Pub Date : 2024-01-31DOI: 10.21303/2461-4262.2024.002974
Aris Budi Sulistyo, W.A. Wirawan, M. Muslimin
This research focuses on the successful development of Agel Leaf Fiber (ALF)-Epoxy composites added with Carbon Active Powder (CAP) and printed using the Vacuum Pressure Infusion (VAPRI) method. Considering the importance of determining the mechanical properties of composites as raw materials for making fishing boats, this research aims to determine the use of Agel Leaf Fiber (ALF) in polymer matrix composites. The composite morphology was analyzed using Scanning Electron Microscopy (SEM) and ImageJ software. The mechanical properties evaluated included Tensile Strength, Flexural Strength, and Hardness. The composite was prepared by incorporating CAP in varying volumes of 0 %, 10 %, and 30 % with a fixed ALF percentage of 40 %. The results showed that the addition of CAP significantly increased the tensile strength to 128.51 MPa, with 0.068 % elongation, 1787.39 MPa modulus of elasticity, and a hardness value of 75.2 HD. Furthermore, the addition of 10 % carbon exhibited a remarkable improvement in flexural strength, reaching 238.51 MPa. This improvement could be attributed to reduced porosity, resulting in enhanced bonding between ALF-CAP-Epoxy components. The flexural strength of the composite with the highest CAP content experienced a significant increase of 238.51 MPa. Thus, Agel leaf fiber has the potential to be used as a reinforcing material in the manufacture of composites and is applied in the manufacture of environmentally friendly fishing boat bodies
{"title":"Evaluation of mechanical and morphological properties composite of Agel Leaf Fiber (ALF)-epoxy modified with carbon powder","authors":"Aris Budi Sulistyo, W.A. Wirawan, M. Muslimin","doi":"10.21303/2461-4262.2024.002974","DOIUrl":"https://doi.org/10.21303/2461-4262.2024.002974","url":null,"abstract":"This research focuses on the successful development of Agel Leaf Fiber (ALF)-Epoxy composites added with Carbon Active Powder (CAP) and printed using the Vacuum Pressure Infusion (VAPRI) method. Considering the importance of determining the mechanical properties of composites as raw materials for making fishing boats, this research aims to determine the use of Agel Leaf Fiber (ALF) in polymer matrix composites. The composite morphology was analyzed using Scanning Electron Microscopy (SEM) and ImageJ software. The mechanical properties evaluated included Tensile Strength, Flexural Strength, and Hardness. The composite was prepared by incorporating CAP in varying volumes of 0 %, 10 %, and 30 % with a fixed ALF percentage of 40 %. The results showed that the addition of CAP significantly increased the tensile strength to 128.51 MPa, with 0.068 % elongation, 1787.39 MPa modulus of elasticity, and a hardness value of 75.2 HD. Furthermore, the addition of 10 % carbon exhibited a remarkable improvement in flexural strength, reaching 238.51 MPa. This improvement could be attributed to reduced porosity, resulting in enhanced bonding between ALF-CAP-Epoxy components. The flexural strength of the composite with the highest CAP content experienced a significant increase of 238.51 MPa. Thus, Agel leaf fiber has the potential to be used as a reinforcing material in the manufacture of composites and is applied in the manufacture of environmentally friendly fishing boat bodies","PeriodicalId":11804,"journal":{"name":"EUREKA: Physics and Engineering","volume":"113 8","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140475400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-31DOI: 10.21303/2461-4262.2024.003238
Zainal Abidin, Eko Siswanto, W. Wijayanti, Winarto
The research object in this research is the copper winding in the WPT system which characteristics will be observed after being coated with a concentration of curcumin. From the experiment of coating the curcumin concentration: H2O on the surface of the copper coil, it shows that there is an influence of physical phenomena from the curcumin concentration material. The strength of the magnetic field (B) and electric current (I) increased after the process of coating the concentration of curcumin: H2O on the copper coil for 0–5 hours. A coil wound with an electric current produces a strong magnetic field (B1), while the curcumin compound (C20H21O6) contains two aromatic benzene rings which produce a strong magnetic field on 6p (B2). Measuring the magnetic field strength using a Gauss meter after the curcumin concentration coating process showed an increase in the magnetic field strength and electric current. Assuming the equation for magnetic field strength B=B1+B2. Increasing the strength of the magnetic field and electric current in the copper winding of the wireless power transfer (WPT) system will affect the power efficiency of the copper windings L1 (transceiver) and L2 (receiver). The process of coating curcumin on a layer of copper to determine the electromechanical effect of curcumin. Utilization of curcumin as an alternative to increase power efficiency in WPT and increase conductivity in copper windings
