首页 > 最新文献

Advanced Healthcare Materials最新文献

英文 中文
Multifunctional Microflowers for Precise Optoacoustic Localization and Intravascular Magnetic Actuation In Vivo.
IF 1 2区 医学 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2025-01-24 DOI: 10.1002/adhm.202404242
Daniil Nozdriukhin, Shuxin Lyu, Jérôme Bonvin, Michael Reiss, Daniel Razansky, Xosé Luís Deán-Ben

Efficient drug delivery remains a significant challenge in modern medicine and pharmaceutical research. Micrometer-scale robots have recently emerged as a promising solution to enhance the precision of drug administration through remotely controlled navigation within microvascular networks. Real-time tracking is crucial for accurate guidance and confirmation of target arrival. However, deep-tissue monitoring of microscopic structures in vivo is limited by the sensitivity and spatiotemporal resolution of current bioimaging techniques. In this study, biocompatible microrobots are synthesized by incorporating indocyanine green and iron oxide nanoparticles onto copper phosphate microflowers using a layer-by-layer approach, enhancing optoacoustic contrast and enabling magnetic navigation. Magnetic control of these particles under optoacoustic guidance is demonstrated in vivo. Furthermore, super-resolution optoacoustic imaging, achieved through individual particle tracking, is shown to enable the characterization of microvascular structures and quantification of blood flow. The combination of the microflowers' high carrying capacity, in vivo actuation, and high-resolution tracking capabilities opens new opportunities for precise microvascular targeting and localized administration of theranostic agents via intravascular routes.

{"title":"Multifunctional Microflowers for Precise Optoacoustic Localization and Intravascular Magnetic Actuation In Vivo.","authors":"Daniil Nozdriukhin, Shuxin Lyu, Jérôme Bonvin, Michael Reiss, Daniel Razansky, Xosé Luís Deán-Ben","doi":"10.1002/adhm.202404242","DOIUrl":"https://doi.org/10.1002/adhm.202404242","url":null,"abstract":"<p><p>Efficient drug delivery remains a significant challenge in modern medicine and pharmaceutical research. Micrometer-scale robots have recently emerged as a promising solution to enhance the precision of drug administration through remotely controlled navigation within microvascular networks. Real-time tracking is crucial for accurate guidance and confirmation of target arrival. However, deep-tissue monitoring of microscopic structures in vivo is limited by the sensitivity and spatiotemporal resolution of current bioimaging techniques. In this study, biocompatible microrobots are synthesized by incorporating indocyanine green and iron oxide nanoparticles onto copper phosphate microflowers using a layer-by-layer approach, enhancing optoacoustic contrast and enabling magnetic navigation. Magnetic control of these particles under optoacoustic guidance is demonstrated in vivo. Furthermore, super-resolution optoacoustic imaging, achieved through individual particle tracking, is shown to enable the characterization of microvascular structures and quantification of blood flow. The combination of the microflowers' high carrying capacity, in vivo actuation, and high-resolution tracking capabilities opens new opportunities for precise microvascular targeting and localized administration of theranostic agents via intravascular routes.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e2404242"},"PeriodicalIF":10.0,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143031484","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Iron Drives Eosinophil Differentiation in Allergic Airway Inflammation Through Mitochondrial Metabolic Adaptation.
IF 1 2区 医学 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2025-01-24 DOI: 10.1002/adhm.202405085
Fei Li, Haoyu Tang, Yuejue Wang, Qian Wu, Lingling Dong, Jamil Z Kitoko, Jiaqi Huang, Haixia Chen, Ruixin Jia, Zhengyuan Liu, Chao Zhang, Xufei Du, Wen Li, Zhihua Chen, Huahao Shen, Songmin Ying

Eosinophils play a crucial role as effector cells in asthma pathogenesis, with their differentiation being tightly regulated by metabolic mechanisms. While the involvement of iron in various cellular processes is well known, its specific role in eosinophil differentiation has largely remained unexplored. This study demonstrates that iron levels are increased during the differentiation process from eosinophil progenitors to mature and activated eosinophils in the context of allergic airway inflammation. Through experiments involving iron chelators, supplements, and iron-deficient or iron-enriched diets, the indispensable role of iron in eosinophil lineage commitment both in vitro and in vivo is demonstrated. Remarkably, iron chelation effectively suppresses eosinophil differentiation and alleviates airway inflammation in a house dust mite(HDM)-induced mouse model of allergic asthma. Mechanistically, iron promotes the expression of transcription factors that enforce eosinophil differentiation, and maintains mitochondrial metabolic activities, leading to specific metabolic shifts within the tricarboxylic acid (TCA) cycle, with succinate promoting eosinophil differentiation. Overall, this study highlights the function of iron and underlying metabolic mechanisms in eosinophil differentiation, providing potential therapeutic strategies for asthma control.

