首页 > 最新文献

Developmental cell最新文献

英文 中文
Early microglia progenitors colonize the embryonic CNS via integrin-mediated migration from the pial surface. 早期的小胶质细胞祖细胞通过整合素介导的从头部表面迁移到胚胎中枢神经系统。
IF 8.7 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2026-01-14 Epub Date: 2025-09-10 DOI: 10.1016/j.devcel.2025.08.012
Philippe Petry, Alexander Oschwald, Simon Merkt, Thien-Ly Julia Dinh, Geoffroy Andrieux, Cylia Crisand, Hannah Botterer, Elisa Nent, Neil Paterson, Monique Havermans, Roman Sankowski, Oliver Schilling, Melanie Boerries, Lukas Amann, Olaf Groß, Andreas Schlitzer, Marco Prinz, Tim Lämmermann, Katrin Kierdorf

Macrophage progenitors colonize their anatomical niches in the central nervous system (CNS) in distinct pre- and postnatal waves. Microglia progenitors originate from early erythromyeloid progenitors in the yolk sac and enter the murine CNS around embryonic day (E)9.5. While their developmental origin is well established, the molecular mechanisms guiding CNS colonization are not yet resolved. Using transcriptomic and proteomic approaches, we identified potential factors involved in this process. Microglia progenitors showed a distinct integrin surface profile and transmigrate along the extracellular matrix (ECM)-enriched pial surface into the CNS, pointing to a mesenchyme-to-CNS migration route. Loss of the integrin adaptor protein talin-1 in microglia progenitors led to a reduced CNS colonization, whereas macrophage progenitors in the surrounding mesenchyme remained unchanged. Overall, our data suggest that microglial progenitors enter the CNS parenchyma via talin-1-mediated migration from the surrounding mesenchyme through the ECM-enriched pial surface.

巨噬细胞祖细胞在中枢神经系统(CNS)中以不同的产前和产后波定植其解剖壁龛。小胶质细胞祖细胞起源于卵黄囊内的早期红髓祖细胞,并在胚胎日左右进入小鼠中枢神经系统(E)9.5。虽然它们的发育起源已经确定,但指导中枢神经系统定植的分子机制尚未解决。利用转录组学和蛋白质组学方法,我们确定了参与这一过程的潜在因素。小胶质细胞祖细胞表现出明显的整合素表面轮廓,并沿着细胞外基质(ECM)富集的脑顶表面迁移到中枢神经系统,表明了间质到中枢神经系统的迁移途径。小胶质细胞祖细胞中整合素衔接蛋白talin-1的缺失导致中枢神经系统定植减少,而周围间质中的巨噬细胞祖细胞则保持不变。总的来说,我们的数据表明,小胶质细胞祖细胞通过talin-1介导的从周围间质通过富含ecm的脑顶表面迁移进入中枢神经系统实质。
{"title":"Early microglia progenitors colonize the embryonic CNS via integrin-mediated migration from the pial surface.","authors":"Philippe Petry, Alexander Oschwald, Simon Merkt, Thien-Ly Julia Dinh, Geoffroy Andrieux, Cylia Crisand, Hannah Botterer, Elisa Nent, Neil Paterson, Monique Havermans, Roman Sankowski, Oliver Schilling, Melanie Boerries, Lukas Amann, Olaf Groß, Andreas Schlitzer, Marco Prinz, Tim Lämmermann, Katrin Kierdorf","doi":"10.1016/j.devcel.2025.08.012","DOIUrl":"10.1016/j.devcel.2025.08.012","url":null,"abstract":"<p><p>Macrophage progenitors colonize their anatomical niches in the central nervous system (CNS) in distinct pre- and postnatal waves. Microglia progenitors originate from early erythromyeloid progenitors in the yolk sac and enter the murine CNS around embryonic day (E)9.5. While their developmental origin is well established, the molecular mechanisms guiding CNS colonization are not yet resolved. Using transcriptomic and proteomic approaches, we identified potential factors involved in this process. Microglia progenitors showed a distinct integrin surface profile and transmigrate along the extracellular matrix (ECM)-enriched pial surface into the CNS, pointing to a mesenchyme-to-CNS migration route. Loss of the integrin adaptor protein talin-1 in microglia progenitors led to a reduced CNS colonization, whereas macrophage progenitors in the surrounding mesenchyme remained unchanged. Overall, our data suggest that microglial progenitors enter the CNS parenchyma via talin-1-mediated migration from the surrounding mesenchyme through the ECM-enriched pial surface.</p>","PeriodicalId":11157,"journal":{"name":"Developmental cell","volume":" ","pages":"85-101.e7"},"PeriodicalIF":8.7,"publicationDate":"2026-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145039301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