{"title":"Implementation of curcumin concentration coating to improve power efficiency in wireless power transfer","authors":"Zainal Abidin, Eko Siswanto, W. Wijayanti, Winarto","doi":"10.21303/2461-4262.2024.003238","DOIUrl":"https://doi.org/10.21303/2461-4262.2024.003238","url":null,"abstract":"The research object in this research is the copper winding in the WPT system which characteristics will be observed after being coated with a concentration of curcumin. From the experiment of coating the curcumin concentration: H2O on the surface of the copper coil, it shows that there is an influence of physical phenomena from the curcumin concentration material. The strength of the magnetic field (B) and electric current (I) increased after the process of coating the concentration of curcumin: H2O on the copper coil for 0–5 hours. A coil wound with an electric current produces a strong magnetic field (B1), while the curcumin compound (C20H21O6) contains two aromatic benzene rings which produce a strong magnetic field on 6p (B2). Measuring the magnetic field strength using a Gauss meter after the curcumin concentration coating process showed an increase in the magnetic field strength and electric current. Assuming the equation for magnetic field strength B=B1+B2. Increasing the strength of the magnetic field and electric current in the copper winding of the wireless power transfer (WPT) system will affect the power efficiency of the copper windings L1 (transceiver) and L2 (receiver). The process of coating curcumin on a layer of copper to determine the electromechanical effect of curcumin. Utilization of curcumin as an alternative to increase power efficiency in WPT and increase conductivity in copper windings","PeriodicalId":11804,"journal":{"name":"EUREKA: Physics and Engineering","volume":"78 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140478158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-31DOI: 10.21303/2461-4262.2024.003135
Duy Van Dinh, Sinh Van Nguyen, Anh Ngoc Pham, Luc Van Nguyen, Viet Duc Do
Deep drawing is an operation to transform flat or hollow blanks to create hollow parts of the required shape and size. Deep drawing is an essential operation in sheet-forming technology to manufacture hollow parts. These parts are commonly used in the automobile, aviation, and household appliances industries. To prevent wrinkles on the rim part, a blank holder will be used to compress and flatten the workpiece before the metal is pulled into the die by the punch. Deep drawing without using workpiece holding force is applied to form hollow parts with low depth. In this case, the mould has a simple structure, helping to reduce manufacturing time and costs and making it easier to maintain and repair. The radius of the die is an essential parameter in deep drawing; it greatly affects the quality of products (making wrinkles and tears). However, this study has shown that, in deep drawing without using a blank holder, the cone angle of the die α has a major influence on the quality of the body and rim of the products, such as the products may or may not have wrinkles, either being thinned or thickened. This cone angle also affects the drawing force. This study has determined that, with α>120°, wrinkling begins to appear in the part wall, and wrinkling tends to increase as the angle α increases. The cone angle of the die for quality products is in the range of 100°<α≤120°. The taper angle smaller than 120° simultaneously increases the quality of the products and the cost of manufacturing die, so the most optimal value is determined by simulation and experimental verification as α=120°. The results of this study can be applied to fabricate hollow cylindrical parts with similar shapes when using the deep drawing method without using the blank holder