{"title":"Iron Drives Eosinophil Differentiation in Allergic Airway Inflammation Through Mitochondrial Metabolic Adaptation.","authors":"Fei Li, Haoyu Tang, Yuejue Wang, Qian Wu, Lingling Dong, Jamil Z Kitoko, Jiaqi Huang, Haixia Chen, Ruixin Jia, Zhengyuan Liu, Chao Zhang, Xufei Du, Wen Li, Zhihua Chen, Huahao Shen, Songmin Ying","doi":"10.1002/adhm.202405085","DOIUrl":"https://doi.org/10.1002/adhm.202405085","url":null,"abstract":"<p><p>Eosinophils play a crucial role as effector cells in asthma pathogenesis, with their differentiation being tightly regulated by metabolic mechanisms. While the involvement of iron in various cellular processes is well known, its specific role in eosinophil differentiation has largely remained unexplored. This study demonstrates that iron levels are increased during the differentiation process from eosinophil progenitors to mature and activated eosinophils in the context of allergic airway inflammation. Through experiments involving iron chelators, supplements, and iron-deficient or iron-enriched diets, the indispensable role of iron in eosinophil lineage commitment both in vitro and in vivo is demonstrated. Remarkably, iron chelation effectively suppresses eosinophil differentiation and alleviates airway inflammation in a house dust mite(HDM)-induced mouse model of allergic asthma. Mechanistically, iron promotes the expression of transcription factors that enforce eosinophil differentiation, and maintains mitochondrial metabolic activities, leading to specific metabolic shifts within the tricarboxylic acid (TCA) cycle, with succinate promoting eosinophil differentiation. Overall, this study highlights the function of iron and underlying metabolic mechanisms in eosinophil differentiation, providing potential therapeutic strategies for asthma control.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e2405085"},"PeriodicalIF":10.0,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143031482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adhesive and Conductive Fibrous Hydrogel Bandages for Effective Peripheral Nerve Regeneration.
IF 1 2区 医学 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2025-01-23 DOI: 10.1002/adhm.202403722
Subin Jin, Hyunjin Jung, Jihyang Song, Sumin Kim, Subeen Yoon, Jung Hyun Kim, Jung Seung Lee, Yong Jun Kim, Donghee Son, Mikyung Shin

Peripheral nerve injury is a common disease resulting in reversible and irreversible impairments of motor and sensory functions. In addition to conventional surgical interventions such as nerve grafting and neurorrhaphy, nerve guidance conduits are used to effectively support axonal growth without unexpected neuroma formation. However, there are still challenges to secure tissue-mimetic mechanical and electrophysiological properties of the conduit materials. Herein, the phenylborate-tethered hydrogel-assisted doping effect is elucidated on conductive polymers, enhancing peripheral nerve regeneration when used as a sutureless bandage on the injured nerve. The adhesive and conductive nerve bandage consists of biocompatible hyaluronic acid hydrogel microfibers produced by electrospinning, followed by in situ conductive polypyrrole polymerization on the fibrous mat. Particularly, phenylborate groups enable high adsorption of pyrrole without mechanical crack on the hydrogel network and allow tissue-like stretchability and on-nerve adhesiveness. In a rat crushed nerve injury model, the nerve bandage can effectively promote nerve regeneration through stable sutureless wrapping followed by great electrical transmission on the defect region, showing anatomical and functional recovery of the nerve tissues and preventing muscular atrophy. Such hydrogel fibrous bandages will be a promising surgical dressing to be combined with versatile biomedical devices/materials for peripheral nerve repair.

{"title":"Adhesive and Conductive Fibrous Hydrogel Bandages for Effective Peripheral Nerve Regeneration.","authors":"Subin Jin, Hyunjin Jung, Jihyang Song, Sumin Kim, Subeen Yoon, Jung Hyun Kim, Jung Seung Lee, Yong Jun Kim, Donghee Son, Mikyung Shin","doi":"10.1002/adhm.202403722","DOIUrl":"https://doi.org/10.1002/adhm.202403722","url":null,"abstract":"<p><p>Peripheral nerve injury is a common disease resulting in reversible and irreversible impairments of motor and sensory functions. In addition to conventional surgical interventions such as nerve grafting and neurorrhaphy, nerve guidance conduits are used to effectively support axonal growth without unexpected neuroma formation. However, there are still challenges to secure tissue-mimetic mechanical and electrophysiological properties of the conduit materials. Herein, the phenylborate-tethered hydrogel-assisted doping effect is elucidated on conductive polymers, enhancing peripheral nerve regeneration when used as a sutureless bandage on the injured nerve. The adhesive and conductive nerve bandage consists of biocompatible hyaluronic acid hydrogel microfibers produced by electrospinning, followed by in situ conductive polypyrrole polymerization on the fibrous mat. Particularly, phenylborate groups enable high adsorption of pyrrole without mechanical crack on the hydrogel network and allow tissue-like stretchability and on-nerve adhesiveness. In a rat crushed nerve injury model, the nerve bandage can effectively promote nerve regeneration through stable sutureless wrapping followed by great electrical transmission on the defect region, showing anatomical and functional recovery of the nerve tissues and preventing muscular atrophy. Such hydrogel fibrous bandages will be a promising surgical dressing to be combined with versatile biomedical devices/materials for peripheral nerve repair.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e2403722"},"PeriodicalIF":10.0,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143021348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthetic Bilirubin-Based Nanomedicine Protects Against Renal Ischemia/Reperfusion Injury Through Antioxidant and Immune-Modulating Activity.
IF 1 2区 医学 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2025-01-23 DOI: 10.1002/adhm.202403846
Ji-Jing Yan, Hyunjin Kim, Bomin Kim, Honglin Piao, Joon Young Jang, Tae Kyeom Kang, Wook-Bin Lee, Dohyeon Kim, Seunghyun Jo, Duckhyang Shin, Sharif Md Abuzar, Myung L Kim, Jaeseok Yang, Sangyong Jon

