Biodiesel, developed as an alternative to natural fossils, is produced by a transesterification reaction. The main co-product of this reaction is represented by glycerol, whose production in 2020 exceeded 6 times the current demand. A consequence of the spreading of biodiesel market was a drop of glycerol price. This versatile biomass-derived compound can be used as an important raw material for the manufacture of valuable chemicals including dihydroxyacetone (DHA), which is the most high-valued glycerol-derived product. Despite all the research devoted to achieve selective oxidation of the secondary alcohol group, this issue remains a scientific challenge. Among several routes for glycerol valorization, electrochemistry is an attractive process as discussed in this review. After a short introduction, which describes non-electrochemical methods, electrochemical oxidations on precious (based on Pt, Pd, Au and Ag) and non-precious metal electrocatalysts is discussed, with a specific focus on selectivity towards DHA.
{"title":"Tackling electrocatalytic oxidation of glycerol to dihydroxyacetone: A comprehensive review","authors":"Fiammetta Vitulano , Fulvio Uggeri , Luciano Lattuada , Alessandro Minguzzi , Alberto Vertova","doi":"10.1016/j.coelec.2025.101665","DOIUrl":"10.1016/j.coelec.2025.101665","url":null,"abstract":"<div><div>Biodiesel, developed as an alternative to natural fossils, is produced by a transesterification reaction. The main co-product of this reaction is represented by glycerol, whose production in 2020 exceeded 6 times the current demand. A consequence of the spreading of biodiesel market was a drop of glycerol price. This versatile biomass-derived compound can be used as an important raw material for the manufacture of valuable chemicals including dihydroxyacetone (DHA), which is the most high-valued glycerol-derived product. Despite all the research devoted to achieve selective oxidation of the secondary alcohol group, this issue remains a scientific challenge. Among several routes for glycerol valorization, electrochemistry is an attractive process as discussed in this review. After a short introduction, which describes non-electrochemical methods, electrochemical oxidations on precious (based on Pt, Pd, Au and Ag) and non-precious metal electrocatalysts is discussed, with a specific focus on selectivity towards DHA.</div></div>","PeriodicalId":11028,"journal":{"name":"Current Opinion in Electrochemistry","volume":"51 ","pages":"Article 101665"},"PeriodicalIF":7.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143453376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01DOI: 10.1016/j.coelec.2024.101630
R. Daniel Little, Kevin D. Moeller, R. Francke
{"title":"Organic and molecular electrochemistry (2024)–Fresh impetus for organic synthesis","authors":"R. Daniel Little, Kevin D. Moeller, R. Francke","doi":"10.1016/j.coelec.2024.101630","DOIUrl":"10.1016/j.coelec.2024.101630","url":null,"abstract":"","PeriodicalId":11028,"journal":{"name":"Current Opinion in Electrochemistry","volume":"49 ","pages":"Article 101630"},"PeriodicalIF":7.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143098631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01DOI: 10.1016/j.coelec.2024.101623
Yuqi Ma , Danlei Li
This mini review explores the effect of nanoparticle (NP) size and morphology on electrocatalytic activity, with a focus on the advancements in single-entity electrochemistry (SEE) techniques such as scanning electrochemical microscopy, scanning electrochemical cell microscopy, and single nanoparticle collision methods. These techniques provide critical insights into NP behavior, enabling the precise characterization of catalytic activity at a single-NP scale. Moreover, recent developments in coupling SEE with other techniques are also briefly discussed with a focus on enhanced mass transport and electrical contact in single-NP electrocatalysis.
