Pub Date : 2023-01-01DOI: 10.1080/15685551.2022.2162280
Zexiu Qin, Yinliang Zhang, Mingli Liu, Chunfeng Li
In this study, a composite modifier for wood impregnation is prepared, which is functional and environmentally friendly. The surface of silica sol was modified by using KH-560. The modified silica sol, melamine, and glyoxal were used as raw materials. The silica sol/melamine glyoxal resin (from now on referred to as Silica sol/MG) composite modifier was prepared based on in-situ polymerization. The physicochemical properties (viscosity, solid content and etc.) of the composite modifier were evaluated. The structural and thermal properties were characterized and analyzed by FTIR spectroscopy, particle size distribution, TG and DSC. The results showed that the viscosity and solid content of the composite modifier decreased with the increase in the mass of the silica sol. The FTIR spectroscopy showed peaks at 473 cm-1 and 1101 cm-1, which were assigned to bending and stretching vibrations of the Si-O-Si bond, respectively, indicating that the modified silica sol was successfully introduced into the MG resin. When the modified silica sol mass fraction was 30%-40%, the particle size distribution of the composite modifier was relatively uniform. TG analysis found that the thermal stability of the composite modifier was significantly improved compared with the unmodified resin. DSC analysis showed that adding the modified silica sol reduced the curing temperature of the modifier from 115.5 °C to 107.9 °C.
{"title":"Preparation and properties of silica sol/melamine glyoxal resin.","authors":"Zexiu Qin, Yinliang Zhang, Mingli Liu, Chunfeng Li","doi":"10.1080/15685551.2022.2162280","DOIUrl":"https://doi.org/10.1080/15685551.2022.2162280","url":null,"abstract":"<p><p>In this study, a composite modifier for wood impregnation is prepared, which is functional and environmentally friendly. The surface of silica sol was modified by using KH-560. The modified silica sol, melamine, and glyoxal were used as raw materials. The silica sol/melamine glyoxal resin (from now on referred to as Silica sol/MG) composite modifier was prepared based on <i>in-situ</i> polymerization. The physicochemical properties (viscosity, solid content and etc.) of the composite modifier were evaluated. The structural and thermal properties were characterized and analyzed by FTIR spectroscopy, particle size distribution, TG and DSC. The results showed that the viscosity and solid content of the composite modifier decreased with the increase in the mass of the silica sol. The FTIR spectroscopy showed peaks at 473 cm<sup>-1</sup> and 1101 cm<sup>-1</sup>, which were assigned to bending and stretching vibrations of the Si-O-Si bond, respectively, indicating that the modified silica sol was successfully introduced into the MG resin. When the modified silica sol mass fraction was 30%-40%, the particle size distribution of the composite modifier was relatively uniform. TG analysis found that the thermal stability of the composite modifier was significantly improved compared with the unmodified resin. DSC analysis showed that adding the modified silica sol reduced the curing temperature of the modifier from 115.5 °C to 107.9 °C.</p>","PeriodicalId":11170,"journal":{"name":"Designed Monomers and Polymers","volume":"26 1","pages":"15-22"},"PeriodicalIF":1.6,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/1b/e2/TDMP_26_2162280.PMC9809364.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10488600","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Various transition metal catalysts have been utilized for ethylene polymerization. Silver catalysts have attracted less attention as the catalysts, but are potential for production of high molecular weight polyethylene. Herein, we report that silver complexes with various N-heterocyclic carbene (NHC) ligands in combination with modified methylaluminoxane (MMAO) afford polyethylene with high molecular weight (melting point over 140°C). SEM observation showed that the produced polyethylene has ultra-high molecular weight. NMR investigation of the reaction between the silver complexes with organoaluminums indicate that the NHC ligands transfer from the silver complex to aluminum to produce NHC aluminum complexes. Ph3C[B(C6F5)4] abstract methyl group from the NHC aluminum complex to afford cationic aluminum complex. The NHC aluminum complex promoted ethylene polymerization in the presence of Ph3C[B(C6F5)4] and organoaluminums. NHC ligand also promoted ethylene polymerization in combination with MMAO to produce polyethylene with high melting point (140.7°C). Thus, the aluminum complexes are considered to be the actual active species in silver-catalyzed ethylene polymerization.
