Pub Date : 2024-08-30DOI: 10.1088/1748-9326/ad6fb8
Kate Hua-Ke Chi, Melissa McCracken
Thermoelectric power plants account for approximately 40% of total U.S. water withdrawals each year. In 2022, 48.5 trillion gallons of water were withdrawn for cooling systems in electricity production, of which 962.9 billion gallons of water were consumed and no longer available for downstream use. Conventional steam coal plants, in particular, withdrew 18.3 trillion gallons of water for once-through and recirculating cooling systems in 2022 while contributing to 19.7% of total U.S. net electricity generation. As coal-fueled electricity production becomes less competitive, cases of coal-to-gas retrofits occur to avoid stranded assets. Two retrofitting methods are adopted in practice: coal-fired power plants are repurposed and replaced by natural gas combined-cycle plants, or the boiler of a coal plant is converted to burn natural gas. In this study, we construct panel data and employ an event study framework to examine changes in water withdrawal, water consumption, water discharge, and carbon emissions resulting from coal-to-gas retrofits in the continental United States from 2013 to 2022. Seventeen coal-fired power plants have been replaced with natural gas combined-cycle plants, and 167 coal steam units in 85 plants have undergone coal-to-gas boiler conversions. We find a sharp and sustained reduction in water withdrawal of 40.2–53.9 thousand gallons per megawatt-hour of net electricity produced when a coal plant transitioned to a natural gas combined-cycle plant. Water discharge was also reduced by 30.7 thousand gallons, and carbon emissions decreased by 0.59 short tons per megawatt-hour. Yet, boiler conversion did not lead to statistically significant changes in per megawatt-hour water withdrawal, water consumption, water discharge, or carbon emissions. Spatial assessment further informs resource planning of projected water-stressed regions, as 204.6 gigawatts of coal-fired power plants remain operable in the United States in 2022. Fuel transition should adopt a nexus approach and account for the interdependence between water resources and electricity production to realize sustainable development commitments.
{"title":"Water usage in cooling systems for electricity production: an event study of retrofitted coal-fired power plants in the United States","authors":"Kate Hua-Ke Chi, Melissa McCracken","doi":"10.1088/1748-9326/ad6fb8","DOIUrl":"https://doi.org/10.1088/1748-9326/ad6fb8","url":null,"abstract":"Thermoelectric power plants account for approximately 40% of total U.S. water withdrawals each year. In 2022, 48.5 trillion gallons of water were withdrawn for cooling systems in electricity production, of which 962.9 billion gallons of water were consumed and no longer available for downstream use. Conventional steam coal plants, in particular, withdrew 18.3 trillion gallons of water for once-through and recirculating cooling systems in 2022 while contributing to 19.7% of total U.S. net electricity generation. As coal-fueled electricity production becomes less competitive, cases of coal-to-gas retrofits occur to avoid stranded assets. Two retrofitting methods are adopted in practice: coal-fired power plants are repurposed and replaced by natural gas combined-cycle plants, or the boiler of a coal plant is converted to burn natural gas. In this study, we construct panel data and employ an event study framework to examine changes in water withdrawal, water consumption, water discharge, and carbon emissions resulting from coal-to-gas retrofits in the continental United States from 2013 to 2022. Seventeen coal-fired power plants have been replaced with natural gas combined-cycle plants, and 167 coal steam units in 85 plants have undergone coal-to-gas boiler conversions. We find a sharp and sustained reduction in water withdrawal of 40.2–53.9 thousand gallons per megawatt-hour of net electricity produced when a coal plant transitioned to a natural gas combined-cycle plant. Water discharge was also reduced by 30.7 thousand gallons, and carbon emissions decreased by 0.59 short tons per megawatt-hour. Yet, boiler conversion did not lead to statistically significant changes in per megawatt-hour water withdrawal, water consumption, water discharge, or carbon emissions. Spatial assessment further informs resource planning of projected water-stressed regions, as 204.6 gigawatts of coal-fired power plants remain operable in the United States in 2022. Fuel transition should adopt a nexus approach and account for the interdependence between water resources and electricity production to realize sustainable development commitments.","PeriodicalId":11747,"journal":{"name":"Environmental Research Letters","volume":"95 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142213398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-30DOI: 10.1088/1748-9326/ad6019
Meike Schickhoff, Philipp de Vrese, Annett Bartsch, Barbara Widhalm, Victor Brovkin
Arctic land is characterized by a high surface and subsurface heterogeneity on different scales. However, the effects of land surface model resolution on fluxes and soil state variables in the Arctic have never been systematically studied, even though smaller scale heterogeneities are resolved in high-resolution land boundary condition datasets. Here, we compare 210 km and 5 km setups of the land surface model JSBACH3 for an idealized case study in eastern Siberia to investigate the effects of high versus low-resolution land boundary conditions on simulating the interactions of soil physics, hydrology and vegetation. We show for the first time that there are differences in the spatial averages of the simulated fluxes and soil state variables between resolution setups. Most differences are small in the summer mean, but larger within individual months. Heterogeneous soil properties induce large parts of the differences while vegetation characteristics play a minor role. Active layer depth shows a statistically significant increase of +20% in the 5 km setup relative to the 210 km setup for the summer mean and +43% for August. The differences are due to the nonlinear vertical discretization of the soil column amplifying the impact of the heterogeneous distributions of soil organic matter content and supercooled water. Resolution-induced differences in evaporation fluxes amount to +43% in July and are statistically significant. Our results show that spatial resolution significantly affects model outcomes due to nonlinear processes in heterogenous land surfaces. This suggests that resolution needs to be accounted in simulations of land surface models in the Arctic.