When auxin meets its master: TMKs orchestrate self-organizing growth in plants. 当生长素遇到它的主人:TMKs在植物中协调自组织生长。
IF 8.7 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2026-01-14 DOI: 10.1016/j.devcel.2025.12.005
Irma Tkachenko, Christian Luschnig

Two recent studies reveal that TMK receptor kinases directly phosphorylate and stabilize PIN auxin exporters in plants, forming rapid feedback loops that reinforce directional auxin flow. Together, these papers uncover a unifying mechanism in which auxin perception at the plasma membrane instructs PIN polarity, transport efficiency, and self-organizing growth behavior.

最近的两项研究表明,TMK受体激酶直接磷酸化和稳定植物中的PIN生长素出口,形成快速反馈回路,加强生长素的定向流动。总之,这些论文揭示了一个统一的机制,其中生长素在质膜感知指导PIN极性,运输效率和自组织生长行为。
{"title":"When auxin meets its master: TMKs orchestrate self-organizing growth in plants.","authors":"Irma Tkachenko, Christian Luschnig","doi":"10.1016/j.devcel.2025.12.005","DOIUrl":"https://doi.org/10.1016/j.devcel.2025.12.005","url":null,"abstract":"<p><p>Two recent studies reveal that TMK receptor kinases directly phosphorylate and stabilize PIN auxin exporters in plants, forming rapid feedback loops that reinforce directional auxin flow. Together, these papers uncover a unifying mechanism in which auxin perception at the plasma membrane instructs PIN polarity, transport efficiency, and self-organizing growth behavior.</p>","PeriodicalId":11157,"journal":{"name":"Developmental cell","volume":"61 1","pages":"5-6"},"PeriodicalIF":8.7,"publicationDate":"2026-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145988733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Environmental and genetic risk factors of depression converge on neuronal dysfunction driven by changes in cholesterol homeostasis. 抑郁症的环境和遗传风险因素集中在由胆固醇稳态变化驱动的神经元功能障碍上。
IF 8.7 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2026-01-14 Epub Date: 2025-09-10 DOI: 10.1016/j.devcel.2025.08.011
Polina Oberst, Nan Xu, Hermany Munguba, Chao Zhang, Aaron Zhong, Ting Zhou, Conor Liston, Joshua Levitz, Lorenz Studer

Major depressive disorder (MDD) is a complex, multifactorial neuropsychiatric disorder influenced by both genetic and environmental factors, but how these factors impact human neuronal function remains unclear. Using a highly defined human pluripotent stem cell (hPSC)-based prefrontal cortex (PFC) platform, we examined three high-confidence environmental and genetic factors associated with depression: chronic exposure to high levels of cortisol or interferon alpha (IFN-a), and a mutation in SIRTUIN 1 (SIRT1). All three conditions induced overlapping phenotypes of neuronal dysfunction, characterized by dendritic atrophy, synaptic loss, and neuronal hypoactivity across multiple cell lines. RNA sequencing uncovered converging alterations in neuronal cholesterol homeostasis. Depleting cholesterol in control neurons reproduced core depression-associated neuronal phenotypes, while cholesterol supplementation was sufficient to rescue these phenotypes in depression-associated conditions. These findings point to cholesterol imbalance as a common driver of neuronal dysfunction in MDD, linking diverse genetic and environmental risk factors through a shared cellular pathway.

