Pub Date : 2024-05-18DOI: 10.1016/j.etap.2024.104470
R. Abdulazeez , S.M. Highab , U.F. Onyawole , M.T. Jeje , H. Musa , D.M. Shehu , I.S. Ndams
Lead toxicity poses a significant environmental concern linked to diverse health issues. This study explores the potential mitigating effects of resveratrol on lead-induced toxicity in Drosophila melanogaster. Adult fruit flies, aged three days, were orally exposed to lead (60 mg/L), Succimer (10 mg), and varying concentrations of resveratrol (50, 100, and 150 mg). The investigation encompassed the assessment of selected biological parameters, biochemical markers, oxidative stress indicators, and antioxidant enzymes. Resveratrol exhibited a dose-dependent enhancement of egg-laying, eclosion rate, filial generation output, locomotor activity, and life span in D. melanogaster, significantly to 150 mg of diet. Most of the investigated biochemical parameters were significantly rescued in lead-exposed fruit flies when co-treated with resveratrol (p < 0.05). However, oxidative stress remained unaffected by resveratrol. The findings suggest that resveratrol effectively protects against lead toxicity in Drosophila melanogaster and may hold therapeutic potential as an agent for managing lead poisoning in humans.
{"title":"Co-administration of resveratrol rescued lead-induced toxicity in Drosophila melanogaster","authors":"R. Abdulazeez , S.M. Highab , U.F. Onyawole , M.T. Jeje , H. Musa , D.M. Shehu , I.S. Ndams","doi":"10.1016/j.etap.2024.104470","DOIUrl":"10.1016/j.etap.2024.104470","url":null,"abstract":"<div><p>Lead toxicity poses a significant environmental concern linked to diverse health issues. This study explores the potential mitigating effects of resveratrol on lead-induced toxicity in <em>Drosophila melanogaster</em>. Adult fruit flies, aged three days, were orally exposed to lead (60 mg/L), Succimer (10 mg), and varying concentrations of resveratrol (50, 100, and 150 mg). The investigation encompassed the assessment of selected biological parameters, biochemical markers, oxidative stress indicators, and antioxidant enzymes. Resveratrol exhibited a dose-dependent enhancement of egg-laying, eclosion rate, filial generation output, locomotor activity, and life span in <em>D. melanogaster</em>, significantly to 150 mg of diet. Most of the investigated biochemical parameters were significantly rescued in lead-exposed fruit flies when co-treated with resveratrol (p < 0.05). However, oxidative stress remained unaffected by resveratrol. The findings suggest that resveratrol effectively protects against lead toxicity in <em>Drosophila melanogaster</em> and may hold therapeutic potential as an agent for managing lead poisoning in humans.</p></div>","PeriodicalId":11775,"journal":{"name":"Environmental toxicology and pharmacology","volume":"109 ","pages":"Article 104470"},"PeriodicalIF":4.3,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141066575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-17DOI: 10.1016/j.etap.2024.104472
C. André, J. Auclair, F. Gagné
Pharmaceuticals released from municipal effluents discharges pose a risk to aquatic organisms. The toxicity of 5 pharmaceuticals with distinct therapeutic actions were assessed in rainbow trout: olanzapine (antipsychotic), erythromycin (antibiotic), mycophenoate (immunosuppression), pinaverium (anti-inflammatory) and trazodone (sedative). Juveniles were exposed to these drugs for 96 h at concentrations between 64 µg/L up to 40 mg/L to reach lethality. Survival was determined and a suite of biomarkers was analyzed for drug biotransformation, oxidative stress/damage and metabolic activity at sublethal concentrations. The data revealed the following toxicity: olanzapine >trazodone>mycophenolate>pinaverium∼erythromycin based on mortality. The data also revealed that toxicity was associated to mass, pKa and hydrophobicity and the following sublethal effects: GST, LPO and DNA strand breaks. Pharmaceuticals with lower molecular weight, physiological pKa, moderate hydrophobicity, low biotransformation and DNA strand breaks were generally more toxic to fish. However, this should be considered as a general guide in identifying toxic pharmaceuticals in non-target organisms.