{"title":"Investigation and establishment of rational geometric factors of die in the deep drawing without a blank holder","authors":"Duy Van Dinh, Sinh Van Nguyen, Anh Ngoc Pham, Luc Van Nguyen, Viet Duc Do","doi":"10.21303/2461-4262.2024.003135","DOIUrl":"https://doi.org/10.21303/2461-4262.2024.003135","url":null,"abstract":"Deep drawing is an operation to transform flat or hollow blanks to create hollow parts of the required shape and size. Deep drawing is an essential operation in sheet-forming technology to manufacture hollow parts. These parts are commonly used in the automobile, aviation, and household appliances industries. To prevent wrinkles on the rim part, a blank holder will be used to compress and flatten the workpiece before the metal is pulled into the die by the punch. Deep drawing without using workpiece holding force is applied to form hollow parts with low depth. In this case, the mould has a simple structure, helping to reduce manufacturing time and costs and making it easier to maintain and repair. The radius of the die is an essential parameter in deep drawing; it greatly affects the quality of products (making wrinkles and tears). However, this study has shown that, in deep drawing without using a blank holder, the cone angle of the die α has a major influence on the quality of the body and rim of the products, such as the products may or may not have wrinkles, either being thinned or thickened. This cone angle also affects the drawing force. This study has determined that, with α>120°, wrinkling begins to appear in the part wall, and wrinkling tends to increase as the angle α increases. The cone angle of the die for quality products is in the range of 100°<α≤120°. The taper angle smaller than 120° simultaneously increases the quality of the products and the cost of manufacturing die, so the most optimal value is determined by simulation and experimental verification as α=120°. The results of this study can be applied to fabricate hollow cylindrical parts with similar shapes when using the deep drawing method without using the blank holder","PeriodicalId":11804,"journal":{"name":"EUREKA: Physics and Engineering","volume":"332 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140472224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-31DOI: 10.21303/2461-4262.2024.003050
F. Veliyev, A. Aslanova
The development of low-permeable hydrocarbon reservoirs is becoming an increasingly urgent task, and therefore, the study of the laws of fluid movement in subcapillary pores and microcracks is a crucial scientific and technical problem. The previous experimental studies revealed that a viscous liquid during flow in low-permeable reservoirs exhibits an anomalous non-Newtonian character, accompanied by a violation of the linearity of the filtration process, and, consequently, Darcy's law. It was also established that starting from a certain critical size of the opening of the crack, the flow of a Newtonian fluid (water, viscous oil) becomes non-Newtonian, with the manifestation of an initial pressure gradient and flow locking. In this research work, rheophysical aspects of the non-Newtonian behavior of water during flow in thin rectangular channels are considered experimentally. Using the microchannel model, it is established that the nonlinear rheological effect in the flow of water in micro-slits is mainly caused by the value of the electrokinetic potential of the system, by reducing of which it is possible to significantly weaken the non-Newtonian nature of the fluid. To regulate the electrokinetic potential of the fluid system, an antistatic additive was used, the optimal concentration of which was established experimentally. The optimal concentration is defined to be 0.006 %. Based on the Bingham model, the rheological parameters of water flow were estimated at different micro-slit clearances changed in the range of 10÷25 micrometers, in the absence and presence of an antistatic additive. It is also established that a reduction in the electrical potential of the fluid flow leads to a significant decrease in the yield shear stress during the flow of water in the microchannel
{"title":"A rheophysical study of the non-newtonian behavior of water flow in thin channels","authors":"F. Veliyev, A. Aslanova","doi":"10.21303/2461-4262.2024.003050","DOIUrl":"https://doi.org/10.21303/2461-4262.2024.003050","url":null,"abstract":"The development of low-permeable hydrocarbon reservoirs is becoming an increasingly urgent task, and therefore, the study of the laws of fluid movement in subcapillary pores and microcracks is a crucial scientific and technical problem. The previous experimental studies revealed that a viscous liquid during flow in low-permeable reservoirs exhibits an anomalous non-Newtonian character, accompanied by a violation of the linearity of the filtration process, and, consequently, Darcy's law. It was also established that starting from a certain critical size of the opening of the crack, the flow of a Newtonian fluid (water, viscous oil) becomes non-Newtonian, with the manifestation of an initial pressure gradient and flow locking. In this research work, rheophysical aspects of the non-Newtonian behavior of water during flow in thin rectangular channels are considered experimentally. Using the microchannel model, it is established that the nonlinear rheological effect