{"title":"Effects of land surface model resolution on fluxes and soil state in the Arctic","authors":"Meike Schickhoff, Philipp de Vrese, Annett Bartsch, Barbara Widhalm, Victor Brovkin","doi":"10.1088/1748-9326/ad6019","DOIUrl":"https://doi.org/10.1088/1748-9326/ad6019","url":null,"abstract":"Arctic land is characterized by a high surface and subsurface heterogeneity on different scales. However, the effects of land surface model resolution on fluxes and soil state variables in the Arctic have never been systematically studied, even though smaller scale heterogeneities are resolved in high-resolution land boundary condition datasets. Here, we compare 210 km and 5 km setups of the land surface model JSBACH3 for an idealized case study in eastern Siberia to investigate the effects of high versus low-resolution land boundary conditions on simulating the interactions of soil physics, hydrology and vegetation. We show for the first time that there are differences in the spatial averages of the simulated fluxes and soil state variables between resolution setups. Most differences are small in the summer mean, but larger within individual months. Heterogeneous soil properties induce large parts of the differences while vegetation characteristics play a minor role. Active layer depth shows a statistically significant increase of +20% in the 5 km setup relative to the 210 km setup for the summer mean and +43% for August. The differences are due to the nonlinear vertical discretization of the soil column amplifying the impact of the heterogeneous distributions of soil organic matter content and supercooled water. Resolution-induced differences in evaporation fluxes amount to +43% in July and are statistically significant. Our results show that spatial resolution significantly affects model outcomes due to nonlinear processes in heterogenous land surfaces. This suggests that resolution needs to be accounted in simulations of land surface models in the Arctic.","PeriodicalId":11747,"journal":{"name":"Environmental Research Letters","volume":"77 4 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142213555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-30DOI: 10.1088/1748-9326/ad7279
Ren Wang, Jiang Lu, Pierre Gentine, Haishan Chen
Understanding the pattern of changes in extreme heat is crucial to developing climate change adaptation strategies. Existing studies mostly focus on changes in air temperature and tend to overlook soil temperature; however, changes in extreme heat in air and soil can be inconsistent under global change and water–carbon cycling may be more sensitive to soil condition. In this study, we examine the global pattern of long-term trends in the difference between air temperature and soil temperature (Tsoil − T2m) for the hottest month of the year during the period of 1961–2022. The results show that in certain hotspots, such as the middle and high latitudes of Eurasia, the Mediterranean, and the Western United States, the increasing trend in soil temperature has exceeded the increasing trend in 2 m air temperature during the warm season, implying that the land surface can contribute to the increase in air temperature extreme by releasing more heat than before. Our study suggest that the effect of soil temperature to air temperature is strongly related to the partitioning of surface latent heat, sensible heat (H) and soil heat flux (G). In the hot spots, Tsoil − T2m was significantly positively correlated with H and G while a significant negative correlation was found with evaporative fraction (EF) (p< 0.05), and the significant correlations with G and EF exhibit greater spatial heterogeneity. Moreover, the higher the degree of vegetation cover and soil moisture the smaller the difference between soil and air high temperatures. Therefore, changes in vegetation cover and land use management may play an important role in regulating the range of soil and air temperature differences as well as land-atmosphere coupling effects on heat extreme.