{"title":"Ethylene polymerization using <i>N</i>-Heterocyclic carbene complexes of silver and aluminum.","authors":"Nanako Kimura, Daisuke Takeuchi, Sayoko Ogura, Ayaka Takazawa, Masaki Kakiage, Takeshi Yamanobe, Hiroki Uehara","doi":"10.1080/15685551.2023.2229641","DOIUrl":"https://doi.org/10.1080/15685551.2023.2229641","url":null,"abstract":"<p><p>Various transition metal catalysts have been utilized for ethylene polymerization. Silver catalysts have attracted less attention as the catalysts, but are potential for production of high molecular weight polyethylene. Herein, we report that silver complexes with various <i>N</i>-heterocyclic carbene (NHC) ligands in combination with modified methylaluminoxane (MMAO) afford polyethylene with high molecular weight (melting point over 140°C). SEM observation showed that the produced polyethylene has ultra-high molecular weight. NMR investigation of the reaction between the silver complexes with organoaluminums indicate that the NHC ligands transfer from the silver complex to aluminum to produce NHC aluminum complexes. Ph<sub>3</sub>C[B(C<sub>6</sub>F<sub>5</sub>)<sub>4</sub>] abstract methyl group from the NHC aluminum complex to afford cationic aluminum complex. The NHC aluminum complex promoted ethylene polymerization in the presence of Ph<sub>3</sub>C[B(C<sub>6</sub>F<sub>5</sub>)<sub>4</sub>] and organoaluminums. NHC ligand also promoted ethylene polymerization in combination with MMAO to produce polyethylene with high melting point (140.7°C). Thus, the aluminum complexes are considered to be the actual active species in silver-catalyzed ethylene polymerization.</p>","PeriodicalId":11170,"journal":{"name":"Designed Monomers and Polymers","volume":"26 1","pages":"182-189"},"PeriodicalIF":1.6,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10324440/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10545627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The donor-acceptor type π-conjugated polymers having heterole units were prepared by the reaction of a regioregular organometallic polymer having both reactive titanacyclopentadiene and electron-donor thiophene-2,5-diyl units in the main chain with electrophiles such as diphenyltin dichloride, dichlorophenylphosphine, and diiodophenylarsine. For example, a polymer having electron-accepting phosphole unit was obtained in 54% yield whose number-average molecular weight (Mn) and molecular weight distribution (Mw/Mn) were estimated as 3,000 and 1.9, respectively. The obtained polymer exhibits a high highest occupied molecular orbital (HOMO) and low lowest unoccupied molecular orbital (LUMO) energy levels (-5.13 eV and -3.25 eV, respectively) due to the electron-donating thiophene and electron-accepting phosphole units. Reflecting upon the alternating structure of thiophene and phosphole, the polymer exhibits a band gap energy level (Eg) of 1.78 eV which is narrower than that of a derivative of poly(thiophene) (Eg = 2.25 eV).