重度抑郁症(MDD)是一种复杂的、多因素的神经精神疾病,受遗传和环境因素的影响,但这些因素如何影响人类神经元功能尚不清楚。使用高度定义的人类多能干细胞(hPSC)为基础的前额叶皮质(PFC)平台,我们研究了与抑郁症相关的三个高可信度的环境和遗传因素:长期暴露于高水平的皮质醇或干扰素α (IFN-a),以及SIRTUIN 1 (SIRT1)的突变。这三种情况都会导致神经元功能障碍的重叠表型,其特征是树突萎缩、突触丧失和多个细胞系的神经元活性降低。RNA测序揭示了神经元胆固醇稳态的趋同改变。在对照神经元中消耗胆固醇可复制核心抑郁相关神经元表型,而在抑郁相关条件下补充胆固醇足以挽救这些表型。这些发现表明,胆固醇失衡是重度抑郁症神经元功能障碍的共同驱动因素,通过共享的细胞途径将多种遗传和环境风险因素联系起来。
{"title":"Environmental and genetic risk factors of depression converge on neuronal dysfunction driven by changes in cholesterol homeostasis.","authors":"Polina Oberst, Nan Xu, Hermany Munguba, Chao Zhang, Aaron Zhong, Ting Zhou, Conor Liston, Joshua Levitz, Lorenz Studer","doi":"10.1016/j.devcel.2025.08.011","DOIUrl":"10.1016/j.devcel.2025.08.011","url":null,"abstract":"<p><p>Major depressive disorder (MDD) is a complex, multifactorial neuropsychiatric disorder influenced by both genetic and environmental factors, but how these factors impact human neuronal function remains unclear. Using a highly defined human pluripotent stem cell (hPSC)-based prefrontal cortex (PFC) platform, we examined three high-confidence environmental and genetic factors associated with depression: chronic exposure to high levels of cortisol or interferon alpha (IFN-a), and a mutation in SIRTUIN 1 (SIRT1). All three conditions induced overlapping phenotypes of neuronal dysfunction, characterized by dendritic atrophy, synaptic loss, and neuronal hypoactivity across multiple cell lines. RNA sequencing uncovered converging alterations in neuronal cholesterol homeostasis. Depleting cholesterol in control neurons reproduced core depression-associated neuronal phenotypes, while cholesterol supplementation was sufficient to rescue these phenotypes in depression-associated conditions. These findings point to cholesterol imbalance as a common driver of neuronal dysfunction in MDD, linking diverse genetic and environmental risk factors through a shared cellular pathway.</p>","PeriodicalId":11157,"journal":{"name":"Developmental cell","volume":" ","pages":"102-116.e6"},"PeriodicalIF":8.7,"publicationDate":"2026-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145039281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MITA/STING-driven CD38 induction in Siglec-Flow macrophages promotes regulatory T cell survival and non-small cell lung cancer progression MITA/ sting驱动CD38诱导sigleco - flow巨噬细胞促进调节性T细胞存活和非小细胞肺癌进展
IF 11.8 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2026-01-12 DOI: 10.1016/j.devcel.2025.12.007
Zhi-Dong Zhang, Yu-Lin Lin, Han-Yue Zhang, Cong Zuo, Zhong-Lin Zhu, Xing-Yuan Wang, Hao-Yu Duan, Junjie Zhang, Dandan Lin, Bo Zhong
Stimulator of interferon (IFN) genes (STING, also known as [mediator of IRF3 activation]) is a 2′3′-cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) receptor that activates type I IFN responses to inhibit tumorigenesis in tumor cells. However, STING agonists show limited antitumor clinical efficacy. Here, we demonstrate that STING in macrophages promotes the survival of regulatory T cells (Tregs) and the progression of non-small cell lung cancer (NSCLC) in KRasG12D autochthonous NSCLC mouse models. Mechanistically, STING-mediated nuclear factor κB (NF-κB) activation upregulates CD38 in Siglec-Flow macrophages to hydrolyze extracellular nicotinamide adenine dinucleotide (NAD) in the tumor microenvironment (TME). Genetic deletion of STING or CD38, or pharmacological CD38 inhibition, restores NAD levels, triggers Treg apoptosis through the ART2-P2RX7 axis, and enhances antitumor CD8+ T cell responses. Importantly, CD38 inhibition improves the efficacy of low-dose anti-CTLA4 therapy. These findings uncover a previously uncharacterized cGAMP-STING-CD38 axis in macrophages supporting Treg survival and NSCLC progression and highlight potential therapeutic strategies for immune checkpoint blockade (ICB)-resistant cancers.