Renal ischemia/reperfusion injury (IRI) is a common form of acute kidney injury. The basic mechanism underlying renal IRI is acute inflammation, where oxidative stress plays an important role. Although bilirubin exhibits potent reactive oxygen species (ROS)-scavenging properties, its clinical application is hindered by problems associated with solubility, stability, and toxicity. In this study, BX-001N, a synthetic polyethylene glycol-conjugated bilirubin 3α nanoparticle is developed and assessed its renoprotective effects in renal IRI. Intravenous administration of BX-001N led to increase uptake in the kidneys with minimal migration to the brain after IRI. Peri-IRI BX-001N administration improves renal function and attenuates renal tissue injury and tubular apoptosis to a greater extent than free bilirubin on day 1 after IRI. BX-001N suppressed renal infiltration of inflammatory cells and reduced expression of TNF-α and MCP-1. Furthermore, BX-001N increases renal tubular regeneration on day 3 and suppresses renal fibrosis on day 28. BX-001N decreases the renal expressions of dihydroethidium, malondialdehyde, and nitrotyrosine after IRI. In conclusion, BX-001N, the first Good Manufacturing Practice-grade synthetic bilirubin-based nanomedicine attenuates acute renal injury and chronic fibrosis by suppressing ROS generation and inflammation after IRI. It shows adequate safety profiles and holds promise as a new therapy for renal IRI.

{"title":"Synthetic Bilirubin-Based Nanomedicine Protects Against Renal Ischemia/Reperfusion Injury Through Antioxidant and Immune-Modulating Activity.","authors":"Ji-Jing Yan, Hyunjin Kim, Bomin Kim, Honglin Piao, Joon Young Jang, Tae Kyeom Kang, Wook-Bin Lee, Dohyeon Kim, Seunghyun Jo, Duckhyang Shin, Sharif Md Abuzar, Myung L Kim, Jaeseok Yang, Sangyong Jon","doi":"10.1002/adhm.202403846","DOIUrl":"https://doi.org/10.1002/adhm.202403846","url":null,"abstract":"<p><p>Renal ischemia/reperfusion injury (IRI) is a common form of acute kidney injury. The basic mechanism underlying renal IRI is acute inflammation, where oxidative stress plays an important role. Although bilirubin exhibits potent reactive oxygen species (ROS)-scavenging properties, its clinical application is hindered by problems associated with solubility, stability, and toxicity. In this study, BX-001N, a synthetic polyethylene glycol-conjugated bilirubin 3α nanoparticle is developed and assessed its renoprotective effects in renal IRI. Intravenous administration of BX-001N led to increase uptake in the kidneys with minimal migration to the brain after IRI. Peri-IRI BX-001N administration improves renal function and attenuates renal tissue injury and tubular apoptosis to a greater extent than free bilirubin on day 1 after IRI. BX-001N suppressed renal infiltration of inflammatory cells and reduced expression of TNF-α and MCP-1. Furthermore, BX-001N increases renal tubular regeneration on day 3 and suppresses renal fibrosis on day 28. BX-001N decreases the renal expressions of dihydroethidium, malondialdehyde, and nitrotyrosine after IRI. In conclusion, BX-001N, the first Good Manufacturing Practice-grade synthetic bilirubin-based nanomedicine attenuates acute renal injury and chronic fibrosis by suppressing ROS generation and inflammation after IRI. It shows adequate safety profiles and holds promise as a new therapy for renal IRI.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e2403846"},"PeriodicalIF":10.0,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143021364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improved Black Phosphorus Nanocomposite Hydrogel for Bone Defect Repairing: Mechanisms for Advancing Osteogenesis.
IF 1 2区 医学 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2025-01-23 DOI: 10.1002/adhm.202404934
Ailin Wu, Gaoqiang Ma, Yanhua Chen, Houda Gui, Baiyu Sun, Bing Zhang, Yingxue Liu, Sen Zhang, Guixue Lian, Dawei Song, Dongjiao Zhang

