful tool for the visualization of conformationally dynamic RNA-only 3D structures. However, RNA's characteristics continue to pose challenges. We discuss experimental methods developed to overcome these hurdles, including the engineering of modular modifications that facilitate the visualization of small RNAs, improve particle alignment, and validate structural models.
{"title":"Challenges, advances, and opportunities in RNA structural biology by Cryo-EM","authors":"","doi":"10.1016/j.sbi.2024.102894","DOIUrl":"10.1016/j.sbi.2024.102894","url":null,"abstract":"<div><p>RNAs are remarkably versatile molecules that can fold into intricate three-dimensional (3D) structures to perform diverse cellular and viral functions. Despite their biological importance, relatively few RNA 3D structures have been solved, and our understanding of RNA structure–function relationships remains in its infancy. This limitation partly arises from challenges posed by RNA's complex conformational landscape, characterized by structural flexibility, formation of multiple states, and a propensity to misfold. Recently, cryo-electron microscopy (cryo-EM) has emerged as a powerful tool for the visualization of conformationally dynamic RNA-only 3D structures. However, RNA's characteristics continue to pose challenges. We discuss experimental methods developed to overcome these hurdles, including the engineering of modular modifications that facilitate the visualization of small RNAs, improve particle alignment, and validate structural models.</p></div>","PeriodicalId":10887,"journal":{"name":"Current opinion in structural biology","volume":null,"pages":null},"PeriodicalIF":6.1,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0959440X24001210/pdfft?md5=e1a7014f5342ee0d13f08281bd88235b&pid=1-s2.0-S0959440X24001210-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141912105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-26DOI: 10.1016/j.sbi.2024.102892
The eukaryotic Mediator, comprising a large Core (cMED) and a dissociable CDK8 kinase module (CKM), functions as a critical coregulator during RNA polymerase II (RNAPII) transcription. cMED recruits RNAPII and facilitates the assembly of the pre-initiation complex (PIC) at promoters. In contrast, CKM prevents RNAPII binding to cMED while simultaneously exerting positive or negative influence on gene transcription through its kinase function. Recent structural studies on cMED and CKM have revealed their intricate architectures and subunit interactions. Here, we explore these structures, providing a comprehensive insight into Mediator (cMED-CKM) architecture and its potential mechanism in regulating RNAPII transcription. Additionally, we discuss the remaining puzzles that require further investigation to fully understand how cMED coordinates with CKM to regulate transcription in various events.
{"title":"Structures and compositional dynamics of Mediator in transcription regulation","authors":"","doi":"10.1016/j.sbi.2024.102892","DOIUrl":"10.1016/j.sbi.2024.102892","url":null,"abstract":"<div><p>The eukaryotic Mediator, comprising a large Core (cMED) and a dissociable CDK8 kinase module (CKM), functions as a critical coregulator during RNA polymerase II (RNAPII) transcription. cMED recruits RNAPII and facilitates the assembly of the pre-initiation complex (PIC) at promoters. In contrast, CKM prevents RNAPII binding to cMED while simultaneously exerting positive or negative influence on gene transcription through its kinase function. Recent structural studies on cMED and CKM have revealed their intricate architectures and subunit interactions. Here, we explore these structures, providing a comprehensive insight into Mediator (cMED-CKM) architecture and its potential mechanism in regulating RNAPII transcription. Additionally, we discuss the remaining puzzles that require further investigation to fully understand how cMED coordinates with CKM to regulate transcription in various events.</p></div>","PeriodicalId":10887,"journal":{"name":"Current opinion in structural biology","volume":null,"pages":null},"PeriodicalIF":6.1,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0959440X24001192/pdfft?md5=10fec5f8a1c983ec13ee4b17d387ccba&pid=1-s2.0-S0959440X24001192-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141787471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-26DOI: 10.1016/j.sbi.2024.102893
Riboswitches are specialized RNA structures that orchestrate gene expression in response to sensing specific metabolite or ion ligands, mostly in bacteria. Upon ligand binding, these conformationally dynamic RNA motifs undergo structural changes that control critical gene expression processes such as transcription termination and translation initiation, thereby enabling cellular homeostasis and adaptation. Because RNA folds rapidly and co-transcriptionally, riboswitches make use of the low complexity of RNA sequences to adopt alternative, transient conformations on the heels of the transcribing RNA polymerase (RNAP), resulting in kinetic partitioning that defines the regulatory outcome. This review summarizes single molecule microscopy evidence that has begun to unveil a sophisticated network of dynamic, kinetically balanced interactions between riboswitch architecture and the gene expression machinery that, together, integrate diverse cellular signals.
