The importance of climate in water resources management is well recognized, but less is known about how climate affects water access at the household level. Understanding this is crucial for identifying vulnerable households, reducing health and well-being risks, and finding equitable solutions. Using difference-in-differences regression analyses and relying on temporal variation in interview timing from multiple, cross-sectional surveys, we examine the effects of monsoon riverine flooding on household water access among 34 000 households in Bangladesh in 2011 and 2014. We compare water access, a combined measure of both water source and time for collection, among households living in flood-affected and non-flood-affected districts before and after monsoon flooding events. We find that households in monsoon flood-affected districts surveyed after the flooding had between 2.27 and 4.42 times higher odds of experiencing low water access. Separating geographically, we find that while households in coastal districts have lower water access than those in non-coastal districts, monsoon flood exposure is a stronger predictor of low water access in non-coastal districts. Non-coastal districts were particularly burdened in 2014, when households affected by monsoon flooding had 4.71 times higher odds of low water access. We also find that household wealth is a consistent predictor of household water access. Overall, our results show that monsoon flooding is associated with a higher prevalence of low water access; socioeconomically vulnerable households are especially burdened.
The United Kingdom experienced its most extreme heatwave to date during late July 2022, with maximum air temperatures exceeding 40 °C recorded for the first time in history on July 19th. High ambient temperatures have been statistically shown to lead to increased mortality. Higher nighttime temperatures that occur in more urbanised areas, called the urban heat island (UHI), may contribute to the mortality burden of heat. In this study, we applied health impact assessment methods with advanced urban climate modelling to estimate what contribution the UHI had on the mortality impact of the 10-25 July 2022 heatwave in Greater London. Estimated mortality due to heat and due to the UHI were compared with estimated mortality due to air pollution in the same period, based on monitored concentrations. We estimate that of the 1773 deaths in Greater London in this period 370 (95% confidence interval 328-410) could be attributed to heat. We estimate that 38% of these heat-related deaths could be attributed to the UHI. In the same period is estimate deaths attributable to PM2.5 were 20.6 (10.4-30.8) and to ozone were 52.3 (95% confidence interval 18.6-85.2). Despite not contributing to the record-breaking maximum air temperature observed during this period, the UHI may have contributed to the heatwave's mortality burden through raised nighttime temperature. While air pollutant concentrations were elevated during the period, deaths attributable to air pollution were relatively few compared to deaths attributable to heat.