城市污水中排放的药物对水生生物构成风险。我们评估了 5 种具有不同治疗作用的药物对虹鳟鱼的毒性:奥氮平(抗精神病药)、红霉素(抗生素)、霉酚酸盐(免疫抑制药)、匹维林(消炎药)和曲唑酮(镇静药)。将幼体暴露于这些药物中 96 小时,药物浓度从 64 微克/升到 40 毫克/升不等,以达到致死目的。在亚致死浓度下,测定存活率并分析药物生物转化、氧化应激/损伤和代谢活动的一系列生物标志物。数据显示了以下毒性:奥氮平>曲唑酮>霉酚酸酯>匹维林∼红霉素(基于死亡率)。数据还显示,毒性与质量、pKa 和疏水性以及以下亚致死效应有关:GST、LPO 和 DNA 链断裂。一般来说,分子量较低、pKa 为生理 pKa、疏水性适中、生物转化率低和 DNA 链断裂的药物对鱼类的毒性更大。不过,这应被视为确定非目标生物中有毒药物的一般指南。
{"title":"Acute exposure and biomarkers assessment in rainbow trout exposed to selected pharmaceuticals","authors":"C. André, J. Auclair, F. Gagné","doi":"10.1016/j.etap.2024.104472","DOIUrl":"10.1016/j.etap.2024.104472","url":null,"abstract":"<div><p>Pharmaceuticals released from municipal effluents discharges pose a risk to aquatic organisms. The toxicity of 5 pharmaceuticals with distinct therapeutic actions were assessed in rainbow trout: olanzapine (antipsychotic), erythromycin (antibiotic), mycophenoate (immunosuppression), pinaverium (anti-inflammatory) and trazodone (sedative). Juveniles were exposed to these drugs for 96 h at concentrations between 64 µg/L up to 40 mg/L to reach lethality. Survival was determined and a suite of biomarkers was analyzed for drug biotransformation, oxidative stress/damage and metabolic activity at sublethal concentrations. The data revealed the following toxicity: olanzapine >trazodone>mycophenolate>pinaverium∼erythromycin based on mortality. The data also revealed that toxicity was associated to mass, pKa and hydrophobicity and the following sublethal effects: GST, LPO and DNA strand breaks. Pharmaceuticals with lower molecular weight, physiological pKa, moderate hydrophobicity, low biotransformation and DNA strand breaks were generally more toxic to fish. However, this should be considered as a general guide in identifying toxic pharmaceuticals in non-target organisms.</p></div>","PeriodicalId":11775,"journal":{"name":"Environmental toxicology and pharmacology","volume":"108 ","pages":"Article 104472"},"PeriodicalIF":4.3,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141048847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-17DOI: 10.1016/j.etap.2024.104474
Ayaka Sawada , Uaciquete Dorcas , Yoshifumi Horie
Antiepileptic drugs, such as phenytoin, are often leaked into aquatic systems through sewage facilities due to their low metabolic rate. Fish, such as the Japanese medaka (Oryzias latipes), demonstrate abnormal swimming behavior such as equilibrium abnormalities, rotational behavior, and vertical swimming, when exposed to phenytoin. Therefore, it is hypothesized that predator avoidance may be hindered. This study aimed to investigate the effects of phenytoin exposure-induced behavioral abnormalities in predator avoidance in Japanese medaka. The results showed that individuals with behavioral abnormalities had a reduced ability to avoid danger. Furthermore, the fish demonstrated a delayed recognition reaction to approaching predators. Additionally, predatory fish, such as silver pike characin (Ctenolucius hujeta), were more likely to prey upon abnormal individuals. In conclusion, the fish exposed to phenytoin demonstrated behavioral changes that increased its predation risk. This study is the first to determine the effects of behavioral abnormalities in Japanese medaka which was induced after phenytoin exposure on predator risk avoidance.