干扰素(IFN)基因刺激因子(STING,也称为IRF3激活介质)是一种2 ' 3 ' -环鸟苷单磷酸-腺苷单磷酸(cGAMP)受体,可激活I型IFN反应,抑制肿瘤细胞的肿瘤发生。然而,STING激动剂的抗肿瘤临床疗效有限。在KRasG12D原生非小细胞肺癌小鼠模型中,我们证明巨噬细胞中的STING促进调节性T细胞(Tregs)的存活和非小细胞肺癌(NSCLC)的进展。在机制上,sting介导的核因子κB (NF-κB)激活上调sigleci - flow巨噬细胞CD38,以水解肿瘤微环境(TME)中的细胞外烟酰胺腺嘌呤二核苷酸(NAD)。STING或CD38基因缺失,或CD38药理抑制,可恢复NAD水平,通过ART2-P2RX7轴触发Treg凋亡,增强抗肿瘤CD8+ T细胞应答。重要的是,CD38抑制提高了低剂量抗ctla4治疗的疗效。这些发现揭示了巨噬细胞中支持Treg存活和NSCLC进展的先前未表征的cGAMP-STING-CD38轴,并强调了免疫检查点阻断(ICB)抗性癌症的潜在治疗策略。
{"title":"MITA/STING-driven CD38 induction in Siglec-Flow macrophages promotes regulatory T cell survival and non-small cell lung cancer progression","authors":"Zhi-Dong Zhang, Yu-Lin Lin, Han-Yue Zhang, Cong Zuo, Zhong-Lin Zhu, Xing-Yuan Wang, Hao-Yu Duan, Junjie Zhang, Dandan Lin, Bo Zhong","doi":"10.1016/j.devcel.2025.12.007","DOIUrl":"https://doi.org/10.1016/j.devcel.2025.12.007","url":null,"abstract":"Stimulator of interferon (IFN) genes (STING, also known as [mediator of IRF3 activation]) is a 2′3′-cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) receptor that activates type I IFN responses to inhibit tumorigenesis in tumor cells. However, STING agonists show limited antitumor clinical efficacy. Here, we demonstrate that STING in macrophages promotes the survival of regulatory T cells (Tregs) and the progression of non-small cell lung cancer (NSCLC) in KRas<sup>G12D</sup> autochthonous NSCLC mouse models. Mechanistically, STING-mediated nuclear factor κB (NF-κB) activation upregulates CD38 in Siglec-F<sup>low</sup> macrophages to hydrolyze extracellular nicotinamide adenine dinucleotide (NAD) in the tumor microenvironment (TME). Genetic deletion of STING or CD38, or pharmacological CD38 inhibition, restores NAD levels, triggers Treg apoptosis through the ART2-P2RX7 axis, and enhances antitumor CD8<sup>+</sup> T cell responses. Importantly, CD38 inhibition improves the efficacy of low-dose anti-CTLA4 therapy. These findings uncover a previously uncharacterized cGAMP-STING-CD38 axis in macrophages supporting Treg survival and NSCLC progression and highlight potential therapeutic strategies for immune checkpoint blockade (ICB)-resistant cancers.","PeriodicalId":11157,"journal":{"name":"Developmental cell","volume":"52 1","pages":""},"PeriodicalIF":11.8,"publicationDate":"2026-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145961686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
FKF1 nuclear condensates control anti-florigen turnover and flowering onset in response to nitrogen availability in monocots FKF1核凝聚体对单子房氮素有效性的响应控制着抗花素周转和开花开始
IF 11.8 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2026-01-12 DOI: 10.1016/j.devcel.2025.12.009
Yusong Lyu, Kun Wu, Yang Zhou, Jiahong Du, Chuanjia Liu, Yan Wang, Qingbo Yuan, Xinli Dong, Zheyuan Hong, Muhammad Fahad, Yuxin Shen, Fuxi Rong, Xiangdong Fu, Peisong Hu, Liang Wu
High nitrogen (HN) fertilizer routinely enhances crop yields, but it often leads to undesirable late flowering and delayed maturation compared with moderate nitrogen (MN). Here, we identify FLOWERING LOCUS T 4 (FT4) in monocots, which functions as an anti-florigen and regulates flowering time responsive to HN availability. Molecular study reveals that FLAVIN-BINDING, KELCH REPEAT, F-BOX 1 (FKF1) forms nuclear condensates to promote FT4 degradation with the assistance of scaffold protein GIGANTEA (GI) in model grass Brachypodium