Bone defects caused by fractures and diseases often do not heal spontaneously. They require external agents for repair and regeneration. Bone tissue engineering is emerging as a promising alternative to traditional therapies like autografts and allografts. Nanobiomaterials enhance osteoblast resistance to harsh environments by promoting cell differentiation. Black phosphorus (BP), a novel 2D material in biomedicine, displays unique osteogenic and antimicrobial properties. However, BP nanosheets still face clinical limitations like rapid degradation and high-dose cytotoxicity. To address these, the introduction of amino-silicon phthalocyanine (SiPc-NH2) is investigated to see if it can enhance BP dispersion, reduce BP oxidation, and improve stability and safety for better osteogenesis and antibacterial effects through noncovalent interactions (van der Waals, π-π stacking and electrostatic interactions). Here, the self-healing hydrogel is successfully designed using a step-by-step co-assembly of BP and SiPc-NH2. SiPc-NH2 as a "structural stabilizer" of BP nanosheets reconstructed well-dispersed BP-SiPc-NH2 nanosheets, which improves the biocompatibility of BP, reduces oxidation and enhances photothermal conversion, guaranteeing osteogenic and antimicrobial properties. Furthermore, findings show BP-SiPc-NH2-induced mitochondrial changes support osteogenesis by regulating the crosstalk between Hippo and Wnt signaling pathways-mediated mitochondrial homeostasis, and boosting cellular bioenergetics. Overall, this mitochondrial morphology-based BP-SiPc-NH2 strategy holds great promise for bone repair applications.

{"title":"Improved Black Phosphorus Nanocomposite Hydrogel for Bone Defect Repairing: Mechanisms for Advancing Osteogenesis.","authors":"Ailin Wu, Gaoqiang Ma, Yanhua Chen, Houda Gui, Baiyu Sun, Bing Zhang, Yingxue Liu, Sen Zhang, Guixue Lian, Dawei Song, Dongjiao Zhang","doi":"10.1002/adhm.202404934","DOIUrl":"https://doi.org/10.1002/adhm.202404934","url":null,"abstract":"<p><p>Bone defects caused by fractures and diseases often do not heal spontaneously. They require external agents for repair and regeneration. Bone tissue engineering is emerging as a promising alternative to traditional therapies like autografts and allografts. Nanobiomaterials enhance osteoblast resistance to harsh environments by promoting cell differentiation. Black phosphorus (BP), a novel 2D material in biomedicine, displays unique osteogenic and antimicrobial properties. However, BP nanosheets still face clinical limitations like rapid degradation and high-dose cytotoxicity. To address these, the introduction of amino-silicon phthalocyanine (SiPc-NH<sub>2</sub>) is investigated to see if it can enhance BP dispersion, reduce BP oxidation, and improve stability and safety for better osteogenesis and antibacterial effects through noncovalent interactions (van der Waals, π-π stacking and electrostatic interactions). Here, the self-healing hydrogel is successfully designed using a step-by-step co-assembly of BP and SiPc-NH<sub>2.</sub> SiPc-NH<sub>2</sub> as a \"structural stabilizer\" of BP nanosheets reconstructed well-dispersed BP-SiPc-NH<sub>2</sub> nanosheets, which improves the biocompatibility of BP, reduces oxidation and enhances photothermal conversion, guaranteeing osteogenic and antimicrobial properties. Furthermore, findings show BP-SiPc-NH<sub>2</sub>-induced mitochondrial changes support osteogenesis by regulating the crosstalk between Hippo and Wnt signaling pathways-mediated mitochondrial homeostasis, and boosting cellular bioenergetics. Overall, this mitochondrial morphology-based BP-SiPc-NH<sub>2</sub> strategy holds great promise for bone repair applications.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e2404934"},"PeriodicalIF":10.0,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143021325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Endogenous Protein-Modified Gold Nanorods as Immune-Inert Biomodulators for Tumor-Specific Imaging and Therapy.
IF 1 2区 医学 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2025-01-23 DOI: 10.1002/adhm.202404548
Chunyan Fang, Yueming Cai, Cui He, Ying Li, Lei He, Xiaoyan Wang, Yong Lu

Engineered modifications of nanomaterials inspired by nature hold great promise for disease-specific imaging and therapies. However, conventional polyethylene glycol modification is limited by immune system rejection. The manipulation of gold nanorods (Au NRs) modified by endogenous proteins (eP@Au) is reported as an engineered biomodulator for enhanced breast tumor therapy. The results show that eP@Au NRs neither activate inflammatory factors in vitro nor elicit rejection of immune responses in vivo. Tumor-specific eP@Au NRs exhibit a dual-modal imaging capability and trigger a mild photothermal effect under near-infrared light irradiation, enabling highly efficient imaging and therapy of tumors. Transcriptome sequencing and confirmatory experiments reveal that the antitumor effect is mainly attributed to the repression of PI3K-Akt/MAPK signaling pathways at the molecular level. This powerful and surprising in situ eP-regulated biomodulation demonstrates the advantages of convenient fabrication, inert immunogenicity, and biocompatibility, providing an alternative strategy for biomedical imaging and therapy.