{"title":"Parallel synthesis of donor-acceptor π-conjugated polymers by post-element transformation of organotitanium polymer.","authors":"Yoshimasa Matsumura, Alvin Tanudjaja, Mizuki Fukushima, Makoto Higuchi, Shin Ogino, Makoto Ishidoshiro, Yasuyuki Irie, Hiroaki Imoto, Kensuke Naka, Ryoyu Hifumi, Shinsuke Inagi, Ikuyoshi Tomita","doi":"10.1080/15685551.2023.2233228","DOIUrl":"https://doi.org/10.1080/15685551.2023.2233228","url":null,"abstract":"<p><p>The donor-acceptor type π-conjugated polymers having heterole units were prepared by the reaction of a regioregular organometallic polymer having both reactive titanacyclopentadiene and electron-donor thiophene-2,5-diyl units in the main chain with electrophiles such as diphenyltin dichloride, dichlorophenylphosphine, and diiodophenylarsine. For example, a polymer having electron-accepting phosphole unit was obtained in 54% yield whose number-average molecular weight (<i>M</i><sub>n</sub>) and molecular weight distribution (<i>M</i><sub>w</sub>/<i>M</i><sub>n</sub>) were estimated as 3,000 and 1.9, respectively. The obtained polymer exhibits a high highest occupied molecular orbital (HOMO) and low lowest unoccupied molecular orbital (LUMO) energy levels (-5.13 eV and -3.25 eV, respectively) due to the electron-donating thiophene and electron-accepting phosphole units. Reflecting upon the alternating structure of thiophene and phosphole, the polymer exhibits a band gap energy level (<i>E</i><sub>g</sub>) of 1.78 eV which is narrower than that of a derivative of poly(thiophene) (<i>E</i><sub>g</sub> = 2.25 eV).</p>","PeriodicalId":11170,"journal":{"name":"Designed Monomers and Polymers","volume":"26 1","pages":"190-197"},"PeriodicalIF":1.6,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10327520/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10564367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1080/15685551.2023.2179763
Geethu Madhusoodhanan, Shruthi Ks, Raghu Chandrashekar Hariharapura, Divyashree M Somashekara
Polyhydroxyalkanoates (PHAs) are biopolymers that are produced within the microbial cells in the presence of excess carbon and nutrient limitation. Different strategies have been studied to increase the quality and quantity of this biopolymer which in turn can be utilized as biodegradable polymers replacing conventional petrochemical plastics. In the present study, Bacillus endophyticus, a gram-positive PHA-producing bacterium, was cultivated in the presence of fatty acids along with beta-oxidation inhibitor acrylic acid. A novel approach for incorporating different hydroxyacyl groups provided using fatty acids as co-substrate and beta-oxidation inhibitors to direct the intermediates to co-polymer synthesis was experimented. It was observed that higher fatty acids and inhibitors had a greater influence on PHA production. The addition of acrylic acid along with propionic acid had a positive impact, giving 56.49% of PHA along with sucrose which was 1.2-fold more than the control devoid of fatty acids and inhibitors. Along with the copolymer production, the possible PHA pathway functional leading to the copolymer biosynthesis was hypothetically interpreted in this study. The obtained PHA was analyzed by FTIR and 1H NMR to confirm the copolymer production, which indicated the presence of poly3hydroxybutyrate-co-hydroxyvalerate (PHB-co-PHV), poly3hydroxybutyrate-co-hydroxyhexanoate (PHB-co-PHx).
{"title":"Cascading Beta-oxidation Intermediates for the Polyhydroxyalkanoate Copolymer Biosynthesis by Metabolic Flux using Co-substrates and Inhibitors.","authors":"Geethu Madhusoodhanan, Shruthi Ks, Raghu Chandrashekar Hariharapura, Divyashree M Somashekara","doi":"10.1080/15685551.2023.2179763","DOIUrl":"https://doi.org/10.1080/15685551.2023.2179763","url":null,"abstract":"<p><p>Polyhydroxyalkanoates (PHAs) are biopolymers that are produced within the microbial cells in the presence of excess carbon and nutrient limitation. Different strategies have been studied to increase the quality and quantity of this biopolymer which in turn can be utilized as biodegradable polymers replacing conventional petrochemical plastics. In the present study, <i>Bacillus endophyticus,</i> a gram-positive PHA-producing bacterium, was cultivated in the presence of fatty acids along with beta-oxidation inhibitor acrylic acid. A novel approach for incorporating different hydroxyacyl groups provided using fatty acids as co-substrate and beta-oxidation inhibitors to direct the intermediates to co-polymer synthesis was experimented. It was observed that higher fatty acids and inhibitors had a greater influence on PHA production. The addition of acrylic acid along with propionic acid had a positive impact, giving 56.49% of PHA along with sucrose which was 1.2-fold more than the control devoid of fatty acids and inhibitors. Along with the copolymer production, the possible PHA pathway functional leading to the copolymer biosynthesis was hypothetically interpreted in this study. The obtained PHA was analyzed by FTIR and <sup>1</sup>H NMR to confirm the copolymer production, which indicated the presence of poly3hydroxybutyrate-co-hydroxyvalerate (PHB-co-PHV), poly3hydroxybutyrate-co-hydroxyhexanoate (PHB-co-PHx).</p>","PeriodicalId":11170,"journal":{"name":"Designed Monomers and Polymers","volume":"26 1","pages":"1-14"},"PeriodicalIF":1.6,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9970204/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10824014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-20eCollection Date: 2023-01-01DOI: 10.1080/15685551.2022.2158571