{"title":"Behavioral profile alterations and predation susceptibility of Japanese medaka fish exposed to phenytoin, an antiepileptic drug","authors":"Ayaka Sawada , Uaciquete Dorcas , Yoshifumi Horie","doi":"10.1016/j.etap.2024.104474","DOIUrl":"10.1016/j.etap.2024.104474","url":null,"abstract":"<div><p>Antiepileptic drugs, such as phenytoin, are often leaked into aquatic systems through sewage facilities due to their low metabolic rate. Fish, such as the Japanese medaka (<em>Oryzias latipes</em>), demonstrate abnormal swimming behavior such as equilibrium abnormalities, rotational behavior, and vertical swimming, when exposed to phenytoin. Therefore, it is hypothesized that predator avoidance may be hindered. This study aimed to investigate the effects of phenytoin exposure-induced behavioral abnormalities in predator avoidance in Japanese medaka. The results showed that individuals with behavioral abnormalities had a reduced ability to avoid danger. Furthermore, the fish demonstrated a delayed recognition reaction to approaching predators. Additionally, predatory fish, such as silver pike characin (<em>Ctenolucius hujeta</em>), were more likely to prey upon abnormal individuals. In conclusion, the fish exposed to phenytoin demonstrated behavioral changes that increased its predation risk. This study is the first to determine the effects of behavioral abnormalities in Japanese medaka which was induced after phenytoin exposure on predator risk avoidance.</p></div>","PeriodicalId":11775,"journal":{"name":"Environmental toxicology and pharmacology","volume":"108 ","pages":"Article 104474"},"PeriodicalIF":4.3,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141025424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-17DOI: 10.1016/j.etap.2024.104471
Avishek Bardhan , Thangapalam Jawahar Abraham , Tapas Kumar Sar , Ravindran Rajisha , Satyen Kumar Panda , Prasanna Kumar Patil
In the study on Oreochromis niloticus, singular oral gavage of florfenicol (FFC) at 15 mg/kg biomass/day was conducted, mimicking approved aquaculture dosing. Samples of plasma, bile, muscle, intestine, skin, liver, kidney, gill, and brain tissues were collected at 0, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, and 128 hours (h) after oral gavage. LC-MS/MS analysis revealed FFC concentrations peaked at 12.15 μg/mL in plasma and 77.92 μg/mL in bile, both at 24 hours. Elimination half-lives were 28.17 h (plasma) and 26.88 h (bile). The residues of FFC ranked muscle>intestine>skin>liver>kidney>gill. In contrast, the residues of florfenicol amine (FFA) ranked kidney>skin>liver>muscle>gill>intestine>brain, particularly notable in tropical summer conditions. The minimum inhibitory concentration of FFC was elucidated against several bacterial pathogens revealing its superior efficacy. Results highlight bile's crucial role in FFC elimination. Further investigation, especially during winter when fish susceptibility to infections rises, is warranted.