{"title":"Endogenous Protein-Modified Gold Nanorods as Immune-Inert Biomodulators for Tumor-Specific Imaging and Therapy.","authors":"Chunyan Fang, Yueming Cai, Cui He, Ying Li, Lei He, Xiaoyan Wang, Yong Lu","doi":"10.1002/adhm.202404548","DOIUrl":"https://doi.org/10.1002/adhm.202404548","url":null,"abstract":"<p><p>Engineered modifications of nanomaterials inspired by nature hold great promise for disease-specific imaging and therapies. However, conventional polyethylene glycol modification is limited by immune system rejection. The manipulation of gold nanorods (Au NRs) modified by endogenous proteins (eP@Au) is reported as an engineered biomodulator for enhanced breast tumor therapy. The results show that eP@Au NRs neither activate inflammatory factors in vitro nor elicit rejection of immune responses in vivo. Tumor-specific eP@Au NRs exhibit a dual-modal imaging capability and trigger a mild photothermal effect under near-infrared light irradiation, enabling highly efficient imaging and therapy of tumors. Transcriptome sequencing and confirmatory experiments reveal that the antitumor effect is mainly attributed to the repression of PI3K-Akt/MAPK signaling pathways at the molecular level. This powerful and surprising in situ eP-regulated biomodulation demonstrates the advantages of convenient fabrication, inert immunogenicity, and biocompatibility, providing an alternative strategy for biomedical imaging and therapy.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e2404548"},"PeriodicalIF":10.0,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143021350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Salt-Compact Albumin as a New Pure Protein-based Biomaterials: From Design to In Vivo Studies.
IF 1 2区 医学 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2025-01-23 DOI: 10.1002/adhm.202403385
Eya Aloui, Jordan Beurton, Claire Medemblik, Ludivine Hugoni, Igor Clarot, Ariane Boudier, Youri Arntz, Marcella De Giorgi, Jérôme Combet, Guillaume Fleith, Eric Mathieu, Naji Kharouf, Leyla Kocgozlu, Benoît Heinrich, Damien Favier, Michael Brender, Fouzia Boulmedais, Pierre Schaaf, Benoît Frisch, Philippe Lavalle

Current biodegradable materials are facing many challenges when used for the design of implantable devices because of shortcomings such as toxicity of crosslinking agents and degradation derivatives, limited cell adhesion, and limited immunological compatibility. Here, a class of materials built entirely of stable protein is designed using a simple protocol based on salt-assisted compaction of albumin, breaking with current crosslinking strategies. Salt-assisted compaction is based on the assembly of albumin in the presence of high concentrations of specific salts such as sodium bromide. This process leads, surprisingly, to water-insoluble handable materials with high preservation of their native protein structures and Young's modulus close to that of cartilage (0.86 MPa). Furthermore, these materials are non-cytotoxic, non-inflammatory, and in vivo implantations (using models of mice and rabbits) demonstrate a very slow degradation rate of the material with excellent biocompatibility and absence of systemic inflammation and implant failure. Therefore, these materials constitute promising candidates for the design of biodegradable scaffolds and drug delivery systems as an alternative to conventional synthetic degradable polyester materials.

{"title":"Salt-Compact Albumin as a New Pure Protein-based Biomaterials: From Design to In Vivo Studies.","authors":"Eya Aloui, Jordan Beurton, Claire Medemblik, Ludivine Hugoni, Igor Clarot, Ariane Boudier, Youri Arntz, Marcella De Giorgi, Jérôme Combet, Guillaume Fleith, Eric Mathieu, Naji Kharouf, Leyla Kocgozlu, Benoît Heinrich, Damien Favier, Michael Brender, Fouzia Boulmedais, Pierre Schaaf, Benoît Frisch, Philippe Lavalle","doi":"10.1002/adhm.202403385","DOIUrl":"https://doi.org/10.1002/adhm.202403385","url":null,"abstract":"<p><p>Current biodegradable materials are facing many challenges when used for the design of implantable devices because of shortcomings such as toxicity of crosslinking agents and degradation derivatives, limited cell adhesion, and limited immunological compatibility. Here, a class of materials built entirely of stable protein is designed using a simple protocol based on salt-assisted compaction of albumin, breaking with current crosslinking strategies. Salt-assisted compaction is based on the assembly of albumin in the presence of high concentrations of specific salts such as sodium bromide. This process leads, surprisingly, to water-insoluble handable materials with high preservation of their native protein structures and Young's modulus close to that of cartilage (0.86 MPa). Furthermore, these materials are non-cytotoxic, non-inflammatory, and in vivo implantations (using models of mice and rabbits) demonstrate a very slow degradation rate of the material with excellent biocompatibility and absence of systemic inflammation and implant failure. Therefore, these materials constitute promising candidates for the design of biodegradable scaffolds and drug delivery systems as an alternative to conventional synthetic degradable polyester materials.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e2403385"},"PeriodicalIF":10.0,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143021362","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Navigating Tumor Microenvironment Barriers with Nanotherapeutic Strategies for Targeting Metastasis. 利用靶向转移的纳米治疗策略导航肿瘤微环境屏障。
IF 1 2区 医学 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2025-01-22 DOI: 10.1002/adhm.202403107
Mahima Rachel Thomas, Anjana Kaveri Badekila, Vishruta Pai, Nijil S, Yashodhar Bhandary, Ankit Rai, Sudarshan Kini