Xin Jin, Jun Ji, Yonghai Sun
Morphine is a widely used opioid analgesic. However, standard morphine dosages and administration methods exhibit a short half-life and pose a risk of respiratory depression. Sustained-release microspheres can deliver prolonged efficacy and reduce side effects. We present a new controlled-release morphine gelatine microsphere (MGM) prepared using an emulsification-crosslinking strategy. The gelatine microsphere design improves the bioavailability of morphine. And it not only increases the clinical analgesic efficacy but also the safety of clinical medication through a gradual, sustained release. Besides, we describe MGMs' preparation, release, pharmacodynamics, and pharmacokinetics. And the drug metabolism pathway. We calculate the release rate of morphine by measuring plasma morphine concentration over time and pharmacokinetic parameters. It optimized the manufacturing process of MGMs, which makes the analgesic effect have a longer duration. MGMs analgesic effect shows dose dependence. After they were administrated, MGMs were released more slowly. Peak concentration was reduced, and the relative bioavailability improved. It even reached 88.84%. Its pharmacokinetic process was consistent with the two-component first-order absorption model. MGMs deliver sustained-release and long-action pharmacokinetics. It shows design goals of improving drug bioavailability, prolonging drug residence time in vivo, and maintaining stable blood drug concentration.
{"title":"Preparation and characterization of morphine gelatine microspheres.","authors":"Xin Jin, Jun Ji, Yonghai Sun","doi":"10.1080/15685551.2022.2158571","DOIUrl":"10.1080/15685551.2022.2158571","url":null,"abstract":"<p><p>Morphine is a widely used opioid analgesic. However, standard morphine dosages and administration methods exhibit a short half-life and pose a risk of respiratory depression. Sustained-release microspheres can deliver prolonged efficacy and reduce side effects. We present a new controlled-release morphine gelatine microsphere (MGM) prepared using an emulsification-crosslinking strategy. The gelatine microsphere design improves the bioavailability of morphine. And it not only increases the clinical analgesic efficacy but also the safety of clinical medication through a gradual, sustained release. Besides, we describe MGMs' preparation, release, pharmacodynamics, and pharmacokinetics. And the drug metabolism pathway. We calculate the release rate of morphine by measuring plasma morphine concentration over time and pharmacokinetic parameters. It optimized the manufacturing process of MGMs, which makes the analgesic effect have a longer duration. MGMs analgesic effect shows dose dependence. After they were administrated, MGMs were released more slowly. Peak concentration was reduced, and the relative bioavailability improved. It even reached 88.84%. Its pharmacokinetic process was consistent with the two-component first-order absorption model. MGMs deliver sustained-release and long-action pharmacokinetics. It shows design goals of improving drug bioavailability, prolonging drug residence time in vivo, and maintaining stable blood drug concentration.</p>","PeriodicalId":11170,"journal":{"name":"Designed Monomers and Polymers","volume":"26 1","pages":"1-14"},"PeriodicalIF":1.8,"publicationDate":"2022-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9788704/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10428168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-06-09DOI: 10.1080/15685551.2022.2086412
N. M. Nizardo, Dzul Fadli Alimin, Maria L A D Lestari
ABSTRACT This article reports the synthesis of poly(N-vinylcaprolactam-co-N-methylolacrylamide) (P(NVCL-co-NMA)) nanogels and investigates their thermo-/pH-responsive behavior. The formation of nanogels was synthesized using free radical emulsion polymerization by varying the monomer composition of NVCL:NMA, and their molecular structure was characterized by 1H-NMR and FTIR. It was found that the nanogels were successfully prepared, and the nanogels exhibited LCST-type phase transition behavior. Cloud point transition temperature (Tc) was studied as a function of copolymer composition, MBA concentration, and pH of the solution by exploring their changes in turbidity using UV–vis spectrophotometer. Our studies reveal that Tc nanogels increased with increasing concentration of NMA, which is due to the hydrophilicity of NMA. Our research also demonstrated that the increase in MBA percentage could decrease the Tc of the synthesized nanogels. Interestingly, P(NVCL-co-NMA) nanogels showed not only a thermoresponsive behavior but also a pH response with increasing Tc in a strong acidic environment owing to the H-bonds within the polymer chains. The results show that nanogels with initial monomer composition of NVCL and NMA of 75% and 25%, respectively, and using 4% of MBA showed Tc around 35°C at pH 7.4. In addition, DLS studies also confirmed this result since the particle sizes became much larger after surpassing the temperature of 35°C. Due to this founding, such nanogels might have potential application in controlled release. Nevertheless, further studies regarding the adjustment of Tc are still needed.