distachyon, ensuring the timely flowering under MN conditions. However, HN regime impairs the liquid-liquid phase separation capacity of BdFKF1 and disrupts its binding to GI, thereby stabilizing BdFT4 and delaying flowering. In rice, natural variations within the intrinsically disordered region of OsFKF1 contribute to flowering adaptive to varying soil N levels across different geographical regions. These results hold a potential for improving agricultural sustainability through modulation of the FKF1-FT4 regulon in monocot crops.
高氮(HN)肥通常能提高作物产量,但与中氮(MN)肥相比,高氮(HN)肥往往导致开花晚、成熟晚。本研究中,我们在单子叶植物中发现了开花位点t4 (FT4),该位点具有抗花原的功能,并根据HN的利用率调节开花时间。分子研究表明,模式草短柄草(Brachypodium distachyon)中的FLAVIN-BINDING、KELCH REPEAT、F-BOX 1 (FKF1)在支架蛋白GIGANTEA (GI)的帮助下形成核凝聚物,促进FT4降解,保证了MN条件下的及时开花。然而,HN制度削弱了BdFKF1的液-液相分离能力,破坏了其与GI的结合,从而稳定了BdFT4并延迟了开花时间。在水稻中,OsFKF1内在无序区域内的自然变异有助于开花适应不同地理区域土壤氮水平的变化。这些结果具有通过调节单子叶作物中FKF1-FT4调控来提高农业可持续性的潜力。
{"title":"FKF1 nuclear condensates control anti-florigen turnover and flowering onset in response to nitrogen availability in monocots","authors":"Yusong Lyu, Kun Wu, Yang Zhou, Jiahong Du, Chuanjia Liu, Yan Wang, Qingbo Yuan, Xinli Dong, Zheyuan Hong, Muhammad Fahad, Yuxin Shen, Fuxi Rong, Xiangdong Fu, Peisong Hu, Liang Wu","doi":"10.1016/j.devcel.2025.12.009","DOIUrl":"https://doi.org/10.1016/j.devcel.2025.12.009","url":null,"abstract":"High nitrogen (HN) fertilizer routinely enhances crop yields, but it often leads to undesirable late flowering and delayed maturation compared with moderate nitrogen (MN). Here, we identify FLOWERING LOCUS T 4 (FT4) in monocots, which functions as an anti-florigen and regulates flowering time responsive to HN availability. Molecular study reveals that FLAVIN-BINDING, KELCH REPEAT, F-BOX 1 (FKF1) forms nuclear condensates to promote FT4 degradation with the assistance of scaffold protein GIGANTEA (GI) in model grass Brachypodium distachyon, ensuring the timely flowering under MN conditions. However, HN regime impairs the liquid-liquid phase separation capacity of BdFKF1 and disrupts its binding to GI, thereby stabilizing BdFT4 and delaying flowering. In rice, natural variations within the intrinsically disordered region of OsFKF1 contribute to flowering adaptive to varying soil N levels across different geographical regions. These results hold a potential for improving agricultural sustainability through modulation of the FKF1-FT4 regulon in monocot crops.","PeriodicalId":11157,"journal":{"name":"Developmental cell","volume":"52 1","pages":""},"PeriodicalIF":11.8,"publicationDate":"2026-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145961696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impaired VLCFA-peroxisome-mediated intestinal epithelial repair causes gastrointestinal sequelae of long COVID vlcfa -过氧化物酶体介导的肠上皮修复受损导致长时间COVID的胃肠道后遗症
IF 11.8 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2026-01-05 DOI: 10.1016/j.devcel.2025.12.003
Man Wang, Yi Chen, Ming Guo, Pengzhi Xie, Xinzhe Zhao, Shulin Chen, Yian Deng, Rui Hu, Qianyi Wan, Juanyu Zhou, Zhuzhen Zhang, Ke Lan, Haiyang Chen, Yuan Liu