in the flow of water in micro-slits is mainly caused by the value of the electrokinetic potential of the system, by reducing of which it is possible to significantly weaken the non-Newtonian nature of the fluid. To regulate the electrokinetic potential of the fluid system, an antistatic additive was used, the optimal concentration of which was established experimentally. The optimal concentration is defined to be 0.006 %. Based on the Bingham model, the rheological parameters of water flow were estimated at different micro-slit clearances changed in the range of 10÷25 micrometers, in the absence and presence of an antistatic additive. It is also established that a reduction in the electrical potential of the fluid flow leads to a significant decrease in the yield shear stress during the flow of water in the microchannel","PeriodicalId":11804,"journal":{"name":"EUREKA: Physics and Engineering","volume":"583 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140472561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-31DOI: 10.21303/2461-4262.2024.003048
Ratna Dewi Syarifah, Muhammad Nasrullah, Fajri Prasetya, Ahmad Muzaki Mabruri, A. Arkundato, G. Jatisukamto, Septy Handayani
Actinide minor is a reactor waste with high toxicity and a long half-life. Minor actinides can be reduced by reusing them as fuel mixtures in reactors. This research uses PWR reactors with the primary fuel UN-PuN or Uranium Plutonium Nitride with a burning time of 5 years. The fuel consists of enriched Uranium, reactor-grade Plutonium from LWR waste, and minor actinides including Neptunium-237, Americium-241, and Curium-244. The purpose of this study was to find a design that is effective in reducing minor actinide waste. There are six designs or cases used in the addition of minor actinides. Each case has six minor actinide pins in each assembly. The addition of minor actinides is arranged in heterogeneous cores. The analysis was carried out by observing the values of k-eff, excess reactivity, and mass of minor actinides obtained from simulations using OpenMC code 0.13.2 and the ENDF/B-VIII library. The homogeneous core obtained an excess reactivity of 9.7 % with a percentage of plutonium of 8 %. The results of the homogeneous core are used as a reference for preparing a heterogeneous core. The heterogeneous core obtained an excess reactivity of 9.9 % with a percentage of plutonium F1: 5.5 %, F2: 8 %, and F3: 10.5 %. Np-237 can be reduced by 53 kg, and Am-241 can be reduced by 61 kg with minor actinide pins in case 1. Cm-244 can be reduced by 363 kilograms with minor actinide pins in case 6. Excess reactivity in the addition of Np-237 and Am-241 decreased to 5.3 %, while the accumulation of Cm-244 increased to 12.1 %.
{"title":"Analysis of variation minor actinide pin configurations Np-237, AM-241, and Cm-244 in UN-PuN fueled pressurized water reactor","authors":"Ratna Dewi Syarifah, Muhammad Nasrullah, Fajri Prasetya, Ahmad Muzaki Mabruri, A. Arkundato, G. Jatisukamto, Septy Handayani","doi":"10.21303/2461-4262.2024.003048","DOIUrl":"https://doi.org/10.21303/2461-4262.2024.003048","url":null,"abstract":"Actinide minor is a reactor waste with high toxicity and a long half-life. Minor actinides can be reduced by reusing them as fuel mixtures in reactors. This research uses PWR reactors with the primary fuel UN-PuN or Uranium Plutonium Nitride with a burning time of 5 years. The fuel consists of enriched Uranium, reactor-grade Plutonium from LWR waste, and minor actinides including Neptunium-237, Americium-241, and Curium-244. The purpose of this study was to find a design that is effective in reducing minor actinide waste. There are six designs or cases used in the addition of minor actinides. Each case has six minor actinide pins in each assembly. The addition of minor actinides is arranged in heterogeneous cores. The analysis was carried out by observing the values of k-eff, excess reactivity, and mass of minor actinides obtained from simulations using OpenMC code 0.13.2 and the ENDF/B-VIII library. The homogeneous core obtained an excess reactivity of 9.7 % with a percentage of plutonium of 8 %. The results of the homogeneous core are used as a reference for preparing a heterogeneous core. The heterogeneous core obtained an excess reactivity of 9.9 % with a percentage of plutonium F1: 5.5 %, F2: 8 %, and F3: 10.5 %. Np-237 can be reduced by 53 kg, and Am-241 can be reduced by 61 kg with minor actinide pins in case 1. Cm-244 can be reduced by 363 kilograms with minor actinide pins in case 6. Excess reactivity in the addition of Np-237 and Am-241 decreased to 5.3 %, while the accumulation of Cm-244 increased to 12.1 %.","PeriodicalId":11804,"journal":{"name":"EUREKA: Physics and Engineering","volume":"24 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140475716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-31DOI: 10.21303/2461-4262.2024.003071
