首页 > 最新文献

Current Opinion in Electrochemistry最新文献

英文 中文
Innovative methods in electrochemistry 2024 multidisciplinary solutions to electrochemistry
IF 7.9 2区 化学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2025-01-16 DOI: 10.1016/j.coelec.2025.101644
Christine Kranz, Bing-Wei Mao
{"title":"Innovative methods in electrochemistry 2024 multidisciplinary solutions to electrochemistry","authors":"Christine Kranz, Bing-Wei Mao","doi":"10.1016/j.coelec.2025.101644","DOIUrl":"10.1016/j.coelec.2025.101644","url":null,"abstract":"","PeriodicalId":11028,"journal":{"name":"Current Opinion in Electrochemistry","volume":"50 ","pages":"Article 101644"},"PeriodicalIF":7.9,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143379203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrochemical fingerprints of the electronic band structure of two-dimensional materials
IF 7.9 2区 化学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2025-01-16 DOI: 10.1016/j.coelec.2025.101650
Matěj Velický
Two-dimensional (2D) materials and their unique tunable properties have captivated scientists for two decades. Electrochemistry is a mature research field that has succeeded in tackling many of the modern scientific topics. The convergence of these two scientific disciplines has crystallized into a unique interdisciplinary field with rewarding outcomes. The topics covered by the electrochemistry of 2D materials include examination of the electrocatalytic activity at different surfaces, electrochemical tunneling through 2D layers, and charge carrier density modulation by electrolyte gating. Most recently, the prospect of observing electrochemical effects arising from the features of the electronic band structure has driven much of the research on the spectroelectrochemistry of 2D semiconductors, dual-gate control over the electrochemical reactions, and electrochemistry of moiré heterostructures. Although the investigation of these electrochemical fingerprints of the electronic band structure faces challenges related to involved sample fabrication, advanced instrumentation, and intellectual stumbling blocks, it has already unveiled the enormous potential worthy of future research efforts.
{"title":"Electrochemical fingerprints of the electronic band structure of two-dimensional materials","authors":"Matěj Velický","doi":"10.1016/j.coelec.2025.101650","DOIUrl":"10.1016/j.coelec.2025.101650","url":null,"abstract":"<div><div>Two-dimensional (2D) materials and their unique tunable properties have captivated scientists for two decades. Electrochemistry is a mature research field that has succeeded in tackling many of the modern scientific topics. The convergence of these two scientific disciplines has crystallized into a unique interdisciplinary field with rewarding outcomes. The topics covered by the electrochemistry of 2D materials include examination of the electrocatalytic activity at different surfaces, electrochemical tunneling through 2D layers, and charge carrier density modulation by electrolyte gating. Most recently, the prospect of observing electrochemical effects arising from the features of the electronic band structure has driven much of the research on the spectroelectrochemistry of 2D semiconductors, dual-gate control over the electrochemical reactions, and electrochemistry of moiré heterostructures. Although the investigation of these electrochemical fingerprints of the electronic band structure faces challenges related to involved sample fabrication, advanced instrumentation, and intellectual stumbling blocks, it has already unveiled the enormous potential worthy of future research efforts.</div></div>","PeriodicalId":11028,"journal":{"name":"Current Opinion in Electrochemistry","volume":"50 ","pages":"Article 101650"},"PeriodicalIF":7.9,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143436692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Isolated proteins in biohybrid photovoltaics: Where do we go from here?
IF 7.9 2区 化学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2025-01-16 DOI: 10.1016/j.coelec.2025.101647
Nahush Modak, Vincent M. Friebe, Rafał Białek
Biohybrid photovoltaics, which harness photosynthetic proteins such as reaction centers to convert light into electricity, have progressed significantly over the years. Recent efforts have focused on a deeper understanding of the underlying operational mechanisms and identifying key limitations and bottlenecks, leading to revealing poor wiring as a primary factor limiting efficiency and guiding strategies for improvement. However, despite these insights, experimental advances have only led to incremental progress, leaving critical issues unresolved and raising doubts about the viability of biohybrid photovoltaics for large-scale energy production. This ongoing performance gap highlights the need for a breakthrough to move the field forward. Nonetheless, the knowledge gained is crucial for future innovations, particularly in developing more stable, complex systems such as living-cell-based devices. Additionally, these findings suggest that biohybrid systems may be better suited for specialized applications like biosensing or driving high-value chemical production, where their unique properties can be more effectively utilized.