了解极端热量的变化模式对于制定气候变化适应战略至关重要。现有研究大多关注空气温度的变化,而往往忽视土壤温度的变化;然而,在全球变化的情况下,空气和土壤中极端热量的变化可能并不一致,水-碳循环可能对土壤条件更为敏感。在本研究中,我们研究了 1961-2022 年间一年中最热月份空气温度与土壤温度之差(Tsoil - T2m)的全球长期趋势模式。结果表明,在某些热点地区,如欧亚大陆的中高纬度地区、地中海地区和美国西部,在温暖季节,土壤温度的上升趋势超过了 2 米空气温度的上升趋势,这意味着陆地表面可以通过释放比以前更多的热量来促进空气温度的极端上升。我们的研究表明,土壤温度对气温的影响与地表潜热、显热(H)和土壤热通量(G)的分配密切相关。在热点地区,Tsoil - T2m 与 H 和 G 呈显著正相关,而与蒸发分量(EF)呈显著负相关(p< 0.05),与 G 和 EF 的显著相关表现出更大的空间异质性。此外,植被覆盖度和土壤湿度越高,土壤和空气的高温差异越小。因此,植被覆盖和土地利用管理的变化可能在调节土壤和空气温差范围以及土地-大气耦合效应对极端高温的影响方面发挥重要作用。
{"title":"Global pattern of soil temperature exceeding air temperature and its linkages with surface energy fluxes","authors":"Ren Wang, Jiang Lu, Pierre Gentine, Haishan Chen","doi":"10.1088/1748-9326/ad7279","DOIUrl":"https://doi.org/10.1088/1748-9326/ad7279","url":null,"abstract":"Understanding the pattern of changes in extreme heat is crucial to developing climate change adaptation strategies. Existing studies mostly focus on changes in air temperature and tend to overlook soil temperature; however, changes in extreme heat in air and soil can be inconsistent under global change and water–carbon cycling may be more sensitive to soil condition. In this study, we examine the global pattern of long-term trends in the difference between air temperature and soil temperature (<italic toggle=\"yes\">T</italic><sub>soil</sub> − <italic toggle=\"yes\">T</italic><sub>2m</sub>) for the hottest month of the year during the period of 1961–2022. The results show that in certain hotspots, such as the middle and high latitudes of Eurasia, the Mediterranean, and the Western United States, the increasing trend in soil temperature has exceeded the increasing trend in 2 m air temperature during the warm season, implying that the land surface can contribute to the increase in air temperature extreme by releasing more heat than before. Our study suggest that the effect of soil temperature to air temperature is strongly related to the partitioning of surface latent heat, sensible heat (<italic toggle=\"yes\">H</italic>) and soil heat flux (<italic toggle=\"yes\">G</italic>). In the hot spots, <italic toggle=\"yes\">T</italic><sub>soil</sub> − <italic toggle=\"yes\">T</italic><sub>2m</sub> was significantly positively correlated with <italic toggle=\"yes\">H</italic> and <italic toggle=\"yes\">G</italic> while a significant negative correlation was found with evaporative fraction (EF) (<italic toggle=\"yes\">p</italic>< 0.05), and the significant correlations with <italic toggle=\"yes\">G</italic> and EF exhibit greater spatial heterogeneity. Moreover, the higher the degree of vegetation cover and soil moisture the smaller the difference between soil and air high temperatures. Therefore, changes in vegetation cover and land use management may play an important role in regulating the range of soil and air temperature differences as well as land-atmosphere coupling effects on heat extreme.","PeriodicalId":11747,"journal":{"name":"Environmental Research Letters","volume":"94 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142213558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-30DOI: 10.1088/1748-9326/ad6fb9
Nina Berlin Rubin, Dana Rose Garfin, Gabrielle Wong-Parodi
The bond between people and the place they live has significant implications for their migration decisions. However, few studies have examined how this relationship endures in the face of experience with climate-related hazards and associated emotions, and whether detachment from place may be related to future migration. Here we address this gap using cross-sectional survey data from a representative probability-based sample of 1479 residents of Texas and Florida—areas frequently affected by coastal hazards—to investigate the interplay between place attachment, place detachment, negative hazard experiences, hazard-related fear and worry, and prospective migration. We found that place attachment and detachment were inversely associated with one another, and that hazard-related fear and worry was associated with higher place detachment. Results indicated that place detachment and hazard-related fear and worry were positively associated with prospective migration, while place attachment was negatively associated with prospective migration. The absence of place attachment and presence of detachment may lower psychological barriers to relocation in the face of climate change. Negative hazard experiences were not associated with place attachment, place detachment, or prospective migration. However, our post-hoc analyses found an indirect association between negative hazard experiences and prospective migration, mediated by hazard-related fear and worry. This suggests that psychological correlates of climate hazards, possibly arising from experiencing them, may inform people’s sense of place and future migration decisions. Our findings highlight the salience of relationships with place in migration decisions and stress the importance of explicitly examining negative sentiments towards place in migration studies. These insights can both improve climate migration models and help tailor policies and programs aimed at supporting detached, fearful, and worried individuals in anticipation of future climate-related hazards.