摘要本文报道了聚(n -乙烯基己内酰胺-co- n -甲基丙烯酰胺)(P(NVCL-co-NMA))纳米凝胶的合成,并研究了其热/ ph响应行为。通过改变NVCL:NMA单体组成,采用自由基乳液聚合法合成纳米凝胶,并用1H-NMR和FTIR对其分子结构进行表征。结果表明,纳米凝胶制备成功,且表现出lcst型相变行为。通过紫外-可见分光光度计考察共聚物组成、MBA浓度和溶液pH的浊度变化,研究了云点转变温度(Tc)随溶液浊度变化的关系。我们的研究表明,Tc纳米凝胶随着NMA浓度的增加而增加,这是由于NMA的亲水性。我们的研究还表明,增加MBA的百分比可以降低合成的纳米凝胶的Tc。有趣的是,由于聚合物链内的氢键,P(NVCL-co-NMA)纳米凝胶在强酸性环境中不仅表现出热响应行为,而且随着Tc的增加也表现出pH响应。结果表明,初始单体组成分别为75%和25%的NVCL和NMA,添加4%的MBA的纳米凝胶在pH 7.4下,在35℃左右显示出Tc。此外,DLS研究也证实了这一结果,因为超过35℃后,颗粒尺寸变得更大。由于这一发现,这种纳米凝胶在控释方面可能具有潜在的应用前景。但是,对于Tc的调整,还需要进一步的研究。
{"title":"Synthesis and characterization of dual-responsive poly(N-vinylcaprolactam-co-N-methylolacrylamide) nanogels","authors":"N. M. Nizardo, Dzul Fadli Alimin, Maria L A D Lestari","doi":"10.1080/15685551.2022.2086412","DOIUrl":"https://doi.org/10.1080/15685551.2022.2086412","url":null,"abstract":"ABSTRACT This article reports the synthesis of poly(N-vinylcaprolactam-co-N-methylolacrylamide) (P(NVCL-co-NMA)) nanogels and investigates their thermo-/pH-responsive behavior. The formation of nanogels was synthesized using free radical emulsion polymerization by varying the monomer composition of NVCL:NMA, and their molecular structure was characterized by 1H-NMR and FTIR. It was found that the nanogels were successfully prepared, and the nanogels exhibited LCST-type phase transition behavior. Cloud point transition temperature (Tc) was studied as a function of copolymer composition, MBA concentration, and pH of the solution by exploring their changes in turbidity using UV–vis spectrophotometer. Our studies reveal that Tc nanogels increased with increasing concentration of NMA, which is due to the hydrophilicity of NMA. Our research also demonstrated that the increase in MBA percentage could decrease the Tc of the synthesized nanogels. Interestingly, P(NVCL-co-NMA) nanogels showed not only a thermoresponsive behavior but also a pH response with increasing Tc in a strong acidic environment owing to the H-bonds within the polymer chains. The results show that nanogels with initial monomer composition of NVCL and NMA of 75% and 25%, respectively, and using 4% of MBA showed Tc around 35°C at pH 7.4. In addition, DLS studies also confirmed this result since the particle sizes became much larger after surpassing the temperature of 35°C. Due to this founding, such nanogels might have potential application in controlled release. Nevertheless, further studies regarding the adjustment of Tc are still needed.","PeriodicalId":11170,"journal":{"name":"Designed Monomers and Polymers","volume":"25 1","pages":"155 - 164"},"PeriodicalIF":1.6,"publicationDate":"2022-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46275924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-06-09DOI: 10.1080/15685551.2022.2086396
Pengfei Gao, Ji-rong Liu
ABSTRACT A fresh Cu(II) coordination polymer, i.e., [Cu3(Hmbdc)2(mbdc)2(dmphen)2]n (1, H2mbdc = isophthalic acid, dmphen = 4,7-dimethyl-1,10-phenanthroline), has been generated with the hydrothermal reactions between Cu salts and the mixed ligands of 4,7-dimethyl-1,10-phenanthroline and isophthalic acid. Moreover, the catalytic activity of 1 was evaluated via degrading the Congo red with a method of Fenton with an excellent degradation efficiency of 95.8% at 100 min. Next, the application value of compound on stroke was assessed, and the related mechanisms were explored at the same time. First of all, the tumor necrosis factor-α and recombinant rat IL-1β content released into the plasma were determined with enzyme-linked immunosorbent assay detection kit. Besides, the activation of the HMGB1/TLR4 signaling pathway activation in cerebral vascular endothelial cells was also determined with real-time reverse transcription–polymerase chain reaction assay.