{"title":"Isolated proteins in biohybrid photovoltaics: Where do we go from here?","authors":"Nahush Modak,&nbsp;Vincent M. Friebe,&nbsp;Rafał Białek","doi":"10.1016/j.coelec.2025.101647","DOIUrl":"10.1016/j.coelec.2025.101647","url":null,"abstract":"<div><div>Biohybrid photovoltaics, which harness photosynthetic proteins such as reaction centers to convert light into electricity, have progressed significantly over the years. Recent efforts have focused on a deeper understanding of the underlying operational mechanisms and identifying key limitations and bottlenecks, leading to revealing poor wiring as a primary factor limiting efficiency and guiding strategies for improvement. However, despite these insights, experimental advances have only led to incremental progress, leaving critical issues unresolved and raising doubts about the viability of biohybrid photovoltaics for large-scale energy production. This ongoing performance gap highlights the need for a breakthrough to move the field forward. Nonetheless, the knowledge gained is crucial for future innovations, particularly in developing more stable, complex systems such as living-cell-based devices. Additionally, these findings suggest that biohybrid systems may be better suited for specialized applications like biosensing or driving high-value chemical production, where their unique properties can be more effectively utilized.</div></div>","PeriodicalId":11028,"journal":{"name":"Current Opinion in Electrochemistry","volume":"50 ","pages":"Article 101647"},"PeriodicalIF":7.9,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143310434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Opportunities and challenges in the application of electrodeposition to few-layer transition metal dichalcogenide electronic device fabrication
IF 7.9 2区 化学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2025-01-15 DOI: 10.1016/j.coelec.2025.101651
Philip N. Bartlett , Victoria K. Greenacre , Cornelis H. de Groot , Yasir J. Noori , Gillian Reid , Shibin Thomas
Few-layer transition metal dichalcogenides (TMDCs) are currently a hot topic in electrochemistry with a focus on their applications in electrocatalysis, energy conversion and storage, and sensors because of their high surface areas and unique properties. At the same time there is even greater interest in the field of electronics for the applications of few layer TMDCs in nanoelectronic devices including field effect transistors, memristors, photodetectors, and flexible electronics. Here we highlight the significant opportunities and challenges in the practically unexplored use of electrodeposition and electrochemical processes for the fabrication of TMDC based electronic devices.
{"title":"Opportunities and challenges in the application of electrodeposition to few-layer transition metal dichalcogenide electronic device fabrication","authors":"Philip N. Bartlett ,&nbsp;Victoria K. Greenacre ,&nbsp;Cornelis H. de Groot ,&nbsp;Yasir J. Noori ,&nbsp;Gillian Reid ,&nbsp;Shibin Thomas","doi":"10.1016/j.coelec.2025.101651","DOIUrl":"10.1016/j.coelec.2025.101651","url":null,"abstract":"<div><div>Few-layer transition metal dichalcogenides (TMDCs) are currently a hot topic in electrochemistry with a focus on their applications in electrocatalysis, energy conversion and storage, and sensors because of their high surface areas and unique properties. At the same time there is even greater interest in the field of electronics for the applications of few layer TMDCs in nanoelectronic devices including field effect transistors, memristors, photodetectors, and flexible electronics. Here we highlight the significant opportunities and challenges in the practically unexplored use of electrodeposition and electrochemical processes for the fabrication of TMDC based electronic devices.</div></div>","PeriodicalId":11028,"journal":{"name":"Current Opinion in Electrochemistry","volume":"50 ","pages":"Article 101651"},"PeriodicalIF":7.9,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143158170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Machine learning in electrocatalysis–Living up to the hype?
IF 7.9 2区 化学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2025-01-11 DOI: 10.1016/j.coelec.2025.101649
Árni Björn Höskuldsson
The introduction of machine learning (ML) models in materials science is seen as a paradigm shift in the field. These models enable the thorough exploration of vast material spaces previously deemed beyond the reach of computational studies, thereby accelerating the materials discovery process. In theoretical electrocatalysis, ML models are primarily used as surrogates for, or to complement, more costly ab initio simulations to predict material properties. Herein, the effects ML has had on the field of electrocatalysis are critically reviewed, with particular focus on the degree to which actual progress has resulted from its application. Although the effectiveness of ML in exploring vast material classes is undeniable, the irrational belief in its potential has led to its excessive utilization within the field.