Do Duc Trung, Nguyen Thi Phuong Giang, Nguyen Hoai Son
Solving a multi-objective optimization problem involves finding the best solution to simultaneously satisfy multiple predefined objectives. Currently, various mathematical methods are available for solving optimization problems in general, and multi-objective optimization in particular. The comparison of mathematical methods when addressing the same problem has been explored in numerous studies. In this study, let’s conduct a comparison of two multi-objective optimization methods: the PSI method and the CURLI method. These two methods were applied collectively to tackle a multi-objective optimization problem related to a turning process. Experimental data were borrowed from a previous study, and a total of sixteen experiments were conducted. Roughness average (Ra), Roundness Error (RE), Tool Wear (VB), and Material Removal Rate (MRR) were the four output parameters measured in each experiment. The objective of solving the multi-objective optimization problem was to identify an experiment among the sixteen existing experiments that simultaneously minimized the three parameters of Ra, RE, and VB while maximizing MRR. The optimal results determined using the PSI and CURLI methods were also compared with the optimal results obtained through other methods (COCOSO, MABAC, MAIRCA, EAMR and TOPSIS) in published documents. The comparison results indicate that the optimal experiment found using the CURLI method consistently matches that of other methods. In contrast, the optimal results obtained through the PSI method differ significantly from those obtained through other methods. The Spearman correlation ranking coefficient between CURLI and the five methods COCOSO, MABAC, MAIRCA, EAMR, and TOPSIS is very high, ranging from 0.9 to 1. In contrast, this coefficient is very small when comparing PSI with the aforementioned five methods, falling within the range of –0.6088 to –0.3706 in this case. Ultimately, this study concludes that the CURLI method is suiTable for solving the multi-objective optimization problem in the turning process, whereas the PSI method is deemed unsuitable
{"title":"Comparision of both methods psi and curli: applied in solving multi-objective optimization problem of turning process","authors":"Do Duc Trung, Nguyen Thi Phuong Giang, Nguyen Hoai Son","doi":"10.21303/2461-4262.2024.003071","DOIUrl":"https://doi.org/10.21303/2461-4262.2024.003071","url":null,"abstract":"Solving a multi-objective optimization problem involves finding the best solution to simultaneously satisfy multiple predefined objectives. Currently, various mathematical methods are available for solving optimization problems in general, and multi-objective optimization in particular. The comparison of mathematical methods when addressing the same problem has been explored in numerous studies. In this study, let’s conduct a comparison of two multi-objective optimization methods: the PSI method and the CURLI method. These two methods were applied collectively to tackle a multi-objective optimization problem related to a turning process. Experimental data were borrowed from a previous study, and a total of sixteen experiments were conducted. Roughness average (Ra), Roundness Error (RE), Tool Wear (VB), and Material Removal Rate (MRR) were the four output parameters measured in each experiment. The objective of solving the multi-objective optimization problem was to identify an experiment among the sixteen existing experiments that simultaneously minimized the three parameters of Ra, RE, and VB while maximizing MRR. The optimal results determined using the PSI and CURLI methods were also compared with the optimal results obtained through other methods (COCOSO, MABAC, MAIRCA, EAMR and TOPSIS) in published documents. The comparison results indicate that the optimal experiment found using the CURLI method consistently matches that of other methods. In contrast, the optimal results obtained through the PSI method differ significantly from those obtained through other methods. The Spearman correlation ranking coefficient between CURLI and the five methods COCOSO, MABAC, MAIRCA, EAMR, and TOPSIS is very high, ranging from 0.9 to 1. In contrast, this coefficient is very small when comparing PSI with the aforementioned five methods, falling within the range of –0.6088 to –0.3706 in this case. Ultimately, this study concludes that the CURLI method is suiTable for solving the multi-objective optimization problem in the turning process, whereas the PSI method is deemed unsuitable","PeriodicalId":11804,"journal":{"name":"EUREKA: Physics and Engineering","volume":"732 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140476534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-31DOI: 10.21303/2461-4262.2024.003220