{"title":"Pharmacokinetics and residues of florfenicol in Nile tilapia (Oreochromis niloticus) post-oral gavage","authors":"Avishek Bardhan , Thangapalam Jawahar Abraham , Tapas Kumar Sar , Ravindran Rajisha , Satyen Kumar Panda , Prasanna Kumar Patil","doi":"10.1016/j.etap.2024.104471","DOIUrl":"10.1016/j.etap.2024.104471","url":null,"abstract":"<div><p>In the study on <em>Oreochromis niloticus</em>, singular oral gavage of florfenicol (FFC) at 15 mg/kg biomass/day was conducted, mimicking approved aquaculture dosing. Samples of plasma, bile, muscle, intestine, skin, liver, kidney, gill, and brain tissues were collected at 0, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, and 128 hours (h) after oral gavage. LC-MS/MS analysis revealed FFC concentrations peaked at 12.15 μg/mL in plasma and 77.92 μg/mL in bile, both at 24 hours. Elimination half-lives were 28.17 h (plasma) and 26.88 h (bile). The residues of FFC ranked muscle>intestine>skin>liver>kidney>gill. In contrast, the residues of florfenicol amine (FFA) ranked kidney>skin>liver>muscle>gill>intestine>brain, particularly notable in tropical summer conditions. The minimum inhibitory concentration of FFC was elucidated against several bacterial pathogens revealing its superior efficacy. Results highlight bile's crucial role in FFC elimination. Further investigation, especially during winter when fish susceptibility to infections rises, is warranted.</p></div>","PeriodicalId":11775,"journal":{"name":"Environmental toxicology and pharmacology","volume":"108 ","pages":"Article 104471"},"PeriodicalIF":4.3,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141051811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-17DOI: 10.1016/j.etap.2024.104467
Israel Ahmad , Mandeep Kaur , Devansh Tyagi , Tejinder Bir Singh , Gurpreet Kaur , Shaikh Mohammad Afzal , Mohsin Jauhar
Bisphenol A (BPA) is a ubiquitous industrial chemical used in the production of polycarbonate plastics and epoxy resins, found in numerous consumer products. Despite its widespread use, its potential adverse health effects have raised significant concerns. This review explores the molecular mechanisms and evidence-based literature underlying BPA-induced toxicities and its implications for human health. BPA is an endocrine-disrupting chemical (EDC) which exhibits carcinogenic properties by influencing various receptors, such as ER, AhR, PPARs, LXRs, and RARs. It induces oxidative stress and contributes to cellular dysfunction, inflammation, and DNA damage, ultimately leading to various toxicities including but not limited to reproductive, cardiotoxicity, neurotoxicity, and endocrine toxicity. Moreover, BPA can modify DNA methylation patterns, histone modifications, and non-coding RNA expression, leading to epigenetic changes and contribute to carcinogenesis. Overall, understanding molecular mechanisms of BPA-induced toxicity is crucial for developing effective strategies and policies to mitigate its adverse effects on human health.
双酚 A(BPA)是一种无处不在的工业化学品,用于生产聚碳酸酯塑料和环氧树脂,在众多消费品中都能找到它的身影。尽管它被广泛使用,但其潜在的不良健康影响却引起了人们的极大关注。本综述探讨了双酚 A 诱导毒性的分子机制和循证文献及其对人类健康的影响。双酚 A 是一种干扰内分泌的化学物质(EDC),它通过影响各种受体(如 ER、AhR、PPARs、LXRs 和 RARs)而表现出致癌特性。它能诱导氧化应激,导致细胞功能紊乱、炎症和 DNA 损伤,最终导致各种毒性,包括但不限于生殖毒性、心脏毒性、神经毒性和内分泌毒性。此外,双酚 A 还能改变 DNA 甲基化模式、组蛋白修饰和非编码 RNA 的表达,导致表观遗传学变化,从而诱发癌变。总之,了解双酚 A 诱导毒性的分子机制对于制定有效的战略和政策以减轻其对人类健康的不利影响至关重要。
{"title":"Exploring novel insights into the molecular mechanisms underlying Bisphenol A-induced toxicity: A persistent threat to human health","authors":"Israel Ahmad , Mandeep Kaur , Devansh Tyagi , Tejinder Bir Singh , Gurpreet Kaur , Shaikh Mohammad Afzal , Mohsin Jauhar","doi":"10.1016/j.etap.2024.104467","DOIUrl":"10.1016/j.etap.2024.104467","url":null,"abstract":"<div><p>Bisphenol A (BPA) is a ubiquitous industrial chemical used in the production of polycarbonate plastics and epoxy resins, found in numerous consumer products. Despite its widespread use, its potential adverse health effects have raised significant concerns. This review explores the molecular mechanisms and evidence-based literature underlying BPA-induced toxicities and its implications for human health. BPA is an endocrine-disrupting chemical (EDC) which exhibits carcinogenic properties by influencing various receptors, such as ER, AhR, PPARs, LXRs, and RARs. It induces oxidative stress and contributes to cellular dysfunction, inflammation, and DNA damage, ultimately leading to various toxicities including but not limited to reproductive, cardiotoxicity, neurotoxicity, and endocrine toxicity. Moreover, BPA can modify DNA methylation patterns, histone modifications, and non-coding RNA expression, leading to epigenetic changes and contribute to carcinogenesis. Overall, understanding molecular mechanisms of BPA-induced toxicity is crucial for developing effective strategies and policies to mitigate its adverse effects on human health.