{"title":"Machine learning in electrocatalysis–Living up to the hype?","authors":"Árni Björn Höskuldsson","doi":"10.1016/j.coelec.2025.101649","DOIUrl":"10.1016/j.coelec.2025.101649","url":null,"abstract":"<div><div>The introduction of machine learning (ML) models in materials science is seen as a paradigm shift in the field. These models enable the thorough exploration of vast material spaces previously deemed beyond the reach of computational studies, thereby accelerating the materials discovery process. In theoretical electrocatalysis, ML models are primarily used as surrogates for, or to complement, more costly <em>ab initio</em> simulations to predict material properties. Herein, the effects ML has had on the field of electrocatalysis are critically reviewed, with particular focus on the degree to which actual progress has resulted from its application. Although the effectiveness of ML in exploring vast material classes is undeniable, the irrational belief in its potential has led to its excessive utilization within the field.</div></div>","PeriodicalId":11028,"journal":{"name":"Current Opinion in Electrochemistry","volume":"50 ","pages":"Article 101649"},"PeriodicalIF":7.9,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143158666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Relationships among structure, composition, and selectivity in the electrocatalytic reduction of nitrate ions
IF 7.9 2区 化学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2025-01-10 DOI: 10.1016/j.coelec.2025.101643
Yixiao Zhang , Qingdian Liao , Elena L. Gubanova , Aliaksandr S. Bandarenka
Electrochemical nitrate reduction reaction (NO₃RR) is crucial in converting wastewater nitrate sources into value-added products under mild, low-cost conditions. Metals with highly occupied d-orbitals, such as Au, Ag, Cu, and Pt, are promising materials for high-performance electrocatalytic NO3- reduction due to their favorable surface electronic properties. While many metals are effective catalysts for NO₃RR, their limited ability to favor specific products often hinders practical application. This short review analyzes recent understanding of the reaction mechanisms and pathways of NO₃RR, focusing on the structural and electronic effects of the catalysts such as underpotential deposition systems and single-atom catalysts on product selectivity.
{"title":"Relationships among structure, composition, and selectivity in the electrocatalytic reduction of nitrate ions","authors":"Yixiao Zhang ,&nbsp;Qingdian Liao ,&nbsp;Elena L. Gubanova ,&nbsp;Aliaksandr S. Bandarenka","doi":"10.1016/j.coelec.2025.101643","DOIUrl":"10.1016/j.coelec.2025.101643","url":null,"abstract":"<div><div>Electrochemical nitrate reduction reaction (NO₃RR) is crucial in converting wastewater nitrate sources into value-added products under mild, low-cost conditions. Metals with highly occupied d-orbitals, such as Au, Ag, Cu, and Pt, are promising materials for high-performance electrocatalytic NO<sub>3</sub><sup>-</sup> reduction due to their favorable surface electronic properties. While many metals are effective catalysts for NO₃RR, their limited ability to favor specific products often hinders practical application. This short review analyzes recent understanding of the reaction mechanisms and pathways of NO₃RR, focusing on the structural and electronic effects of the catalysts such as underpotential deposition systems and single-atom catalysts on product selectivity.</div></div>","PeriodicalId":11028,"journal":{"name":"Current Opinion in Electrochemistry","volume":"50 ","pages":"Article 101643"},"PeriodicalIF":7.9,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143348011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Physical and nano-electrochemistry: Editorial
IF 7.9 2区 化学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2025-01-08 DOI: 10.1016/j.coelec.2025.101645
Yige Zhou, Hang Ren
{"title":"Physical and nano-electrochemistry: Editorial","authors":"Yige Zhou,&nbsp;Hang Ren","doi":"10.1016/j.coelec.2025.101645","DOIUrl":"10.1016/j.coelec.2025.101645","url":null,"abstract":"","PeriodicalId":11028,"journal":{"name":"Current Opinion in Electrochemistry","volume":"50 ","pages":"Article 101645"},"PeriodicalIF":7.9,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143158165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sustainable development of electrochemical water treatment: Innovations in materials, processes, and resource recovery
IF 7.9 2区 化学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2025-01-08 DOI: 10.1016/j.coelec.2025.101646
Javier Llanos, Ignasi Sirés
{"title":"Sustainable development of electrochemical water treatment: Innovations in materials, processes, and resource recovery","authors":"Javier Llanos,&nbsp;Ignasi Sirés","doi":"10.1016/j.coelec.2025.101646","DOIUrl":"10.1016/j.coelec.2025.101646","url":null,"abstract":"","PeriodicalId":11028,"journal":{"name":"Current Opinion in Electrochemistry","volume":"50 ","pages":"Article 101646"},"PeriodicalIF":7.9,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143158167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Harnessing MOF intrinsic properties for enhanced supercapacitor performance
IF 7.9 2区 化学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2025-01-02 DOI: 10.1016/j.coelec.2024.101640
Awais Ali , Sheraz Ahmed , Wei Jiang , Gyungse Park , Soong Ju Oh
The necessity to maximize the efficiency of energy storage systems has spurred researchers to pursue novel materials with innate characteristics that enhance energy and power outputs. Researchers have recently focused on metal–organic frameworks (MOFs) as potential materials because of their desirable properties, which include large surface areas that maximize electroactive sites, fast ion transport, ultrahigh porosity, and rich redox metal centers. The design and manufacture of these electrode materials dictate MOFs’ architecture and morphology (microstructure or nanostructure), which determines their electrochemical performance. This review illustrates the recent results from the previous findings on the application of MOFs as a material with unique storage abilities and insights in supercapacitors.