Therapeutic strategy for efficiently targeting cancer cells needs an in-depth understanding of the cellular and molecular interplay in the tumor microenvironment (TME). TME comprises heterogeneous cells clustered together to translate tumor initiation, migration, and proliferation. The TME mainly comprises proliferating tumor cells, stromal cells, blood vessels, lymphatic vessels, cancer-associated fibroblasts (CAFs), extracellular matrix (ECM), and cancer stem cells (CSC). The heterogeneity and genetic evolution of metastatic tumors can substantially impact the clinical effectiveness of therapeutic agents. Therefore, the therapeutic strategy shall target TME of all metastatic stages. Since the advent of nanotechnology, smart drug delivery strategies are employed to deliver effective drug formulations directly into tumors, ensuring controlled and sustained therapeutic efficacy. The state-of-the-art nano-drug delivery systems are shown to have innocuous modes of action in targeting the metastatic players of TME. Therefore, this review provides insight into the mechanism of cancer metastasis involving invasion, intravasation, systemic transport of circulating tumor cells (CTCs), extravasation, metastatic colonization, and angiogenesis. Further, the novel perspectives associated with current nanotherapeutic strategies are highlighted on different stages of metastasis.

有效靶向癌细胞的治疗策略需要深入了解肿瘤微环境(TME)中细胞和分子的相互作用。TME包括聚集在一起的异质细胞,以翻译肿瘤的发生、迁移和增殖。TME主要包括增殖肿瘤细胞、基质细胞、血管、淋巴管、癌症相关成纤维细胞(CAFs)、细胞外基质(ECM)和癌症干细胞(CSC)。转移性肿瘤的异质性和遗传进化可以显著影响治疗药物的临床疗效。因此,治疗策略应针对所有转移期的TME。自从纳米技术出现以来,智能药物递送策略被用于将有效的药物配方直接递送到肿瘤中,确保控制和持续的治疗效果。最先进的纳米药物输送系统被证明具有针对转移性TME参与者的无害作用模式。因此,本文综述了肿瘤转移的机制,包括侵袭、内渗、循环肿瘤细胞(ctc)的全身运输、外渗、转移定植和血管生成。此外,与当前纳米治疗策略相关的新观点在不同的转移阶段被强调。
{"title":"Navigating Tumor Microenvironment Barriers with Nanotherapeutic Strategies for Targeting Metastasis.","authors":"Mahima Rachel Thomas, Anjana Kaveri Badekila, Vishruta Pai, Nijil S, Yashodhar Bhandary, Ankit Rai, Sudarshan Kini","doi":"10.1002/adhm.202403107","DOIUrl":"https://doi.org/10.1002/adhm.202403107","url":null,"abstract":"<p><p>Therapeutic strategy for efficiently targeting cancer cells needs an in-depth understanding of the cellular and molecular interplay in the tumor microenvironment (TME). TME comprises heterogeneous cells clustered together to translate tumor initiation, migration, and proliferation. The TME mainly comprises proliferating tumor cells, stromal cells, blood vessels, lymphatic vessels, cancer-associated fibroblasts (CAFs), extracellular matrix (ECM), and cancer stem cells (CSC). The heterogeneity and genetic evolution of metastatic tumors can substantially impact the clinical effectiveness of therapeutic agents. Therefore, the therapeutic strategy shall target TME of all metastatic stages. Since the advent of nanotechnology, smart drug delivery strategies are employed to deliver effective drug formulations directly into tumors, ensuring controlled and sustained therapeutic efficacy. The state-of-the-art nano-drug delivery systems are shown to have innocuous modes of action in targeting the metastatic players of TME. Therefore, this review provides insight into the mechanism of cancer metastasis involving invasion, intravasation, systemic transport of circulating tumor cells (CTCs), extravasation, metastatic colonization, and angiogenesis. Further, the novel perspectives associated with current nanotherapeutic strategies are highlighted on different stages of metastasis.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e2403107"},"PeriodicalIF":10.0,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142996613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Double-Dynamic-Bond Cross-Linked Hydrogel Adhesive with Cohesion-Adhesion Enhancement for Emergency Tissue Closure and Infected Wound Healing. 双动态键交联水凝胶黏合剂,增强内聚-黏附,用于紧急组织闭合和感染伤口愈合。
IF 1 2区 医学 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2025-01-22 DOI: 10.1002/adhm.202404447
Ming Yan, Shi-Yu Hu, Hao-Jie Tan, Rui Dai, Haibo Wang, Xu Peng, Zhi-Guo Wang, Jia-Zhuang Xu, Zhong-Ming Li