{"title":"A Cu(II)-based coordination polymer: catalytic properties and treatment activity on stroke","authors":"Pengfei Gao, Ji-rong Liu","doi":"10.1080/15685551.2022.2086396","DOIUrl":"https://doi.org/10.1080/15685551.2022.2086396","url":null,"abstract":"ABSTRACT A fresh Cu(II) coordination polymer, i.e., [Cu3(Hmbdc)2(mbdc)2(dmphen)2]n (1, H2mbdc = isophthalic acid, dmphen = 4,7-dimethyl-1,10-phenanthroline), has been generated with the hydrothermal reactions between Cu salts and the mixed ligands of 4,7-dimethyl-1,10-phenanthroline and isophthalic acid. Moreover, the catalytic activity of 1 was evaluated via degrading the Congo red with a method of Fenton with an excellent degradation efficiency of 95.8% at 100 min. Next, the application value of compound on stroke was assessed, and the related mechanisms were explored at the same time. First of all, the tumor necrosis factor-α and recombinant rat IL-1β content released into the plasma were determined with enzyme-linked immunosorbent assay detection kit. Besides, the activation of the HMGB1/TLR4 signaling pathway activation in cerebral vascular endothelial cells was also determined with real-time reverse transcription–polymerase chain reaction assay.","PeriodicalId":11170,"journal":{"name":"Designed Monomers and Polymers","volume":"25 1","pages":"148 - 154"},"PeriodicalIF":1.6,"publicationDate":"2022-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43387142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-06-09DOI: 10.1080/15685551.2022.2086411
M. Waqas, H. Sadia, Muhammad Imran Khan, M. Omer, M. Siddique, Shaista Qamar, Muhammad Zaman, M. H. Butt, M. W. Mustafa, Naeem Rasool
ABSTRACT Niosomes are multilamellar vesicles that efficiently deliver active substance into skin systemic circulation or skin layers. They are used in topical drug delivery system to enhance the skin permeation of active substance. So, the prime objective of this study was to develop a niosomal gel of fusidic acid to increase its skin permeation. Different formulations of niosomes of fusidic acid were designed by varying the cholesterol to surfactant ratio. Formulations containing fusidic acid, cholesterol, dihexadecyl pyridinium chloride, Span 60, or Tween 60 were prepared by thin film hydration method in rotary evaporator. The thin film formed in rotary flask was hydrated by phosphate buffer saline of pH 7.2. The niosomes formed were characterized through entrapment efficiency, size, polydispersity index (PDI), and zeta potential. The S3 formulation containing span 60 showed the highest entrapment efficiency (EE) of niosomes, so it was incorporated into Carbopol gel. Determination of pH, spreadability, rheological, and ex vivo permeation studies was conducted of niosomal gel. The results of ex vivo permeation studies showed high permeation of fusidic acid when gel was applied to an albino rat skin. According to the results and previous studies of niosomes, it can be concluded that niosomes enhanced the permeation of fusidic acid through the skin.