Tran Duc Thang, Duong Van Le, Dat Van Chu
This article presents a dynamic model of the TMM-3M heavy mechanized bridge during the frame lifting stage, which is driven by a hydraulic system, constituting the initial phase of the bridge erection process. The model is constructed as a multi-body dynamic system, taking into account the elastic deformation of the rear outriggers, front tires, and front suspension system. The research model integrates a mechanical system controlled by hydraulic cylinders, with pressure being considered as a variable reacting to external loads during the system's operation. Lagrangian equations of the second kind are utilized to establish a system of differential equations describing the oscillations of the system and form the basis for investigating the dynamics of the frame lifting process. The system of differential equations is solved numerically using MATLAB simulation software based on the Runge-Kutta algorithm. The study has revealed laws regarding the displacement and velocity of components within the system, evaluating the stability of the TMM-3M heavy mechanized bridge during operation. This research paves the way for a comprehensive understanding of the working process of the TMM-3M heavy mechanized bridge, aiming for practical improvements to minimize deployment or retrieval time, reduce the number of deployment team members, enhance the automation of the operation process to reduce the workload for operators
{"title":"Research on the dynamics of a heavy mechanized bridge in the deployment phase of the lifting frame","authors":"Tran Duc Thang, Duong Van Le, Dat Van Chu","doi":"10.21303/2461-4262.2024.003220","DOIUrl":"https://doi.org/10.21303/2461-4262.2024.003220","url":null,"abstract":"This article presents a dynamic model of the TMM-3M heavy mechanized bridge during the frame lifting stage, which is driven by a hydraulic system, constituting the initial phase of the bridge erection process. The model is constructed as a multi-body dynamic system, taking into account the elastic deformation of the rear outriggers, front tires, and front suspension system. The research model integrates a mechanical system controlled by hydraulic cylinders, with pressure being considered as a variable reacting to external loads during the system's operation. Lagrangian equations of the second kind are utilized to establish a system of differential equations describing the oscillations of the system and form the basis for investigating the dynamics of the frame lifting process. The system of differential equations is solved numerically using MATLAB simulation software based on the Runge-Kutta algorithm. The study has revealed laws regarding the displacement and velocity of components within the system, evaluating the stability of the TMM-3M heavy mechanized bridge during operation. This research paves the way for a comprehensive understanding of the working process of the TMM-3M heavy mechanized bridge, aiming for practical improvements to minimize deployment or retrieval time, reduce the number of deployment team members, enhance the automation of the operation process to reduce the workload for operators","PeriodicalId":11804,"journal":{"name":"EUREKA: Physics and Engineering","volume":"44 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140479146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-31DOI: 10.21303/2461-4262.2024.003074
Ukrit Kornkanok, S. Deeon, S. Wongcharoen
This research presented the utilization of Safety Transient Voltage Suppressors (STVS) in the track circuits of railway signaling systems, occurring during circuit switching due to changes in track occupancy conditions, resulting in damage and malfunction of the BR966F2 relay. The study employed Failure Modes and Effect Analysis (FMEA) combined with 1kV actual transient overvoltage testing featuring a waveform slope of 184/380 μs. Results revealed two transient voltage suppression levels encompassing Set A_(a,b), Set B_(a) and Set C_(a,b) as well as Set A//Set B//Set C and All Mode. These configurations achieved a clamping voltage of 41.6 V, categorized as Stage 1. Configurations like Set A_(c), Set B_(b,c) and Set C_(c) displayed increased series circuit behavior leading to a clamping voltage of 48.6 V, categorized as Stage 2. The application of STVS device in the track circuit of the signaling system reduced the transient voltage by diversion of the Transient Current or ISTVS through the STVS device into the ground system or the clamping voltage at the STVS device. This prevented the transient power from flowing into and damaging the relays of the track circuit, leaving only the clamping voltage with a missing peak wave. This contributed to the stability of the track circuit within the railway signaling system while also raising the Safety Integrity Level (SIL) to a higher standard, in accordance with the specifications of IEC 16508-4 and the unique requirements of the State Railway of Thailand. These enhancements increased the advanced safety system within the track circuit, particularly for train control and train operation functions of the State Railway of Thailand