The hydrogel adhesives with strong tissue adhesion and biological characteristics adhm202404447are urgently needed for injury sealing and tissue repair. However, the negative correlation between tissue adhesion and the mechanical strength poses a challenge for their practical application. Herein, a bio-inspired cohesive enhancement strategy is developed to prepare the hydrogel adhesive with simultaneously enhanced mechanical strength and tissue adhesion. The double cross-linked network is achieved through the cooperation between polyacrylic acid grafted with N-hydroxy succinimide crosslinked by tannic acid and cohesion-enhanced ion crosslinking of sodium alginate and Ca2+. Such a unique structure endows the resultant hydrogel adhesive with excellent tissue adhesion strength and mechanical strength. The hydrogel adhesive is capable of sealing various organs in vitro, and exhibits satisfactory on-demand removability, antibacterial, and antioxidant properties. As a proof of concept, the hydrogel adhesive not only effectively halts non-compressible hemorrhages of beating heart and femoral artery injury models in rats, but also accelerates the healing of infected wound by inhibiting bacteria and reducing inflammation. Overall, this advanced hydrogel adhesive is promising as an emergency rescue adhesive that enables robust tissue closure, timely controlling bleeding, and promoting damaged tissue healing.

具有强组织粘附性和生物学特性的水凝胶胶粘剂adhm202404447是损伤密封和组织修复的迫切需要。然而,组织粘附性与机械强度之间的负相关关系给其实际应用带来了挑战。在此,开发了一种仿生内聚增强策略,以制备同时增强机械强度和组织粘附性的水凝胶粘合剂。通过单宁酸交联接枝n-羟基琥珀酰亚胺的聚丙烯酸和海藻酸钠与Ca2+的内聚增强离子交联,实现了双交联网络。这种独特的结构使所制得的水凝胶粘合剂具有优异的组织粘附强度和机械强度。该水凝胶粘合剂能够在体外密封各种器官,并表现出令人满意的按需去除性、抗菌性和抗氧化性。作为概念验证,水凝胶粘合剂不仅能有效阻止大鼠心脏和股动脉损伤模型的不可压缩性出血,还能通过抑制细菌和减少炎症来加速感染伤口的愈合。总的来说,这种先进的水凝胶粘合剂有望作为一种紧急救援粘合剂,能够实现坚固的组织闭合,及时控制出血,促进受损组织愈合。
{"title":"Double-Dynamic-Bond Cross-Linked Hydrogel Adhesive with Cohesion-Adhesion Enhancement for Emergency Tissue Closure and Infected Wound Healing.","authors":"Ming Yan, Shi-Yu Hu, Hao-Jie Tan, Rui Dai, Haibo Wang, Xu Peng, Zhi-Guo Wang, Jia-Zhuang Xu, Zhong-Ming Li","doi":"10.1002/adhm.202404447","DOIUrl":"https://doi.org/10.1002/adhm.202404447","url":null,"abstract":"<p><p>The hydrogel adhesives with strong tissue adhesion and biological characteristics adhm202404447are urgently needed for injury sealing and tissue repair. However, the negative correlation between tissue adhesion and the mechanical strength poses a challenge for their practical application. Herein, a bio-inspired cohesive enhancement strategy is developed to prepare the hydrogel adhesive with simultaneously enhanced mechanical strength and tissue adhesion. The double cross-linked network is achieved through the cooperation between polyacrylic acid grafted with N-hydroxy succinimide crosslinked by tannic acid and cohesion-enhanced ion crosslinking of sodium alginate and Ca<sup>2+</sup>. Such a unique structure endows the resultant hydrogel adhesive with excellent tissue adhesion strength and mechanical strength. The hydrogel adhesive is capable of sealing various organs in vitro, and exhibits satisfactory on-demand removability, antibacterial, and antioxidant properties. As a proof of concept, the hydrogel adhesive not only effectively halts non-compressible hemorrhages of beating heart and femoral artery injury models in rats, but also accelerates the healing of infected wound by inhibiting bacteria and reducing inflammation. Overall, this advanced hydrogel adhesive is promising as an emergency rescue adhesive that enables robust tissue closure, timely controlling bleeding, and promoting damaged tissue healing.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e2404447"},"PeriodicalIF":10.0,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142996497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
FXa-Responsive Hydrogels to Craft Corneal Endothelial Lamellae. fxa反应性水凝胶制备角膜内皮层。
IF 1 2区 医学 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2025-01-22 DOI: 10.1002/adhm.202402593
Mikhail V Tsurkan, Juliane Bessert, Rabea Selzer, Sarah D Tsurkan, Dagmar Pette, Manfred F Maitz, Petra B Welzel, Carsten Werner