{"title":"Recent advances in characterization of electrocatalytic nanoparticles at single-particle level","authors":"Yuqi Ma , Danlei Li","doi":"10.1016/j.coelec.2024.101623","DOIUrl":"10.1016/j.coelec.2024.101623","url":null,"abstract":"<div><div>This mini review explores the effect of nanoparticle (NP) size and morphology on electrocatalytic activity, with a focus on the advancements in single-entity electrochemistry (SEE) techniques such as scanning electrochemical microscopy, scanning electrochemical cell microscopy, and single nanoparticle collision methods. These techniques provide critical insights into NP behavior, enabling the precise characterization of catalytic activity at a single-NP scale. Moreover, recent developments in coupling SEE with other techniques are also briefly discussed with a focus on enhanced mass transport and electrical contact in single-NP electrocatalysis.</div></div>","PeriodicalId":11028,"journal":{"name":"Current Opinion in Electrochemistry","volume":"49 ","pages":"Article 101623"},"PeriodicalIF":7.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143098633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01DOI: 10.1016/j.coelec.2024.101608
Wenjing Nan , Jiayang Lin , Linqi Xu , Lianhuan Han , Dongping Zhan
Single-layer graphene (SLG) is renowned for its unique electronic structure and zero band gap, which presents both opportunities and challenges in electrochemical systems, particularly due to its inherently inert heterogeneous electron transfer (HET) properties. Precisely tuning the physicochemical properties of SLG is crucial for optimizing its performance in electrochemical devices. For atomically thin SLG, subtle modifications to its electronic structure can enhance its heterogeneous charge transfer and surface reactivity effectively. Here we present a concise review on recent advances in modulating the interfacial electrochemical behavior of SLG and few-layer graphene, with a focus on defect engineering, layer number regulation, and interfacial engineering. We emphasize the impact of these strategies on modulating graphene's electronic structure, particularly concerning HET and electrochemical performance, and offer perspectives on future developments in this field.
{"title":"Modulating the interfacial electrochemical behavior of single layer graphene","authors":"Wenjing Nan , Jiayang Lin , Linqi Xu , Lianhuan Han , Dongping Zhan","doi":"10.1016/j.coelec.2024.101608","DOIUrl":"10.1016/j.coelec.2024.101608","url":null,"abstract":"<div><div>Single-layer graphene (SLG) is renowned for its unique electronic structure and zero band gap, which presents both opportunities and challenges in electrochemical systems, particularly due to its inherently inert heterogeneous electron transfer (HET) properties. Precisely tuning the physicochemical properties of SLG is crucial for optimizing its performance in electrochemical devices. For atomically thin SLG, subtle modifications to its electronic structure can enhance its heterogeneous charge transfer and surface reactivity effectively. Here we present a concise review on recent advances in modulating the interfacial electrochemical behavior of SLG and few-layer graphene, with a focus on defect engineering, layer number regulation, and interfacial engineering. We emphasize the impact of these strategies on modulating graphene's electronic structure, particularly concerning HET and electrochemical performance, and offer perspectives on future developments in this field.</div></div>","PeriodicalId":11028,"journal":{"name":"Current Opinion in Electrochemistry","volume":"49 ","pages":"Article 101608"},"PeriodicalIF":7.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143102829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01DOI: 10.1016/j.coelec.2024.101624
Tereza Bautkinova, Martin Prokop, Tomas Bystron, Karel Bouzek
This review examines advancements in the design of the anode porous transport layer (PTL) and catalyst layer (CL) interface in proton exchange membrane water electrolysis (PEMWE). The quality of PTL-CL interface (contact area and contact resistance per area) is critical to electrolyser performance, influencing the voltage losses (polarisation and ohmic) and stability. To mitigate issues associated with Ti PTL passivation and enhance charge transport, various noble metal coatings, have been explored. Ir coatings seems to be the optimal solution due to their stability and catalytic activity. The review highlights surface modification techniques such as physical vapour deposition, electroplating, and laser ablation, as well as the development of porous transport electrodes and microporous layers. These approaches aim to optimise the performance of the electrolyser while minimising the noble metal usage. The findings underscore the importance of material choice and nano/microscale morphology of the interface in achieving cost-effective and durable PEMWE systems.