</p></div>","PeriodicalId":11775,"journal":{"name":"Environmental toxicology and pharmacology","volume":"108 ","pages":"Article 104467"},"PeriodicalIF":4.3,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141066597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Titanium dioxide nanoparticles (TiO2 NPs) are widely used in consumer products, raising concerns about their impact on human health. This study investigates the effects of TiO2 NPs on male germ cells while focusing on cell proliferation inhibition and underlying mechanisms. This was done by utilizing mouse GC-1 spermatogonia cells, an immortalized spermatogonia cell line. TiO2 NPs induced a concentration-dependent proliferation inhibition with increased reactive oxygen species (ROS) generation. Notably, TiO2 NPs induced autophagy and decreased ERK phosphorylation. Treatment with the ROS inhibitor N-Acetyl-l-cysteine (NAC) alleviated TiO2 NPs-induced autophagy, restored ERK phosphorylation, and promoted cell proliferation. These findings call attention to the reproductive risks posed by TiO2 NPs while also highlighting NAC as a possible protective agent against reproductive toxins.
{"title":"N-Acetyl-L-cysteine attenuates titanium dioxide nanoparticle (TiO2 NP)-induced autophagy in male germ cells","authors":"Beom-Jin Shin , Bang-Jin Kim , Eun-Ji Paeng , Jack Tyler Rifkin , Sung-Hwan Moon , Seung Hee Shin , Buom-Yong Ryu","doi":"10.1016/j.etap.2024.104466","DOIUrl":"10.1016/j.etap.2024.104466","url":null,"abstract":"<div><p>Titanium dioxide nanoparticles (TiO<sub>2</sub> NPs) are widely used in consumer products, raising concerns about their impact on human health. This study investigates the effects of TiO<sub>2</sub> NPs on male germ cells while focusing on cell proliferation inhibition and underlying mechanisms. This was done by utilizing mouse GC-1 spermatogonia cells, an immortalized spermatogonia cell line. TiO<sub>2</sub> NPs induced a concentration-dependent proliferation inhibition with increased reactive oxygen species (ROS) generation. Notably, TiO<sub>2</sub> NPs induced autophagy and decreased ERK phosphorylation. Treatment with the ROS inhibitor N-Acetyl-l-cysteine (NAC) alleviated TiO<sub>2</sub> NPs-induced autophagy, restored ERK phosphorylation, and promoted cell proliferation. These findings call attention to the reproductive risks posed by TiO<sub>2</sub> NPs while also highlighting NAC as a possible protective agent against reproductive toxins.</p></div>","PeriodicalId":11775,"journal":{"name":"Environmental toxicology and pharmacology","volume":"108 ","pages":"Article 104466"},"PeriodicalIF":4.3,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140961302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-15DOI: 10.1016/j.etap.2024.104469
Šíma Michal , Líbalová Helena , Závodná Táňa , Vrbová Kristýna , Kléma Jiří , Rössner Pavel
We analyzed gene expression in THP-1 cells exposed to metal-based nanomaterials (NMs) [TiO2 (NM-100), ZnO (NM-110), SiO2 (NM-200), Ag (NM-300 K)]. A functional enrichment analysis of the significant differentially expressed genes (DEGs) identified the key modulated biological processes and pathways. DEGs were used to construct protein–protein interaction networks. NM-110 and NM-300 K induced changes in the expression of genes involved in oxidative and genotoxic stress, immune response, alterations of cell cycle, detoxification of metal ions and regulation of redox-sensitive pathways. Both NMs shared a number of highly connected protein nodes (hubs) including CXCL8, ATF3, HMOX1, and IL1B. NM-200 induced limited transcriptional changes, mostly related to the immune response; however, several hubs (CXCL8, ATF3) were identical with NM-110 and NM-300 K. No effects of NM-100 were observed. Overall, soluble nanomaterials NM-110 and NM-300 K exerted a wide variety of toxic effects, while insoluble NM-200 induced immunotoxicity; NM-100 caused no detectable changes on the gene expression level.