{"title":"Development and characterization of niosomal gel of fusidic acid: in-vitro and ex-vivo approaches","authors":"M. Waqas, H. Sadia, Muhammad Imran Khan, M. Omer, M. Siddique, Shaista Qamar, Muhammad Zaman, M. H. Butt, M. W. Mustafa, Naeem Rasool","doi":"10.1080/15685551.2022.2086411","DOIUrl":"https://doi.org/10.1080/15685551.2022.2086411","url":null,"abstract":"ABSTRACT Niosomes are multilamellar vesicles that efficiently deliver active substance into skin systemic circulation or skin layers. They are used in topical drug delivery system to enhance the skin permeation of active substance. So, the prime objective of this study was to develop a niosomal gel of fusidic acid to increase its skin permeation. Different formulations of niosomes of fusidic acid were designed by varying the cholesterol to surfactant ratio. Formulations containing fusidic acid, cholesterol, dihexadecyl pyridinium chloride, Span 60, or Tween 60 were prepared by thin film hydration method in rotary evaporator. The thin film formed in rotary flask was hydrated by phosphate buffer saline of pH 7.2. The niosomes formed were characterized through entrapment efficiency, size, polydispersity index (PDI), and zeta potential. The S3 formulation containing span 60 showed the highest entrapment efficiency (EE) of niosomes, so it was incorporated into Carbopol gel. Determination of pH, spreadability, rheological, and ex vivo permeation studies was conducted of niosomal gel. The results of ex vivo permeation studies showed high permeation of fusidic acid when gel was applied to an albino rat skin. According to the results and previous studies of niosomes, it can be concluded that niosomes enhanced the permeation of fusidic acid through the skin.","PeriodicalId":11170,"journal":{"name":"Designed Monomers and Polymers","volume":"25 1","pages":"165 - 174"},"PeriodicalIF":1.6,"publicationDate":"2022-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42466081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-06-09DOI: 10.1080/15685551.2022.2086413
Vu Quoc Trung, Tran Thi Thuy Duong, Nguyen Thi Dua, N. N. Linh, Lai Dang Cuong, Dao Phuong Thao, Vo Khac Huy, Nguyen Hoang Ha Phuong, Nguyen Hien, Duong Khanh Linh, Vu Quoc Manh, N. T. Chinh, T. Hoang, L. Van Meervelt
ABSTRACT Eight polythiophene derivatives containing pyrazoline side groups were synthesized by a chemical oxidative coupling polymerization using FeCl3. The crystal structures of four monomers were determined which confirm the almost perpendicular orientation of the thiophene and pyrazoline rings, while the other substituents are more coplanar. Analyses of IR, 1H-NMR, Raman and UV-Vis spectra demonstrated that the suggested polymerization was successful to generate the synthesized polythiophenes with the expected structures. The morphology of the synthesized polythiophenes was studied by SEM. The different substituents attached to the 1- and 3-positions of the pyrazoline side chain led to differences in optical properties, electrical conductivity, and thermal stability of the synthesized polythiophenes. By adding a pyrazoline side chain to polythiophenes, some polymers achieve good solubility, electrical conductivity of about 1.3 × 10–6 S/cm, high fluorescence intensity (above 40,000 a.u.) at 505–550 nm and thermal stability up to 590°C in the air.