{"title":"Exploring antecedents to climate migration: sense of place, fear and worry, and experience","authors":"Nina Berlin Rubin, Dana Rose Garfin, Gabrielle Wong-Parodi","doi":"10.1088/1748-9326/ad6fb9","DOIUrl":"https://doi.org/10.1088/1748-9326/ad6fb9","url":null,"abstract":"The bond between people and the place they live has significant implications for their migration decisions. However, few studies have examined how this relationship endures in the face of experience with climate-related hazards and associated emotions, and whether detachment from place may be related to future migration. Here we address this gap using cross-sectional survey data from a representative probability-based sample of 1479 residents of Texas and Florida—areas frequently affected by coastal hazards—to investigate the interplay between place attachment, place detachment, negative hazard experiences, hazard-related fear and worry, and prospective migration. We found that place attachment and detachment were inversely associated with one another, and that hazard-related fear and worry was associated with higher place detachment. Results indicated that place detachment and hazard-related fear and worry were positively associated with prospective migration, while place attachment was negatively associated with prospective migration. The absence of place attachment and presence of detachment may lower psychological barriers to relocation in the face of climate change. Negative hazard experiences were not associated with place attachment, place detachment, or prospective migration. However, our post-hoc analyses found an indirect association between negative hazard experiences and prospective migration, mediated by hazard-related fear and worry. This suggests that psychological correlates of climate hazards, possibly arising from experiencing them, may inform people’s sense of place and future migration decisions. Our findings highlight the salience of relationships with place in migration decisions and stress the importance of explicitly examining negative sentiments towards place in migration studies. These insights can both improve climate migration models and help tailor policies and programs aimed at supporting detached, fearful, and worried individuals in anticipation of future climate-related hazards.","PeriodicalId":11747,"journal":{"name":"Environmental Research Letters","volume":"109 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142213559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-30DOI: 10.1088/1748-9326/ad6886
Jianying Li, Qingyao Xiao, Yang Chen, Jiangyu Mao, Lili Song, Panmao Zhai, Shu Wang
The Yangtze River Delta (YRD) is a hotspot of compound heatwaves characterized by scorching day and sweltering night persisting for more than 3 days. The YRD compound heatwaves are intimately associated with the 10–30-day variations of air temperature, with 46 identified heatwaves during the summers of 1979–2022 mostly occurring within the positive phases of 10–30-day Tmax and Tmin anomalies. The coincidence of positive phases in 10–30-day Tmax and Tmin comes from a dipole pattern of the corresponding potential vorticity (PV) anomalies in the upper troposphere. This dipole PV pattern leads to anomalous descents in the YRD and associated anticyclones in the lower troposphere. As a result, the increased adiabatic heating and incident solar radiation cause the extreme daytime heat. The enhanced humidity in the YRD increases the downward longwave radiation, resulting in the extreme nighttime temperatures. As the increased temperature and humidity enhance stratification stability in the lower troposphere, the coupling between daytime and nighttime heat extremes persists, leading to a compound heatwave. During a YRD compound heatwave, the 10–30-day atmospheric intraseasonal oscillation (ISO) exerts a potential influence on the electricity demand and supply. Continuous extreme heat leads to a dramatic surge in cooling demand. While the influence of 10–30-day ISO on wind energy resources is weak, the dipole pattern of 10–30-day PV anomalies strongly reduces solar energy resources over the mid–lower reaches of the Yellow River, thus exerting greater challenges for electricity supply to the YRD.