{"title":"Beyond ligand binding: Single molecule observation reveals how riboswitches integrate multiple signals to balance bacterial gene regulation","authors":"","doi":"10.1016/j.sbi.2024.102893","DOIUrl":"10.1016/j.sbi.2024.102893","url":null,"abstract":"<div><p>Riboswitches are specialized RNA structures that orchestrate gene expression in response to sensing specific metabolite or ion ligands, mostly in bacteria. Upon ligand binding, these conformationally dynamic RNA motifs undergo structural changes that control critical gene expression processes such as transcription termination and translation initiation, thereby enabling cellular homeostasis and adaptation. Because RNA folds rapidly and co-transcriptionally, riboswitches make use of the low complexity of RNA sequences to adopt alternative, transient conformations on the heels of the transcribing RNA polymerase (RNAP), resulting in kinetic partitioning that defines the regulatory outcome. This review summarizes single molecule microscopy evidence that has begun to unveil a sophisticated network of dynamic, kinetically balanced interactions between riboswitch architecture and the gene expression machinery that, together, integrate diverse cellular signals.</p></div>","PeriodicalId":10887,"journal":{"name":"Current opinion in structural biology","volume":null,"pages":null},"PeriodicalIF":6.1,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141787470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-25DOI: 10.1016/j.sbi.2024.102891
Necroptosis is a lytic form of programmed cell death implicated in inflammatory pathologies, leading to intense interest in the underlying mechanisms and therapeutic prospects. Here, we review our current structural understanding of how the terminal executioner of the pathway, the dead kinase, mixed lineage kinase domain-like (MLKL), is converted from a dormant to killer form by the upstream regulatory kinase, RIPK3. RIPK3-mediated phosphorylation of MLKL's pseudokinase domain toggles a molecular switch that induces dissociation from a cytoplasmic platform, assembly of MLKL oligomers, and trafficking to the plasma membrane, where activated MLKL accumulates and permeabilises the lipid bilayer to induce cell death. We highlight gaps in mechanistic knowledge of MLKL's activation, how mechanisms diverge between species, and the power of modelling in advancing structural insights.
{"title":"Death at a funeral: Activation of the dead enzyme, MLKL, to kill cells by necroptosis","authors":"","doi":"10.1016/j.sbi.2024.102891","DOIUrl":"10.1016/j.sbi.2024.102891","url":null,"abstract":"<div><p>Necroptosis is a lytic form of programmed cell death implicated in inflammatory pathologies, leading to intense interest in the underlying mechanisms and therapeutic prospects. Here, we review our current structural understanding of how the terminal executioner of the pathway, the dead kinase, mixed lineage kinase domain-like (MLKL), is converted from a dormant to killer form by the upstream regulatory kinase, RIPK3. RIPK3-mediated phosphorylation of MLKL's pseudokinase domain toggles a molecular switch that induces dissociation from a cytoplasmic platform, assembly of MLKL oligomers, and trafficking to the plasma membrane, where activated MLKL accumulates and permeabilises the lipid bilayer to induce cell death. We highlight gaps in mechanistic knowledge of MLKL's activation, how mechanisms diverge between species, and the power of modelling in advancing structural insights.</p></div>","PeriodicalId":10887,"journal":{"name":"Current opinion in structural biology","volume":null,"pages":null},"PeriodicalIF":6.1,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0959440X24001180/pdfft?md5=6d931814dc4980e4f60216073440c7c3&pid=1-s2.0-S0959440X24001180-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141765711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-24DOI: 10.1016/j.sbi.2024.102884
Ion-driven membrane motors, essential across all domains of life, convert a gradient of ions across a membrane into rotational energy, facilitating diverse biological processes including ATP synthesis, substrate transport, and bacterial locomotion. Herein, we highlight recent structural advances in the understanding of two classes of ion-driven membrane motors: rotary ATPases and 5:2 motors. The recent structure of the human F-type ATP synthase is emphasised along with the gained structural insight into clinically relevant mutations. Furthermore, we highlight the diverse roles of 5:2 motors and recent mechanistic understanding gained through the resolution of ions in the structure of a sodium-driven motor, combining insights into potential unifying mechanisms of ion selectivity and rotational torque generation in the context of their function as part of complex biological systems.