Long COVID has emerged as a significant public health challenge with no effective treatments currently available, yet the pathophysiological mechanisms underlying its persistent gastrointestinal (GI) symptoms remain poorly understood. Here, integrating clinical data with transgenic animal models, we discover a critical role for impaired intestinal epithelial repair in the local intestinal etiology of long COVID. Mechanistically, we show that intestinal SARS-CoV-2 reservoirs disrupt very-long-chain fatty acid (VLCFA) metabolism, suppressing activation of peroxisome proliferator-activated receptor (PPAR) signaling and reducing peroxisome abundance. This disruption impairs intestinal stem cell differentiation and epithelial regeneration, resulting in prolonged GI symptoms including diarrhea, inflammation, and microbiota dysbiosis. Importantly, the FDA-approved sodium phenylbutyrate (NaPB) and fenofibrate alleviate these symptoms by promoting peroxisome proliferation and restoring epithelial repair. These findings provide insights into the GI pathogenesis of long COVID and highlight the therapeutic potential of enhancing the VLCFA-PPAR-peroxisome axis to mitigate persistent GI complications.
新冠肺炎已成为一项重大的公共卫生挑战,目前尚无有效的治疗方法,但其持续胃肠道(GI)症状背后的病理生理机制仍知之甚少。本研究将临床数据与转基因动物模型相结合,发现肠上皮修复受损在长冠状病毒的局部肠道病因学中起着关键作用。在机制上,我们发现肠道SARS-CoV-2储存库破坏了长链脂肪酸(VLCFA)代谢,抑制了过氧化物酶体增殖激活受体(PPAR)信号的激活,并降低了过氧化物酶体的丰度。这种破坏会损害肠道干细胞分化和上皮细胞再生,导致胃肠道症状延长,包括腹泻、炎症和微生物群失调。重要的是,fda批准的苯丁酸钠(NaPB)和非诺贝特通过促进过氧化物酶体增殖和恢复上皮修复来缓解这些症状。这些发现为了解长冠肺炎的胃肠道发病机制提供了新的见解,并强调了增强vllcfa - ppar -过氧化酶体轴以减轻持续性胃肠道并发症的治疗潜力。
{"title":"Impaired VLCFA-peroxisome-mediated intestinal epithelial repair causes gastrointestinal sequelae of long COVID","authors":"Man Wang, Yi Chen, Ming Guo, Pengzhi Xie, Xinzhe Zhao, Shulin Chen, Yian Deng, Rui Hu, Qianyi Wan, Juanyu Zhou, Zhuzhen Zhang, Ke Lan, Haiyang Chen, Yuan Liu","doi":"10.1016/j.devcel.2025.12.003","DOIUrl":"https://doi.org/10.1016/j.devcel.2025.12.003","url":null,"abstract":"Long COVID has emerged as a significant public health challenge with no effective treatments currently available, yet the pathophysiological mechanisms underlying its persistent gastrointestinal (GI) symptoms remain poorly understood. Here, integrating clinical data with transgenic animal models, we discover a critical role for impaired intestinal epithelial repair in the local intestinal etiology of long COVID. Mechanistically, we show that intestinal SARS-CoV-2 reservoirs disrupt very-long-chain fatty acid (VLCFA) metabolism, suppressing activation of peroxisome proliferator-activated receptor (PPAR) signaling and reducing peroxisome abundance. This disruption impairs intestinal stem cell differentiation and epithelial regeneration, resulting in prolonged GI symptoms including diarrhea, inflammation, and microbiota dysbiosis. Importantly, the FDA-approved sodium phenylbutyrate (NaPB) and fenofibrate alleviate these symptoms by promoting peroxisome proliferation and restoring epithelial repair. These findings provide insights into the GI pathogenesis of long COVID and highlight the therapeutic potential of enhancing the VLCFA-PPAR-peroxisome axis to mitigate persistent GI complications.","PeriodicalId":11157,"journal":{"name":"Developmental cell","volume":"34 1","pages":""},"PeriodicalIF":11.8,"publicationDate":"2026-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145897790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biophysics of organoids 类器官的生物物理学
IF 11.8 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-12-22 DOI: 10.1016/j.devcel.2025.11.008
Vanessa Weichselberger, Gareth Moore, Sham Tlili, Matthias Merkel, Pierre-François Lenne, Vikas Trivedi