{"title":"Impacts of 10–30-day atmospheric oscillation on persistent compound heatwaves in the Yangtze River Delta with implications for local electricity demand and supply","authors":"Jianying Li, Qingyao Xiao, Yang Chen, Jiangyu Mao, Lili Song, Panmao Zhai, Shu Wang","doi":"10.1088/1748-9326/ad6886","DOIUrl":"https://doi.org/10.1088/1748-9326/ad6886","url":null,"abstract":"The Yangtze River Delta (YRD) is a hotspot of compound heatwaves characterized by scorching day and sweltering night persisting for more than 3 days. The YRD compound heatwaves are intimately associated with the 10–30-day variations of air temperature, with 46 identified heatwaves during the summers of 1979–2022 mostly occurring within the positive phases of 10–30-day <italic toggle=\"yes\">T</italic><sub>max</sub> and <italic toggle=\"yes\">T</italic><sub>min</sub> anomalies. The coincidence of positive phases in 10–30-day <italic toggle=\"yes\">T</italic><sub>max</sub> and <italic toggle=\"yes\">T</italic><sub>min</sub> comes from a dipole pattern of the corresponding potential vorticity (PV) anomalies in the upper troposphere. This dipole PV pattern leads to anomalous descents in the YRD and associated anticyclones in the lower troposphere. As a result, the increased adiabatic heating and incident solar radiation cause the extreme daytime heat. The enhanced humidity in the YRD increases the downward longwave radiation, resulting in the extreme nighttime temperatures. As the increased temperature and humidity enhance stratification stability in the lower troposphere, the coupling between daytime and nighttime heat extremes persists, leading to a compound heatwave. During a YRD compound heatwave, the 10–30-day atmospheric intraseasonal oscillation (ISO) exerts a potential influence on the electricity demand and supply. Continuous extreme heat leads to a dramatic surge in cooling demand. While the influence of 10–30-day ISO on wind energy resources is weak, the dipole pattern of 10–30-day PV anomalies strongly reduces solar energy resources over the mid–lower reaches of the Yellow River, thus exerting greater challenges for electricity supply to the YRD.","PeriodicalId":11747,"journal":{"name":"Environmental Research Letters","volume":"12 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142213577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-30DOI: 10.1088/1748-9326/ad7047
Llewellyn Leonard
Mineral mining activities in Africa have long been associated with a myriad of socio-environmental impacts and conflicts, posing significant challenges to sustainable development and environmental justice. This paper explores the complex interplay between mineral mining, socio-environmental impacts, and conflicts in the Southern and West African region, with a focus on the imperative of reflexive governance for achieving just transitions and environmental justice. Drawing on a comprehensive literature review and cases from Southern and Western African countries, this paper examines the multifaceted nature of socio-environmental impacts resulting from mineral mining. These impacts encompass ecological degradation and social inequalities, among others. Furthermore, the paper delves into the dynamics of conflicts arising from mineral mining and competing interests such as natural resources and land rights. Additionally, the paper examines governance structures aimed at enhancing transparency, accountability, and environmental sustainability. The paper concludes by highlighting the implications of reflexive governance as a transformative tool for addressing the socio-environmental impacts of mineral mining and conflicts in Southern and West Africa. It underscores the urgency of adopting holistic and integrated approaches that prioritize environmental protection, social equity, and community well-being in the context of mineral resource extraction. The African Union can serve as the catalyst for reflexive governance and environmental justice in mineral resource extraction, with citizens also holding national governments accountable.
{"title":"Socio-environmental impacts of mineral mining and conflicts in Southern and West Africa: navigating reflexive governance for environmental justice","authors":"Llewellyn Leonard","doi":"10.1088/1748-9326/ad7047","DOIUrl":"https://doi.org/10.1088/1748-9326/ad7047","url":null,"abstract":"Mineral mining activities in Africa have long been associated with a myriad of socio-environmental impacts and conflicts, posing significant challenges to sustainable development and environmental justice. This paper explores the complex interplay between mineral mining, socio-environmental impacts, and conflicts in the Southern and West African region, with a focus on the imperative of reflexive governance for achieving just transitions and environmental justice. Drawing on a comprehensive literature review and cases from Southern and Western African countries, this paper examines the multifaceted nature of socio-environmental impacts resulting from mineral mining. These impacts encompass ecological degradation and social inequalities, among others. Furthermore, the paper delves into the dynamics of conflicts arising from mineral mining and competing interests such as natural resources and land rights. Additionally, the paper examines governance structures aimed at enhancing transparency, accountability, and environmental sustainability. The paper concludes by highlighting the implications of reflexive governance as a transformative tool for addressing the socio-environmental impacts of mineral mining and conflicts in Southern and West Africa. It underscores the urgency of adopting holistic and integrated approaches that prioritize environmental protection, social equity, and community well-being in the context of mineral resource extraction. The African Union can serve as the catalyst for reflexive governance and environmental justice in mineral resource extraction, with citizens also holding national governments accountable.","PeriodicalId":11747,"journal":{"name":"Environmental Research Letters","volume":"97 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142213583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-30DOI: 10.1088/1748-9326/ad6a72
Chao He, Matthew Collins, Tianjun Zhou, Xingwen Jiang, Peili Wu, Nick Dunstone