离子驱动膜马达在生命的各个领域都是必不可少的,它能将膜上的离子梯度转化为旋转能量,促进包括 ATP 合成、底物运输和细菌运动在内的各种生物过程。在此,我们重点介绍在了解两类离子驱动膜马达(旋转 ATP 酶和 5:2 马达)方面取得的最新结构进展。我们重点介绍了人类 F 型 ATP 合成酶的最新结构,以及对临床相关突变的结构认识。此外,我们还强调了 5:2 马达的不同作用,以及通过解析钠驱动马达结构中的离子而获得的最新机理认识,结合作为复杂生物系统一部分的离子选择性和旋转力矩产生的潜在统一机理。
{"title":"Ion-driven rotary membrane motors: From structure to function","authors":"","doi":"10.1016/j.sbi.2024.102884","DOIUrl":"10.1016/j.sbi.2024.102884","url":null,"abstract":"<div><p>Ion-driven membrane motors, essential across all domains of life, convert a gradient of ions across a membrane into rotational energy, facilitating diverse biological processes including ATP synthesis, substrate transport, and bacterial locomotion. Herein, we highlight recent structural advances in the understanding of two classes of ion-driven membrane motors: rotary ATPases and 5:2 motors. The recent structure of the human F-type ATP synthase is emphasised along with the gained structural insight into clinically relevant mutations. Furthermore, we highlight the diverse roles of 5:2 motors and recent mechanistic understanding gained through the resolution of ions in the structure of a sodium-driven motor, combining insights into potential unifying mechanisms of ion selectivity and rotational torque generation in the context of their function as part of complex biological systems.</p></div>","PeriodicalId":10887,"journal":{"name":"Current opinion in structural biology","volume":null,"pages":null},"PeriodicalIF":6.1,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0959440X24001118/pdfft?md5=3d420fd977d0790fe93a91624256205e&pid=1-s2.0-S0959440X24001118-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141757607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-22DOI: 10.1016/j.sbi.2024.102890
Protein kinases are dynamic enzymes that display complex regulatory mechanisms. Although they possess a structurally conserved catalytic domain, significant conformational dynamics are evident both within a single kinase and across different kinases in the kinome. Here, we highlight methods for exploring this conformational space and its dynamics using kinase domains from ABL1 (Abelson kinase), PKA (protein kinase A), AurA (Aurora A), and PYK2 (proline-rich tyrosine kinase 2) as examples. Such experimental approaches combined with AI-driven methods, such as AlphaFold, will yield discoveries about kinase regulation, the catalytic process, substrate specificity, the effect of disease-associated mutations, as well as new opportunities for structure-based drug design.
{"title":"Exploring the conformational landscape of protein kinases","authors":"","doi":"10.1016/j.sbi.2024.102890","DOIUrl":"10.1016/j.sbi.2024.102890","url":null,"abstract":"<div><p>Protein kinases are dynamic enzymes that display complex regulatory mechanisms. Although they possess a structurally conserved catalytic domain, significant conformational dynamics are evident both within a single kinase and across different kinases in the kinome. Here, we highlight methods for exploring this conformational space and its dynamics using kinase domains from ABL1 (Abelson kinase), PKA (protein kinase A), AurA (Aurora A), and PYK2 (proline-rich tyrosine kinase 2) as examples. Such experimental approaches combined with AI-driven methods, such as AlphaFold, will yield discoveries about kinase regulation, the catalytic process, substrate specificity, the effect of disease-associated mutations, as well as new opportunities for structure-based drug design.</p></div>","PeriodicalId":10887,"journal":{"name":"Current opinion in structural biology","volume":null,"pages":null},"PeriodicalIF":6.1,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141736724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}