Cancer remains one of the major causes of morbidity and mortality worldwide. Scientists from different fields are working to devise an efficient treatment strategy in order to reduce the global burden of cancer. Commonly used treatment approaches for cancer treatment include chemotherapy, immunotherapy, photodynamic therapy, radiation, surgery, etc. These treatment procedures have several pitfalls, such as toxicity, limited bioavailability, rapid elimination, poor specificity, and high cost. On the other side, plant-derived anticancer compounds exhibit several advantages and can overcome these shortcomings. Plant-based anticancer compounds are safer, potent, easily available, and comparatively cost-effective. The current review discusses pure plant- based compounds that are used as a therapeutic remedy for anticancer application. The proposed mechanisms of action, through which these compounds inhibit cancer cell growth, tumor growth, angiogenesis, instigate apoptosis, cytotoxicity, mitochondrial membrane degradation, and reduce cell viability as well as cell cycle progression, are also reviewed. These naturally occurring compounds exhibit great therapeutic potential and could be used as candidate drugs in clinical applications.
This review highlights major developments in the application of green organocatalytic and enzymatic dynamic kinetic resolutions (DKRs) in the total synthesis of biorelevant scaffolds. It illustrates the diversity of useful bioactive products and intermediates that can be synthesized under greener and more economic conditions through the combination of the powerful concept of DKR, which allows the resolution of racemic compounds with up to 100% yield, with either asymmetric organocatalysis or enzymatic catalysis, avoiding the use of toxic and expensive metals. With the need for more ecologic synthetic technologies, this field will undoubtedly expand its scope in the future with the employment of other organocatalysts/enzymes to even more types of transformations, thus allowing powerful greener and more economic strategies to reach other biologically important molecules.
The urgent need for novel antibiotics in the face of escalating global antimicrobial resistance necessitates innovative approaches to identify bioactive compounds. Actinomycetes, renowned for their prolific production of antimicrobial agents, stand as a cornerstone in this pursuit. Their diverse metabolites exhibit multifaceted bioactivities, including potent antituberculosis, anticancer, immunomodulatory, immuno-protective, antidiabetic, etc. Though terrestrial sources have been exploited significantly, contemporary developments in the field of antimicrobial drug discovery have put marine actinomycetes in a prominent light as a promising and relatively unexplored source of novel bioactive molecules. This is further boosted by post-genomic era advances like bioinformatics-based secretome analysis and reverse engineering that have totally revitalized actinomycetes antibiotic research. This review highlights actinomycetes-based chemically diverse scaffolds and clinically validated antibiotics along with the enduring significance of actinomycetes from untouched ecosystems, especially with recent advanced techniques in the quest for next-generation antimicrobials.
Background: In recent decades, Candida albicans has become a serious issue for public health. The worldwide rapid rise in drug resistance to conventional therapies is the main contributing reason. Moreover, because of their potent activity at low concentrations and apparent lack of toxicity, compounds originating from plants are used in therapeutic treatments because of their potent activity at low concentrations and apparent lack of toxicity. Particularly in immunocompromised people, Candida species can result in a wide range of ailments.
Objectives: Present manuscript describes antifungal activity of an indole derivative 1-(4-((5- methoxy-2-(3,4,5-trimethoxyphenyl)-1H-indol-1-yl) methyl) phenoxy)-N,N-dimethylethan-1- amine (7, 100DL-6) by using an in-silico and in-vitro anti-candidal activity against two Candida strains; Candida kefyr-DS-02 (ATCC-204093) and Candida albicans (AI-clinical isolate, AIIMS- Delhi).
Methods: The synthetic strategy for the preparation of indole derivatives was modified through Fischer indole reaction. Antifungal activity of an indole derivative 1-(4-((5-methoxy-2-(3,4,5- trimethoxyphenyl)-1H-indol-1-yl) methyl) phenoxy)-N,N-dimethylethan-1-amine (7, 100DL-6) was done by using an in-silico and in-vitro anti-candidal activity against two Candida strains; Candida kefyr-DS-02 (ATCC-204093) and Candida albicans (AI-clinical isolate, AIIMS-Delhi). Compound 100DL-6 efficacy was determined by Combination synergy study, ergosterol binding assay, MTT toxicity study and Mutagenicity.
Results: Compound 100DL-6 was obtained in 65% yield on desired motifs. Docking scores found were 100DL-6 (-8.7 kcal/mol) and Fluconazole (-7.6 kcal/mol). Further, RMSD were shown for 100DL6 (0.26 ± 0.23 nm) and fluconazole (1.2 ± 0.62 nm). Indole derivative 100DL-6 was active against the tested fungal pathogens and the total zone of inhibition was measured between 13-14 mm in diameter and MIC values between 31.25 μg/mL to 250 μg/mL and MFC values between 62.5 μg/mL to 500 μg/mL. In checkerboard assay synergistic mode of interaction of 100DL-6 with known antifungal drugs was observed. In the presence of ergosterol 100DL-6 and standard drug (s) increased their MIC values, demonstrating a considerable affinity for ergosterol. Compound 100DL-6 was considered to be less-cytotoxic to the cells as determined by MTT assay. Lead compound 100DL-6 was found to be non-mutagenic.
Conclusion: In the present study, 100DL6 (indole derivatives) significantly abrupted the ergosterol biosynthetic pathway and showed moderate anti-candidal effects. These studies suggest that 100DL6 significantly enhances antifungal effect of clinical drug fluconazole synergistically and may be considered as in clinical trial prior to some extensive in-vivo validations.