Subtropical East Asia (STEA) experienced a historic flood in the summer of 2020, and historic drought and heatwaves in the summer of 2022. Previous studies emphasized the role of western Pacific subtropical high (WPSH), but there is a paradox that the contrasting climate extremes over STEA in 2020 and 2022 are both associated with anomalously strong WPSH. Given that local vertical motion has a dominant control on precipitation variability, here we investigate the mechanism for the variability of vertical motion in STEA. In most extratropical regions of the Northern Hemisphere, ascent (descent) motion aligns with southerly (northerly) flow in the troposphere due to the northward tilting isentropic surfaces. However, isentropic surfaces tilt eastwards over STEA in the summer due to the existence of a strong warm center over the Tibetan Plateau (TP). Thus, the ascent motion over the STEA is insensitive to the strength of southerly flow related to the intensity of the WPSH but sensitive to the strength of westerly flow related to the meridional shift of subtropical jet. The notably strong WPSH in 2020 and 2022 increased water vapor transport into STEA but had little impact on atmospheric vertical motion. However, the East Asian subtropical jet displaced southwards (northwards) in the summer of 2020 (2022), leading to anomalous westerly (easterly) flows in the mid-upper troposphere from TP to STEA on the jet’s southern flank, prompting anomalous ascent (descent) motion in STEA that contributed to the flood (drought) conditions in 2020 (2022). Our results highlight the essential role of anomalous zonal flow in generating surface climate extremes over STEA in the summer because of its strong control of vertical motion.
{"title":"Contrasting East Asian climate extremes in 2020 and 2022 tied to zonal flow","authors":"Chao He, Matthew Collins, Tianjun Zhou, Xingwen Jiang, Peili Wu, Nick Dunstone","doi":"10.1088/1748-9326/ad6a72","DOIUrl":"https://doi.org/10.1088/1748-9326/ad6a72","url":null,"abstract":"Subtropical East Asia (STEA) experienced a historic flood in the summer of 2020, and historic drought and heatwaves in the summer of 2022. Previous studies emphasized the role of western Pacific subtropical high (WPSH), but there is a paradox that the contrasting climate extremes over STEA in 2020 and 2022 are both associated with anomalously strong WPSH. Given that local vertical motion has a dominant control on precipitation variability, here we investigate the mechanism for the variability of vertical motion in STEA. In most extratropical regions of the Northern Hemisphere, ascent (descent) motion aligns with southerly (northerly) flow in the troposphere due to the northward tilting isentropic surfaces. However, isentropic surfaces tilt eastwards over STEA in the summer due to the existence of a strong warm center over the Tibetan Plateau (TP). Thus, the ascent motion over the STEA is insensitive to the strength of southerly flow related to the intensity of the WPSH but sensitive to the strength of westerly flow related to the meridional shift of subtropical jet. The notably strong WPSH in 2020 and 2022 increased water vapor transport into STEA but had little impact on atmospheric vertical motion. However, the East Asian subtropical jet displaced southwards (northwards) in the summer of 2020 (2022), leading to anomalous westerly (easterly) flows in the mid-upper troposphere from TP to STEA on the jet’s southern flank, prompting anomalous ascent (descent) motion in STEA that contributed to the flood (drought) conditions in 2020 (2022). Our results highlight the essential role of anomalous zonal flow in generating surface climate extremes over STEA in the summer because of its strong control of vertical motion.","PeriodicalId":11747,"journal":{"name":"Environmental Research Letters","volume":"12 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142213578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-30DOI: 10.1088/1748-9326/ad6f2d
Rebecca K Runting, Darran King, Martin Nolan, Javier Navarro, Raymundo Marcos-Martinez, Jonathan R Rhodes, Lei Gao, Ian Watson, Andrew Ash, April E Reside, Jorge G Álvarez-Romero, Jessie A Wells, Euan G Ritchie, Michalis Hadjikakou, Don A Driscoll, Jeffery D Connor, Jonathan Garber, Brett A Bryan
Livestock production is an integral part of the global food system and the livelihoods of local people, but it also raises questions of environmental sustainability due to issues such as greenhouse gas (GHG) emissions, biodiversity decline, land degradation, and water use. Further challenges to extensive livestock systems may arise from changes in climate and the global economy (particularly variation in prices for livestock and carbon). However, significant potential exists for both mitigating these impacts and adapting to change via altering stocking rates, managing fire, and supplementing cattle diets to reduce methane emissions. We developed an integrated, spatio-temporal modelling approach to assess the effectiveness of these options for land management in northern Australia’s tropical savanna under different global change scenarios. Performance was measured against a range of sustainability indicators, including environmental (GHG emissions, biodiversity, water intake, and land condition) and agricultural (profit, beef production) outcomes. Our model shows that maintaining historical stocking rates is not environmentally sustainable due to the accelerated land degradation exacerbated by a changing climate. However, planned early dry season burning substantially reduced emissions, and in our simulations was profitable under all global change scenarios that included a carbon price. Overall, the balance between production and environmental outcomes could be improved by stocking below modelled carrying capacity and implementing fire management. This management scenario was the most profitable (more than double the profit from maintaining historical stocking rates), prevented land degradation, and reduced GHG emissions by 23%. By integrating the cumulative impacts of climate change, external economic drivers, and management actions across a range of sustainability indicators, we show that the future of rangelands in Australia’s savannas has the potential to balance livestock production and environmental outcomes.