我们分析了暴露于金属基纳米材料(NMs)[TiO2(NM-100)、ZnO(NM-110)、SiO2(NM-200)、Ag(NM-300 K)]的 THP-1 细胞的基因表达。对显著差异表达基因(DEGs)的功能富集分析确定了关键的调节生物过程和途径。DEGs 被用于构建蛋白质-蛋白质相互作用网络。NM-110 和 NM-300 K 诱导了涉及氧化和基因毒性应激、免疫反应、细胞周期改变、金属离子解毒和氧化还原敏感通路调控的基因表达变化。两种 NMs 都共享一些高度连接的蛋白质节点(枢纽),包括 CXCL8、ATF3、HMOX1 和 IL1B。NM-200 诱导了有限的转录变化,其中大部分与免疫反应有关;然而,几个枢纽(CXCL8、ATF3)与 NM-110 和 NM-300 K 相同。没有观察到 NM-100 的影响。总之,可溶性纳米材料 NM-110 和 NM-300 K 产生了多种毒性效应,而不溶性纳米材料 NM-200 引发了免疫毒性;NM-100 在基因表达水平上没有引起可检测到的变化。
{"title":"Gene expression profiles and protein-protein interaction networks in THP-1 cells exposed to metal-based nanomaterials","authors":"Šíma Michal , Líbalová Helena , Závodná Táňa , Vrbová Kristýna , Kléma Jiří , Rössner Pavel","doi":"10.1016/j.etap.2024.104469","DOIUrl":"10.1016/j.etap.2024.104469","url":null,"abstract":"<div><p>We analyzed gene expression in THP-1 cells exposed to metal-based nanomaterials (NMs) [TiO<sub>2</sub> (NM-100), ZnO (NM-110), SiO<sub>2</sub> (NM-200), Ag (NM-300 K)]. A functional enrichment analysis of the significant differentially expressed genes (DEGs) identified the key modulated biological processes and pathways. DEGs were used to construct protein–protein interaction networks. NM-110 and NM-300 K induced changes in the expression of genes involved in oxidative and genotoxic stress, immune response, alterations of cell cycle, detoxification of metal ions and regulation of redox-sensitive pathways. Both NMs shared a number of highly connected protein nodes (hubs) including CXCL8, ATF3, HMOX1, and IL1B. NM-200 induced limited transcriptional changes, mostly related to the immune response; however, several hubs (CXCL8, ATF3) were identical with NM-110 and NM-300 K. No effects of NM-100 were observed. Overall, soluble nanomaterials NM-110 and NM-300 K exerted a wide variety of toxic effects, while insoluble NM-200 induced immunotoxicity; NM-100 caused no detectable changes on the gene expression level.</p></div>","PeriodicalId":11775,"journal":{"name":"Environmental toxicology and pharmacology","volume":"108 ","pages":"Article 104469"},"PeriodicalIF":4.3,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141044058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The most recent dam rupture in Brazil released tons of mining tailings into the upper course of the Paraopeba River, affecting this river in an unprecedented way. The present study aimed to evaluate the influence of heavy metals on Prochilodus costatus, an important commercial species in Brazil, four years after the dam colapse. To this end, biomarkers of heavy metals, oxidative stress, and environmental stress were analyzed, and histological analyses of target organs were performed. The results demonstrated critical contamination of fish from the Paraopeba River. Increased expression of Metallothioneins - MTs, Heat Shock Protein - HSP70, and inducible nitric oxide synthase - iNOS, as well as greater rates of histological changes in the liver, spleen, and gonads, were observed in P. costatus. These findings demonstrate that, despite past contamination, the metals present in mining tailings have significantly increased the contamination of the Paraopeba River basin.