{"title":"Interface between anode porous transport layer and catalyst layer: A key to efficient, stable and competitive proton exchange membrane water electrolysis","authors":"Tereza Bautkinova, Martin Prokop, Tomas Bystron, Karel Bouzek","doi":"10.1016/j.coelec.2024.101624","DOIUrl":"10.1016/j.coelec.2024.101624","url":null,"abstract":"<div><div>This review examines advancements in the design of the anode porous transport layer (PTL) and catalyst layer (CL) interface in proton exchange membrane water electrolysis (PEMWE). The quality of PTL-CL interface (contact area and contact resistance per area) is critical to electrolyser performance, influencing the voltage losses (polarisation and ohmic) and stability. To mitigate issues associated with Ti PTL passivation and enhance charge transport, various noble metal coatings, have been explored. Ir coatings seems to be the optimal solution due to their stability and catalytic activity. The review highlights surface modification techniques such as physical vapour deposition, electroplating, and laser ablation, as well as the development of porous transport electrodes and microporous layers. These approaches aim to optimise the performance of the electrolyser while minimising the noble metal usage. The findings underscore the importance of material choice and nano/microscale morphology of the interface in achieving cost-effective and durable PEMWE systems.</div></div>","PeriodicalId":11028,"journal":{"name":"Current Opinion in Electrochemistry","volume":"49 ","pages":"Article 101624"},"PeriodicalIF":7.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143103002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01DOI: 10.1016/j.coelec.2025.101666
Samuel F. Wenzel , Roberto García-Carrillo , Hang Ren
Electrochemical correlative microscopy involves the pairing of electrochemical measurements with one or multiple orthogonal microscopic techniques. By integrating electrochemical measurements, especially scanning electrochemical probe microscopies (SEPMs), with correlative optical microscopy, spectroscopy, or electron microscopies, rich information complimentary to the electrochemical measurement can be obtained. This information can reveal detailed structure–property–activity relationships at electrochemical interfaces. Additionally, they can showcase visualizations of electrochemical phase transitions or mechanisms and assist in high-throughput synthesis and screening of materials for various electrochemical applications. In this perspective, we will use a few examples highlighting advances in electrochemical correlative microscopy over the past two years, focusing on the theme involving electrochemical energy storage and conversion. We anticipate new fundamental understanding of electrochemical interfaces will be elucidated through multitechnique platforms, and the outlook of future development of electrochemical correlative microscopy will be discussed.
{"title":"Electrochemical correlative microscopy: Discovering insights into structure–reactivity relationships for electrochemical energy conversion and storage","authors":"Samuel F. Wenzel , Roberto García-Carrillo , Hang Ren","doi":"10.1016/j.coelec.2025.101666","DOIUrl":"10.1016/j.coelec.2025.101666","url":null,"abstract":"<div><div>Electrochemical correlative microscopy involves the pairing of electrochemical measurements with one or multiple orthogonal microscopic techniques. By integrating electrochemical measurements, especially scanning electrochemical probe microscopies (SEPMs), with correlative optical microscopy, spectroscopy, or electron microscopies, rich information complimentary to the electrochemical measurement can be obtained. This information can reveal detailed structure–property–activity relationships at electrochemical interfaces. Additionally, they can showcase visualizations of electrochemical phase transitions or mechanisms and assist in high-throughput synthesis and screening of materials for various electrochemical applications. In this perspective, we will use a few examples highlighting advances in electrochemical correlative microscopy over the past two years, focusing on the theme involving electrochemical energy storage and conversion. We anticipate new fundamental understanding of electrochemical interfaces will be elucidated through multitechnique platforms, and the outlook of future development of electrochemical correlative microscopy will be discussed.</div></div>","PeriodicalId":11028,"journal":{"name":"Current Opinion in Electrochemistry","volume":"50 ","pages":"Article 101666"},"PeriodicalIF":7.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143445428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01DOI: 10.1016/j.coelec.2024.101626
Sergey V. Pavlov
Low-dimensional carbon-based materials hold significant potential for electrocatalytic applications. However, the role of defects and various additives in enhancing their electrochemical properties remains a subject of ongoing debate due to contradictory experimental data. Moreover, the complex interplay of various factors complicates the interpretation of defects-related effects. This mini-review presents recent studies on the role of defects in heterogeneous electron transfer, covering both experimental findings and theoretical modeling. It emphasizes the need for further development in electron transfer theory and experimental techniques to better elucidate the mechanisms behind the electrocatalytic behavior of defects.