{"title":"Synthesis and characterization of some novel polythiophene derivatives containing pyrazoline","authors":"Vu Quoc Trung, Tran Thi Thuy Duong, Nguyen Thi Dua, N. N. Linh, Lai Dang Cuong, Dao Phuong Thao, Vo Khac Huy, Nguyen Hoang Ha Phuong, Nguyen Hien, Duong Khanh Linh, Vu Quoc Manh, N. T. Chinh, T. Hoang, L. Van Meervelt","doi":"10.1080/15685551.2022.2086413","DOIUrl":"https://doi.org/10.1080/15685551.2022.2086413","url":null,"abstract":"ABSTRACT Eight polythiophene derivatives containing pyrazoline side groups were synthesized by a chemical oxidative coupling polymerization using FeCl3. The crystal structures of four monomers were determined which confirm the almost perpendicular orientation of the thiophene and pyrazoline rings, while the other substituents are more coplanar. Analyses of IR, 1H-NMR, Raman and UV-Vis spectra demonstrated that the suggested polymerization was successful to generate the synthesized polythiophenes with the expected structures. The morphology of the synthesized polythiophenes was studied by SEM. The different substituents attached to the 1- and 3-positions of the pyrazoline side chain led to differences in optical properties, electrical conductivity, and thermal stability of the synthesized polythiophenes. By adding a pyrazoline side chain to polythiophenes, some polymers achieve good solubility, electrical conductivity of about 1.3 × 10–6 S/cm, high fluorescence intensity (above 40,000 a.u.) at 505–550 nm and thermal stability up to 590°C in the air.","PeriodicalId":11170,"journal":{"name":"Designed Monomers and Polymers","volume":"25 1","pages":"136 - 147"},"PeriodicalIF":1.6,"publicationDate":"2022-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48213331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-06-09DOI: 10.1080/15685551.2022.2086397
Sheng-Min Sang, Min-Xia Zhang
ABSTRACT In the current research, two coordination polymers (CPs) have been produced solvothermally on the basis of a semi-rigid multifunctional tricarboxylate, i.e., 5-(3,4-dicarboxylphenoxy) nicotic acid (H3L), and the chemical compositions of the two compounds are [Zn(H2L)2(H2O)2] 1 and [Zn(HL)(2,2'-bpy)] (2, 2,2'-bpy = 2,2'-bipyridine), respectively. The structures and CHN analysis of both complexes were researched. The structural analysis results show that complex 1 features a 2D layered network with sql-type topology and complex 2 demonstrates a 2D layered network with uninodal hcb topology. The therapeutic activity and nursing application values of compounds against coronary heart disease were explored, and their relevant mechanism was assessed in meantime. The endothelin (ET) and prostacyclin (PGI2) contents released by the arterial endothelial cells into plasma were determined with ELISA assay. In addition to this, the alpha granule membrane protein 140 (GMP140) on the platelet was determined with real-time RT-PCR assay.
{"title":"Zn(II) coordination polymers: therapeutic activity and nursing application values against coronary heart disease","authors":"Sheng-Min Sang, Min-Xia Zhang","doi":"10.1080/15685551.2022.2086397","DOIUrl":"https://doi.org/10.1080/15685551.2022.2086397","url":null,"abstract":"ABSTRACT In the current research, two coordination polymers (CPs) have been produced solvothermally on the basis of a semi-rigid multifunctional tricarboxylate, i.e., 5-(3,4-dicarboxylphenoxy) nicotic acid (H3L), and the chemical compositions of the two compounds are [Zn(H2L)2(H2O)2] 1 and [Zn(HL)(2,2'-bpy)] (2, 2,2'-bpy = 2,2'-bipyridine), respectively. The structures and CHN analysis of both complexes were researched. The structural analysis results show that complex 1 features a 2D layered network with sql-type topology and complex 2 demonstrates a 2D layered network with uninodal hcb topology. The therapeutic activity and nursing application values of compounds against coronary heart disease were explored, and their relevant mechanism was assessed in meantime. The endothelin (ET) and prostacyclin (PGI2) contents released by the arterial endothelial cells into plasma were determined with ELISA assay. In addition to this, the alpha granule membrane protein 140 (GMP140) on the platelet was determined with real-time RT-PCR assay.","PeriodicalId":11170,"journal":{"name":"Designed Monomers and Polymers","volume":"25 1","pages":"128 - 135"},"PeriodicalIF":1.6,"publicationDate":"2022-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47067369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}