Organoids, 3D in vitro structures derived from embryonic or adult stem cells, offer powerful models for studying tissue patterning, development, morphogenesis, organ physiology, and disease. These systems replicate biological processes, such as cell differentiation, symmetry breaking, and tissue organization, while revealing species-specific developmental variations. Biophysical factors, such as extracellular matrix composition, cell motility, tissue flows, and stiffness, interact with biochemical signals to drive organoid formation, revealing complex multiscale phenomenon during growth, patterning, and homeostasis. Physics-based approaches provide a framework to understand these processes from first principles. In recent years, a growing community of researchers has been exploring what can be termed the “biophysics of organoids.” This review covers a broad range of approaches—mechanical, kinetic, information-based, statistical, and artificial intelligence (AI)-driven—to study organoid development, offering insights into organogenesis, disease modeling, and regenerative medicine.
类器官是来源于胚胎或成体干细胞的3D体外结构,为研究组织模式、发育、形态发生、器官生理学和疾病提供了强大的模型。这些系统复制生物过程,如细胞分化、对称性破坏和组织组织,同时揭示物种特异性发育变异。生物物理因素,如细胞外基质组成、细胞运动、组织流动和硬度,与生化信号相互作用,驱动类器官形成,揭示生长、模式和稳态过程中复杂的多尺度现象。基于物理的方法提供了一个从第一性原理理解这些过程的框架。近年来,越来越多的研究人员一直在探索所谓的“类器官生物物理学”。本综述涵盖了机械、动力学、信息、统计和人工智能(AI)驱动等广泛的方法来研究类器官的发育,为器官发生、疾病建模和再生医学提供了见解。
{"title":"Biophysics of organoids","authors":"Vanessa Weichselberger, Gareth Moore, Sham Tlili, Matthias Merkel, Pierre-François Lenne, Vikas Trivedi","doi":"10.1016/j.devcel.2025.11.008","DOIUrl":"https://doi.org/10.1016/j.devcel.2025.11.008","url":null,"abstract":"Organoids, 3D <em>in vitro</em> structures derived from embryonic or adult stem cells, offer powerful models for studying tissue patterning, development, morphogenesis, organ physiology, and disease. These systems replicate biological processes, such as cell differentiation, symmetry breaking, and tissue organization, while revealing species-specific developmental variations. Biophysical factors, such as extracellular matrix composition, cell motility, tissue flows, and stiffness, interact with biochemical signals to drive organoid formation, revealing complex multiscale phenomenon during growth, patterning, and homeostasis. Physics-based approaches provide a framework to understand these processes from first principles. In recent years, a growing community of researchers has been exploring what can be termed the “biophysics of organoids.” This review covers a broad range of approaches—mechanical, kinetic, information-based, statistical, and artificial intelligence (AI)-driven—to study organoid development, offering insights into organogenesis, disease modeling, and regenerative medicine.","PeriodicalId":11157,"journal":{"name":"Developmental cell","volume":"20 1","pages":""},"PeriodicalIF":11.8,"publicationDate":"2025-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145801495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Degradation of detrimental microRNAs safeguards the fertilized egg cells to establish an ECS-dependent polytubey block in Arabidopsis. 有害microrna的降解保护受精卵细胞在拟南芥中建立ecs依赖性多管阻滞。
IF 8.7 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-12-16 DOI: 10.1016/j.devcel.2025.12.002
Kun Shen, Mengxue Qu, Xuemei Zhou, Yingying Guo, Yicheng Zhong, Meng-Xiang Sun, Peng Zhao