{"title":"Balancing livestock production and environmental outcomes in northern Australia’s tropical savanna under global change","authors":"Rebecca K Runting, Darran King, Martin Nolan, Javier Navarro, Raymundo Marcos-Martinez, Jonathan R Rhodes, Lei Gao, Ian Watson, Andrew Ash, April E Reside, Jorge G Álvarez-Romero, Jessie A Wells, Euan G Ritchie, Michalis Hadjikakou, Don A Driscoll, Jeffery D Connor, Jonathan Garber, Brett A Bryan","doi":"10.1088/1748-9326/ad6f2d","DOIUrl":"https://doi.org/10.1088/1748-9326/ad6f2d","url":null,"abstract":"Livestock production is an integral part of the global food system and the livelihoods of local people, but it also raises questions of environmental sustainability due to issues such as greenhouse gas (GHG) emissions, biodiversity decline, land degradation, and water use. Further challenges to extensive livestock systems may arise from changes in climate and the global economy (particularly variation in prices for livestock and carbon). However, significant potential exists for both mitigating these impacts and adapting to change via altering stocking rates, managing fire, and supplementing cattle diets to reduce methane emissions. We developed an integrated, spatio-temporal modelling approach to assess the effectiveness of these options for land management in northern Australia’s tropical savanna under different global change scenarios. Performance was measured against a range of sustainability indicators, including environmental (GHG emissions, biodiversity, water intake, and land condition) and agricultural (profit, beef production) outcomes. Our model shows that maintaining historical stocking rates is not environmentally sustainable due to the accelerated land degradation exacerbated by a changing climate. However, planned early dry season burning substantially reduced emissions, and in our simulations was profitable under all global change scenarios that included a carbon price. Overall, the balance between production and environmental outcomes could be improved by stocking below modelled carrying capacity and implementing fire management. This management scenario was the most profitable (more than double the profit from maintaining historical stocking rates), prevented land degradation, and reduced GHG emissions by 23%. By integrating the cumulative impacts of climate change, external economic drivers, and management actions across a range of sustainability indicators, we show that the future of rangelands in Australia’s savannas has the potential to balance livestock production and environmental outcomes.","PeriodicalId":11747,"journal":{"name":"Environmental Research Letters","volume":"2 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142213580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-30DOI: 10.1088/1748-9326/ad70cd
Xin Ma, Aihui Wang, Jianqi Sun
The climate in Northwest China (NWC) has undergone a warming and wetting trend (WWT) since the 1980s, which has attracted considerable attention from the scientific and policy communities. However, the majority of previous studies have focused on overall effects of WWT, and very few have examined how land surface system responds to climate warming or wetting trend, respectively. For this purpose, this study uses the Community Land Model (CLM5) driven by the Chinese Meteorological Forcing Dataset (CMFD) to conduct four modeling experiments: a control experiment (CTRL) and three sensitivity experiments, in which the annual trend of air temperature (NonWarm), precipitation (NonWet), and both (NonWWT) are removed from the CMFD from 1979 to 2018. Compared to CTRL, the land hydrological variables (i.e. soil moisture, runoff and evapotranspiration) show a visible reduction in magnitude, interannual variability, as well as annual trend in NonWet, while they are enhanced in NonWarm. In both NonWarm and NonWet, the magnitude and trend of both net radiation and sensible heat fluxes increase, with a more pronounced change in NonWWT. Further analysis indicates that the land surface processes are more sensitive to wetting trend than to warming trend. Among all land surface hydrological variables and energy variables, runoff and snow cover fraction are the most susceptible to climate change. Overall, the effects of climate change in Ta and Pr on surface hydrological variables are non-linearly offsetting, while the effects on surface energy budgets are non-linearly superimposed. Compared to warming trend, wetting trend plays a larger impact on the variability of land surface processes in NWC.