{"title":"Influence of defects and impurities in low-dimensional carbon materials on heterogeneous electron transfer: Theory and experiments","authors":"Sergey V. Pavlov","doi":"10.1016/j.coelec.2024.101626","DOIUrl":"10.1016/j.coelec.2024.101626","url":null,"abstract":"<div><div>Low-dimensional carbon-based materials hold significant potential for electrocatalytic applications. However, the role of defects and various additives in enhancing their electrochemical properties remains a subject of ongoing debate due to contradictory experimental data. Moreover, the complex interplay of various factors complicates the interpretation of defects-related effects. This mini-review presents recent studies on the role of defects in heterogeneous electron transfer, covering both experimental findings and theoretical modeling. It emphasizes the need for further development in electron transfer theory and experimental techniques to better elucidate the mechanisms behind the electrocatalytic behavior of defects.</div></div>","PeriodicalId":11028,"journal":{"name":"Current Opinion in Electrochemistry","volume":"49 ","pages":"Article 101626"},"PeriodicalIF":7.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143102842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Two-dimensional (2D) electrode materials are interesting objects for both practical and fundamental electrochemistry due to very low thickness and tunable structure-dependent electrochemical properties which are quite different from metallic electrodes. While the impact of various defects on the electrochemical kinetics of 2D materials is often considered, layering and substrate nature also may influence the reaction rates due to the low thickness of 2D materials. In the present review, we discuss the current understanding of the electrochemical kinetics of 2D electrode materials in terms of the layer number, stacking, and substrate nature. The review covers both experimental and theoretical work on outer-sphere and electrocatalytic reactions such as oxygen reduction and hydrogen evolution reaction.
{"title":"Heterogeneous electron transfer on single- and few-layer supported 2D materials","authors":"A.I. Inozemtseva , V.S. Savin , D.M. Itkis , L.V. Yashina","doi":"10.1016/j.coelec.2024.101632","DOIUrl":"10.1016/j.coelec.2024.101632","url":null,"abstract":"<div><div>Two-dimensional (2D) electrode materials are interesting objects for both practical and fundamental electrochemistry due to very low thickness and tunable structure-dependent electrochemical properties which are quite different from metallic electrodes. While the impact of various defects on the electrochemical kinetics of 2D materials is often considered, layering and substrate nature also may influence the reaction rates due to the low thickness of 2D materials. In the present review, we discuss the current understanding of the electrochemical kinetics of 2D electrode materials in terms of the layer number, stacking, and substrate nature. The review covers both experimental and theoretical work on outer-sphere and electrocatalytic reactions such as oxygen reduction and hydrogen evolution reaction.</div></div>","PeriodicalId":11028,"journal":{"name":"Current Opinion in Electrochemistry","volume":"49 ","pages":"Article 101632"},"PeriodicalIF":7.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143102843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01DOI: 10.1016/j.coelec.2024.101629
Anders Hellman
As humankind searches for sustainable energy solutions, the demand for electrochemistry has increased. Thus, new and more advanced electrode materials are required. However, finding electrodes that meet the necessary performance is a challenge. Machine learning models can predict key properties such as catalytic activity and stability with surprisingly good accuracy, thus accelerating the process of evaluating materials. However, in most cases, the same models cannot explain how to generate new material compositions. Here, deep generative models can become very valuable. Although issues related to data availability and understanding how these models work still exist, combining deep generative models with computer simulations and laboratory experiments hold great potential for developing the next generation of electrodes. This short review will show recent progress in using deep generative models in related material fields and stress how these models can accelerate the discovery of electrode materials.