{"title":"Harnessing MOF intrinsic properties for enhanced supercapacitor performance","authors":"Awais Ali ,&nbsp;Sheraz Ahmed ,&nbsp;Wei Jiang ,&nbsp;Gyungse Park ,&nbsp;Soong Ju Oh","doi":"10.1016/j.coelec.2024.101640","DOIUrl":"10.1016/j.coelec.2024.101640","url":null,"abstract":"<div><div>The necessity to maximize the efficiency of energy storage systems has spurred researchers to pursue novel materials with innate characteristics that enhance energy and power outputs. Researchers have recently focused on metal–organic frameworks (MOFs) as potential materials because of their desirable properties, which include large surface areas that maximize electroactive sites, fast ion transport, ultrahigh porosity, and rich redox metal centers. The design and manufacture of these electrode materials dictate MOFs’ architecture and morphology (microstructure or nanostructure), which determines their electrochemical performance. This review illustrates the recent results from the previous findings on the application of MOFs as a material with unique storage abilities and insights in supercapacitors.</div></div>","PeriodicalId":11028,"journal":{"name":"Current Opinion in Electrochemistry","volume":"50 ","pages":"Article 101640"},"PeriodicalIF":7.9,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143158166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Consequences of edge and substrate modifications on graphene electrochemistry
IF 7.9 2区 化学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-12-31 DOI: 10.1016/j.coelec.2024.101641
Thiago Bertaglia , Tilmann J. Neubert , Rodrigo M. Iost , Kannan Balasubramanian , Frank N. Crespilho
The electrochemistry of graphene is dictated by its structural inhomogeneities, including defects, edges, and substrate interactions, along with its unique electronic properties. In this current opinion, we analyze how graphene's structural features influence its heterogeneous electron transfer (HET) kinetics. Graphene's low density of states (DOS) introduces quantum capacitance effects that dominate interfacial charge transfer near the charge neutrality point. Defects, such as vacancies and oxidized regions, create localized states that enhance HET rates, while excessive defects reduce conductivity. Graphene edges, show superior HET performance compared to the basal plane. Encapsulation techniques, such as hexagonal boron nitride, enable precise isolation of graphene edges, minimizing capacitive interference. Substrate engineering, including metallic hybridization and twisted bilayer graphene, further modulates graphene's electronic properties. These insights feature graphene's potential in biosensing, energy storage, and catalysis, while highlighting the need for precise defect control and substrate optimization to advance graphene-based electrochemical devices.
{"title":"Consequences of edge and substrate modifications on graphene electrochemistry","authors":"Thiago Bertaglia ,&nbsp;Tilmann J. Neubert ,&nbsp;Rodrigo M. Iost ,&nbsp;Kannan Balasubramanian ,&nbsp;Frank N. Crespilho","doi":"10.1016/j.coelec.2024.101641","DOIUrl":"10.1016/j.coelec.2024.101641","url":null,"abstract":"<div><div>The electrochemistry of graphene is dictated by its structural inhomogeneities, including defects, edges, and substrate interactions, along with its unique electronic properties. In this current opinion, we analyze how graphene's structural features influence its heterogeneous electron transfer (HET) kinetics. Graphene's low density of states (DOS) introduces quantum capacitance effects that dominate interfacial charge transfer near the charge neutrality point. Defects, such as vacancies and oxidized regions, create localized states that enhance HET rates, while excessive defects reduce conductivity. Graphene edges, show superior HET performance compared to the basal plane. Encapsulation techniques, such as hexagonal boron nitride, enable precise isolation of graphene edges, minimizing capacitive interference. Substrate engineering, including metallic hybridization and twisted bilayer graphene, further modulates graphene's electronic properties. These insights feature graphene's potential in biosensing, energy storage, and catalysis, while highlighting the need for precise defect control and substrate optimization to advance graphene-based electrochemical devices.</div></div>","PeriodicalId":11028,"journal":{"name":"Current Opinion in Electrochemistry","volume":"50 ","pages":"Article 101641"},"PeriodicalIF":7.9,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143158191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Current Opinion in Electrochemistry
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1