{"title":"Land surface processes response to warming and wetting trend in Northwest China","authors":"Xin Ma, Aihui Wang, Jianqi Sun","doi":"10.1088/1748-9326/ad70cd","DOIUrl":"https://doi.org/10.1088/1748-9326/ad70cd","url":null,"abstract":"The climate in Northwest China (NWC) has undergone a warming and wetting trend (WWT) since the 1980s, which has attracted considerable attention from the scientific and policy communities. However, the majority of previous studies have focused on overall effects of WWT, and very few have examined how land surface system responds to climate warming or wetting trend, respectively. For this purpose, this study uses the Community Land Model (CLM5) driven by the Chinese Meteorological Forcing Dataset (CMFD) to conduct four modeling experiments: a control experiment (CTRL) and three sensitivity experiments, in which the annual trend of air temperature (NonWarm), precipitation (NonWet), and both (NonWWT) are removed from the CMFD from 1979 to 2018. Compared to CTRL, the land hydrological variables (i.e. soil moisture, runoff and evapotranspiration) show a visible reduction in magnitude, interannual variability, as well as annual trend in NonWet, while they are enhanced in NonWarm. In both NonWarm and NonWet, the magnitude and trend of both net radiation and sensible heat fluxes increase, with a more pronounced change in NonWWT. Further analysis indicates that the land surface processes are more sensitive to wetting trend than to warming trend. Among all land surface hydrological variables and energy variables, runoff and snow cover fraction are the most susceptible to climate change. Overall, the effects of climate change in Ta and Pr on surface hydrological variables are non-linearly offsetting, while the effects on surface energy budgets are non-linearly superimposed. Compared to warming trend, wetting trend plays a larger impact on the variability of land surface processes in NWC.","PeriodicalId":11747,"journal":{"name":"Environmental Research Letters","volume":"3 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142213584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-30DOI: 10.1088/1748-9326/ad71e2
Jun Gu, Chun Zhao, Mingyue Xu, Jiawang Feng, Gudongze Li, Yongxuan Zhao, Xiaoyu Hao, Junshi Chen, Hong An
In 2020 early summer, a historically severe rainy season struck East Asia, causing extensive damage to life and property. Subseasonal forecast of this event challenges the limits of rainy season predictability. Employing the integrated atmospheric model across scales and the Sunway supercomputer, we conducted ensemble one-month forecasts at global 3 km, variable 4–60 km, and global 60 km resolutions. The global convection-permitting forecast accurately captures the rainband, while other forecasts exhibited northward and weaker shifts due to the northward shifts of the atmospheric rivers over Japan, attributed to intensified Western North Pacific Subtropical High (WNPSH). Further, the double-ITCZ-like tropical rainfall pattern in Western Pacific in global convection-permitting forecast contributes to a more accurate WNPSH and rainband. In contrast, other forecasts show a single-ITCZ-like pattern in Western Pacific, leading to a northward-shifted WNPSH and rainband, advocating the importance of accurately representing tropical convections, as they can significantly affect mid-/high-latitude weather and climate.
{"title":"Global convection-permitting model improves subseasonal forecast of plum rain around Japan","authors":"Jun Gu, Chun Zhao, Mingyue Xu, Jiawang Feng, Gudongze Li, Yongxuan Zhao, Xiaoyu Hao, Junshi Chen, Hong An","doi":"10.1088/1748-9326/ad71e2","DOIUrl":"https://doi.org/10.1088/1748-9326/ad71e2","url":null,"abstract":"In 2020 early summer, a historically severe rainy season struck East Asia, causing extensive damage to life and property. Subseasonal forecast of this event challenges the limits of rainy season predictability. Employing the integrated atmospheric model across scales and the Sunway supercomputer, we conducted ensemble one-month forecasts at global 3 km, variable 4–60 km, and global 60 km resolutions. The global convection-permitting forecast accurately captures the rainband, while other forecasts exhibited northward and weaker shifts due to the northward shifts of the atmospheric rivers over Japan, attributed to intensified Western North Pacific Subtropical High (WNPSH). Further, the double-ITCZ-like tropical rainfall pattern in Western Pacific in global convection-permitting forecast contributes to a more accurate WNPSH and rainband. In contrast, other forecasts show a single-ITCZ-like pattern in Western Pacific, leading to a northward-shifted WNPSH and rainband, advocating the importance of accurately representing tropical convections, as they can significantly affect mid-/high-latitude weather and climate.","PeriodicalId":11747,"journal":{"name":"Environmental Research Letters","volume":"25 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142213603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}