{"title":"Histopathology and changes in the expression of metallothioneins, heat shock proteins and inducible nitric oxide synthase in Prochilodus costatus from a neotropical river contaminated by heavy metals","authors":"Alessandro Loureiro Paschoalini , Yves Moreira Ribeiro , Breno Thuller , Camila Leandro Gomes Soares , Elizete Rizzo , Nilo Bazzoli","doi":"10.1016/j.etap.2024.104473","DOIUrl":"10.1016/j.etap.2024.104473","url":null,"abstract":"<div><p>The most recent dam rupture in Brazil released tons of mining tailings into the upper course of the Paraopeba River, affecting this river in an unprecedented way. The present study aimed to evaluate the influence of heavy metals on <em>Prochilodus costatus</em>, an important commercial species in Brazil, four years after the dam colapse. To this end, biomarkers of heavy metals, oxidative stress, and environmental stress were analyzed, and histological analyses of target organs were performed. The results demonstrated critical contamination of fish from the Paraopeba River. Increased expression of Metallothioneins - MTs, Heat Shock Protein - HSP70, and inducible nitric oxide synthase - iNOS, as well as greater rates of histological changes in the liver, spleen, and gonads, were observed in <em>P. costatus</em>. These findings demonstrate that, despite past contamination, the metals present in mining tailings have significantly increased the contamination of the Paraopeba River basin.</p></div>","PeriodicalId":11775,"journal":{"name":"Environmental toxicology and pharmacology","volume":"108 ","pages":"Article 104473"},"PeriodicalIF":4.3,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141044643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chlorpyrifos, widely used for pest control, is known to have various harmful effects, although its toxic effects in macrophages and the mechanisms underlying its toxicity remain unclear. The present study investigated the toxic effects of chlorypyrifos in a macrophage cell line. Here, we found that chlorpyrifos induced cytotoxicity and genotoxicity in RAW264.7 macrophages. Moreover, chlorpyrifos induced intracellular ROS production, subsequently leading to lipid peroxidation. Chlorpyrifos reduced the activation of antioxidative enzymes including superoxide dismutase, catalase, and glutathione peroxidase. Chlorpyrifos upregulated HO-1 expression and activated the Keap1-Nrf2 pathway, as indicated by enhanced Nrf2 phosphorylation and Keap1 degradation. Chlorpyrifos exerted effects on the following in a dose-dependent manner: cytotoxicity, genotoxicity, lipid peroxidation, intracellular ROS production, antioxidative enzyme activity reduction, HO-1 expression, Nrf2 phosphorylation, and Keap1 degradation. Notably, N-acetyl-L-cysteine successfully inhibited chlorpyrifos-induced intracellular ROS generation, cytotoxicity, and genotoxicity. Thus, chlorpyrifos may induce cytotoxicity and genotoxicity by promoting intracellular ROS production and suppressing the antioxidative defense system activation in macrophages.