Cell-instructive polymer hydrogels are instrumental in tissue engineering for regenerative therapies. Implementing defined and selective responsiveness to external stimuli is a persisting challenge that critically restricts their functionality. Addressing this challenge, this study introduces a versatile, modular hydrogel system composed of four-arm poly(ethylene glycol)(starPEG)-peptide and glycosaminoglycan(GAG)-maleimide conjugates. The gel system features a small peptide sequence that is selectively cleaved by the coagulation factor FXa. In a cell culture environment, where active FXa is absent, the hydrogel remains stable, providing a conducive matrix for the growth of complex tissue structures or organoids. Upon the introduction of FXa, the hydrogel is designed to disintegrate rapidly, enabling the gentle release of the cultivated tissues without impairing their functionality. The efficacy of this approach is demonstrated through the ex vivo development, detachment, and transplantation of human corneal endothelial lamellae, achieving sizes relevant for clinical application in Descemet Membrane Endothelial Keratoplasty (DMEK). Furthermore, the practicality of the hydrogel system is validated in vitro using a de-endothelialized porcine cornea as a surrogate recipient. Since the FXa-cleavable peptide can be integrated into a variety of multifunctional hydrogels, it can pave the way for next-generation scaffold-free tissue engineering and organoid regenerative therapies.

指导细胞的聚合物水凝胶在再生治疗的组织工程中起着重要作用。实现对外部刺激的定义和选择性反应是一个持续的挑战,严重限制了它们的功能。为了解决这一挑战,本研究引入了一种由四臂聚乙二醇(starPEG)-肽和糖胺聚糖(GAG)-马来酰亚胺偶联物组成的多功能模块化水凝胶体系。凝胶系统的特点是一个小的肽序列,被凝血因子FXa选择性地切割。在缺乏活性FXa的细胞培养环境中,水凝胶保持稳定,为复杂组织结构或类器官的生长提供了有利的基质。在引入FXa后,水凝胶被设计成快速分解,使培养组织能够在不损害其功能的情况下缓慢释放。这种方法的有效性通过离体发育、剥离和移植的人角膜内皮层来证明,达到了与Descemet膜内皮角膜移植术(DMEK)临床应用相关的尺寸。此外,使用去内皮化的猪角膜作为替代受体,在体外验证了水凝胶系统的实用性。由于fxa可切割肽可以整合到各种多功能水凝胶中,它可以为下一代无支架组织工程和类器官再生治疗铺平道路。
{"title":"FXa-Responsive Hydrogels to Craft Corneal Endothelial Lamellae.","authors":"Mikhail V Tsurkan, Juliane Bessert, Rabea Selzer, Sarah D Tsurkan, Dagmar Pette, Manfred F Maitz, Petra B Welzel, Carsten Werner","doi":"10.1002/adhm.202402593","DOIUrl":"https://doi.org/10.1002/adhm.202402593","url":null,"abstract":"<p><p>Cell-instructive polymer hydrogels are instrumental in tissue engineering for regenerative therapies. Implementing defined and selective responsiveness to external stimuli is a persisting challenge that critically restricts their functionality. Addressing this challenge, this study introduces a versatile, modular hydrogel system composed of four-arm poly(ethylene glycol)(starPEG)-peptide and glycosaminoglycan(GAG)-maleimide conjugates. The gel system features a small peptide sequence that is selectively cleaved by the coagulation factor FXa. In a cell culture environment, where active FXa is absent, the hydrogel remains stable, providing a conducive matrix for the growth of complex tissue structures or organoids. Upon the introduction of FXa, the hydrogel is designed to disintegrate rapidly, enabling the gentle release of the cultivated tissues without impairing their functionality. The efficacy of this approach is demonstrated through the ex vivo development, detachment, and transplantation of human corneal endothelial lamellae, achieving sizes relevant for clinical application in Descemet Membrane Endothelial Keratoplasty (DMEK). Furthermore, the practicality of the hydrogel system is validated in vitro using a de-endothelialized porcine cornea as a surrogate recipient. Since the FXa-cleavable peptide can be integrated into a variety of multifunctional hydrogels, it can pave the way for next-generation scaffold-free tissue engineering and organoid regenerative therapies.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e2402593"},"PeriodicalIF":10.0,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142996608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Advanced Healthcare Materials
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1