{"title":"Degradation of detrimental microRNAs safeguards the fertilized egg cells to establish an ECS-dependent polytubey block in Arabidopsis.","authors":"Kun Shen, Mengxue Qu, Xuemei Zhou, Yingying Guo, Yicheng Zhong, Meng-Xiang Sun, Peng Zhao","doi":"10.1016/j.devcel.2025.12.002","DOIUrl":"https://doi.org/10.1016/j.devcel.2025.12.002","url":null,"abstract":"","PeriodicalId":11157,"journal":{"name":"Developmental cell","volume":" ","pages":""},"PeriodicalIF":8.7,"publicationDate":"2025-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145773888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Generating 3D mouse organoids for cortex development and evo-devo. 生成用于皮层发育和进化的三维小鼠类器官。
IF 8.7 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-12-15 DOI: 10.1016/j.devcel.2025.11.006
Hanwen Yu, Yan Liu

How do ci-regulatory differences, across mouse subspecies and over evolutionary timescales, shape cell-type specification and maturation during corticogenesis? In this issue of Developmental Cell, Medina-Cano et al. establish a scalable mouse organoid platform that recapitulates developmental dynamics and enables mapping of allele-specific expression, linking cis-regulatory variation with neurodevelopmental mechanisms and disease-associated genetics.

在皮质发生过程中,不同小鼠亚种和进化时间尺度上的ci调节差异如何影响细胞类型规范和成熟?在本期《发育细胞》中,Medina-Cano等人建立了一个可扩展的小鼠类器官平台,该平台概括了发育动力学,并能够绘制等位基因特异性表达图谱,将顺式调控变异与神经发育机制和疾病相关遗传学联系起来。
{"title":"Generating 3D mouse organoids for cortex development and evo-devo.","authors":"Hanwen Yu, Yan Liu","doi":"10.1016/j.devcel.2025.11.006","DOIUrl":"https://doi.org/10.1016/j.devcel.2025.11.006","url":null,"abstract":"<p><p>How do ci-regulatory differences, across mouse subspecies and over evolutionary timescales, shape cell-type specification and maturation during corticogenesis? In this issue of Developmental Cell, Medina-Cano et al. establish a scalable mouse organoid platform that recapitulates developmental dynamics and enables mapping of allele-specific expression, linking cis-regulatory variation with neurodevelopmental mechanisms and disease-associated genetics.</p>","PeriodicalId":11157,"journal":{"name":"Developmental cell","volume":"60 24","pages":"3361-3363"},"PeriodicalIF":8.7,"publicationDate":"2025-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145767426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Single-cell transcriptomic analysis highlights specific cell types manipulated by Fusarium head blight fungus leading to wheat susceptibility. 单细胞转录组学分析强调了小麦对赤霉病的敏感性。
IF 8.7 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-12-15 DOI: 10.1016/j.devcel.2025.09.015
Wan-Qian Wei, Shuang Li, Dong Zhang, Wei-Hua Tang
{"title":"Single-cell transcriptomic analysis highlights specific cell types manipulated by Fusarium head blight fungus leading to wheat susceptibility.","authors":"Wan-Qian Wei, Shuang Li, Dong Zhang, Wei-Hua Tang","doi":"10.1016/j.devcel.2025.09.015","DOIUrl":"https://doi.org/10.1016/j.devcel.2025.09.015","url":null,"abstract":"","PeriodicalId":11157,"journal":{"name":"Developmental cell","volume":"60 24","pages":"3561-3563"},"PeriodicalIF":8.7,"publicationDate":"2025-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145767339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Developmental cell
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1