{"title":"A brief overview of deep generative models and how they can be used to discover new electrode materials","authors":"Anders Hellman","doi":"10.1016/j.coelec.2024.101629","DOIUrl":"10.1016/j.coelec.2024.101629","url":null,"abstract":"<div><div>As humankind searches for sustainable energy solutions, the demand for electrochemistry has increased. Thus, new and more advanced electrode materials are required. However, finding electrodes that meet the necessary performance is a challenge. Machine learning models can predict key properties such as catalytic activity and stability with surprisingly good accuracy, thus accelerating the process of evaluating materials. However, in most cases, the same models cannot explain how to generate new material compositions. Here, deep generative models can become very valuable. Although issues related to data availability and understanding how these models work still exist, combining deep generative models with computer simulations and laboratory experiments hold great potential for developing the next generation of electrodes. This short review will show recent progress in using deep generative models in related material fields and stress how these models can accelerate the discovery of electrode materials.</div></div>","PeriodicalId":11028,"journal":{"name":"Current Opinion in Electrochemistry","volume":"49 ","pages":"Article 101629"},"PeriodicalIF":7.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143102847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01DOI: 10.1016/j.coelec.2024.101609
HyungKuk Ju , Donghyun Yoon , Sungyool Bong , Jaeyoung Lee
Hydrogen as a clean carrier has received considerable attention due to its potential in sustainable energy systems. However, the prevalent hydrogen production methods, notably steam reforming from natural gas, present environmental challenges, primarily CO2 emissions. In here, we aim to provide insights into the scalability of hydrogen production through electrochemical ammonia electrolysis to hydrogen production (eAEH), proposing ammonia as an effective hydrogen carrier to mitigate these environmental concerns. Our focus is on the ammonia oxidation reaction (AOR) within the electrochemical decomposition framework, underscoring the operation at a low reversible cell voltage to significantly enhance energy efficiency. We explore strategies to scale up eAEH, analyzing the potential and limitations of various electrocatalysts, and examining the feasibility of employing machine learning techniques for optimal catalyst selection. Thus, the AOR research represents a pivotal technological innovation for the sustainable energy transition, potentially establishing a critical foundation for advancing a hydrogen economy.
{"title":"Challenge and opportunity in scaling-up hydrogen production via electrochemical ammonia electrolysis process","authors":"HyungKuk Ju , Donghyun Yoon , Sungyool Bong , Jaeyoung Lee","doi":"10.1016/j.coelec.2024.101609","DOIUrl":"10.1016/j.coelec.2024.101609","url":null,"abstract":"<div><div>Hydrogen as a clean carrier has received considerable attention due to its potential in sustainable energy systems. However, the prevalent hydrogen production methods, notably steam reforming from natural gas, present environmental challenges, primarily CO<sub>2</sub> emissions. In here, we aim to provide insights into the scalability of hydrogen production through electrochemical ammonia electrolysis to hydrogen production (eAEH), proposing ammonia as an effective hydrogen carrier to mitigate these environmental concerns. Our focus is on the ammonia oxidation reaction (AOR) within the electrochemical decomposition framework, underscoring the operation at a low reversible cell voltage to significantly enhance energy efficiency. We explore strategies to scale up eAEH, analyzing the potential and limitations of various electrocatalysts, and examining the feasibility of employing machine learning techniques for optimal catalyst selection. Thus, the AOR research represents a pivotal technological innovation for the sustainable energy transition, potentially establishing a critical foundation for advancing a hydrogen economy.</div></div>","PeriodicalId":11028,"journal":{"name":"Current Opinion in Electrochemistry","volume":"49 ","pages":"Article 101609"},"PeriodicalIF":7.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143102996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}