{"title":"Chlorpyrifos-induced suppression of the antioxidative defense system leads to cytotoxicity and genotoxicity in macrophages","authors":"Yin-Che Lu , Chen-Yu Chiang , Shih-Pin Chen , Yu-Wei Hsu , Wen-Ying Chen , Chun-Jung Chen , Yu-Hsiang Kuan , Sheng-Wen Wu","doi":"10.1016/j.etap.2024.104468","DOIUrl":"10.1016/j.etap.2024.104468","url":null,"abstract":"<div><p>Chlorpyrifos, widely used for pest control, is known to have various harmful effects, although its toxic effects in macrophages and the mechanisms underlying its toxicity remain unclear. The present study investigated the toxic effects of chlorypyrifos in a macrophage cell line. Here, we found that chlorpyrifos induced cytotoxicity and genotoxicity in RAW264.7 macrophages. Moreover, chlorpyrifos induced intracellular ROS production, subsequently leading to lipid peroxidation. Chlorpyrifos reduced the activation of antioxidative enzymes including superoxide dismutase, catalase, and glutathione peroxidase. Chlorpyrifos upregulated HO-1 expression and activated the Keap1-Nrf2 pathway, as indicated by enhanced Nrf2 phosphorylation and Keap1 degradation. Chlorpyrifos exerted effects on the following in a dose-dependent manner: cytotoxicity, genotoxicity, lipid peroxidation, intracellular ROS production, antioxidative enzyme activity reduction, HO-1 expression, Nrf2 phosphorylation, and Keap1 degradation. Notably, N-acetyl-L-cysteine successfully inhibited chlorpyrifos-induced intracellular ROS generation, cytotoxicity, and genotoxicity. Thus, chlorpyrifos may induce cytotoxicity and genotoxicity by promoting intracellular ROS production and suppressing the antioxidative defense system activation in macrophages.</p></div>","PeriodicalId":11775,"journal":{"name":"Environmental toxicology and pharmacology","volume":"108 ","pages":"Article 104468"},"PeriodicalIF":4.3,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141047288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Malaria represents the greatest global health burden among all parasitic diseases, with drug resistance representing the primary obstacle to control efforts. Sodium metavanadate (NaVO3) exhibits antimalarial activity against the Plasmodium yoelii yoelii (Pyy), yet its precise antimalarial mechanism remains elusive. This study aimed to assess the antimalarial potential of NaVO3, evaluate its genotoxicity, and determine the production of reactive oxygen and nitrogen species (ROS/RNS) in Pyy. CD-1 mice were infected and divided into two groups: one treated orally with NaVO3 (10 mg/kg/day for 4 days) and the other untreated. A 50% decrease in parasitemia was observed in treated mice. All experimental days demonstrated DNA damage in exposed parasites, along with an increase in ROS and RNS on the fifth day, suggesting a possible parasitostatic effect. The results indicate that DNA is a target of NaVO3, but further studies are necessary to fully elucidate the mechanisms underlying its antimalarial activity.
{"title":"Evaluation of genotoxic damage, production reactive oxygen and nitrogen species in Plasmodium yoelii yoelii exposed to sodium metavanadate","authors":"Brenda Casarrubias-Tabarez , Norma Rivera-Fernández , Norberto Alarcón-Herrera , Gabriela Guerrero-Palomo , Marcela Rojas-Lemus , Nelly López-Valdez , Jhony Anacleto-Santos , Adriana Gonzalez-Villalva , Martha Ustarroz-Cano , Teresa I. Fortoul","doi":"10.1016/j.etap.2024.104465","DOIUrl":"https://doi.org/10.1016/j.etap.2024.104465","url":null,"abstract":"<div><p>Malaria represents the greatest global health burden among all parasitic diseases, with drug resistance representing the primary obstacle to control efforts. Sodium metavanadate (NaVO<sub>3</sub>) exhibits antimalarial activity against the Plasmodium <em>yoelii yoelii</em> (<em>Pyy</em>), yet its precise antimalarial mechanism remains elusive. This study aimed to assess the antimalarial potential of NaVO<sub>3</sub>, evaluate its genotoxicity, and determine the production of reactive oxygen and nitrogen species (ROS/RNS) in <em>Pyy.</em> CD-1 mice were infected and divided into two groups: one treated orally with NaVO<sub>3</sub> (10 mg/kg/day for 4 days) and the other untreated. A 50% decrease in parasitemia was observed in treated mice. All experimental days demonstrated DNA damage in exposed parasites, along with an increase in ROS and RNS on the fifth day, suggesting a possible parasitostatic effect. The results indicate that DNA is a target of NaVO<sub>3</sub>, but further studies are necessary to fully elucidate the mechanisms underlying its antimalarial activity.</p></div>","PeriodicalId":11775,"journal":{"name":"Environmental toxicology and pharmacology","volume":"108 ","pages":"Article 104465"},"PeriodicalIF":4.3,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140906645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}