{"title":"Applications of safety transient voltage suppressors in the track circuits of railway signaling systems","authors":"Ukrit Kornkanok, S. Deeon, S. Wongcharoen","doi":"10.21303/2461-4262.2024.003074","DOIUrl":"https://doi.org/10.21303/2461-4262.2024.003074","url":null,"abstract":"This research presented the utilization of Safety Transient Voltage Suppressors (STVS) in the track circuits of railway signaling systems, occurring during circuit switching due to changes in track occupancy conditions, resulting in damage and malfunction of the BR966F2 relay. The study employed Failure Modes and Effect Analysis (FMEA) combined with 1kV actual transient overvoltage testing featuring a waveform slope of 184/380 μs. Results revealed two transient voltage suppression levels encompassing Set A_(a,b), Set B_(a) and Set C_(a,b) as well as Set A//Set B//Set C and All Mode. These configurations achieved a clamping voltage of 41.6 V, categorized as Stage 1. Configurations like Set A_(c), Set B_(b,c) and Set C_(c) displayed increased series circuit behavior leading to a clamping voltage of 48.6 V, categorized as Stage 2. The application of STVS device in the track circuit of the signaling system reduced the transient voltage by diversion of the Transient Current or ISTVS through the STVS device into the ground system or the clamping voltage at the STVS device. This prevented the transient power from flowing into and damaging the relays of the track circuit, leaving only the clamping voltage with a missing peak wave. This contributed to the stability of the track circuit within the railway signaling system while also raising the Safety Integrity Level (SIL) to a higher standard, in accordance with the specifications of IEC 16508-4 and the unique requirements of the State Railway of Thailand. These enhancements increased the advanced safety system within the track circuit, particularly for train control and train operation functions of the State Railway of Thailand","PeriodicalId":11804,"journal":{"name":"EUREKA: Physics and Engineering","volume":"571 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140479538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-31DOI: 10.21303/2461-4262.2024.003057
Sugeng Hadi Susilo, Azam Muzakhim Imanudin, Taufiq Rochman, Supriatna Adhisuwignjo
This paper discusses the impregnation of Cu atoms at carbonization temperature of water hyacinth bio carbon composite. This composite is used as an absorber of electromagnetic waves. Because the inference of electromagnetic waves can cause damage to other electronic equipment. In addition, electromagnetic wave radiation can cause various human health problems. The purpose of the research is to obtain a material that is able to absorb electromagnetic waves and increase electrical conductivity, impregnation of Cu atoms at carbonization temperature of water hyacinth bio carbon composite. The composite material uses a composition ratio of water hyacinth powder and phenol-formaldehyde of 30:70. The carburization temperatures used were 600 °C, 800 °C, and 1000 °C with a heat increase rate of 7 °C/minute. This study used Scanning Electron Micrograph (SEM), X-Ray Diffraction (XRD), LCR Meter, and vector network analyzer. The results show that the impregnation of Cu atoms at carbonization temperature can increase the area of the nanostructure, thereby increasing the formation of micropores in the composite. The higher the carbonization temperature, the percentage of Cu and carbon compounds can increase, while the percentage of crystal structure decreases. Impregnation of Cu atoms further strengthens the composite's absorption of electromagnetic wave radiation. Impregnation of Cu atoms in water hyacinth bio carbon composites at carbonization temperature can increase the electrical conductivity of the composite. The results of this research have potential applications in the electronics industry, batteries, and electrical devices, and can be used to protect devices from electromagnetic interference, especially in telecommunications and the medical field
本文讨论了在水葫芦生物碳复合材料碳化温度下的铜原子浸渍。这种复合材料可用作电磁波吸收剂。因为电磁波的推断会对其他电子设备造成损害。此外,电磁波辐射还会引起各种人体健康问题。本研究的目的是获得一种能够吸收电磁波并增加导电性的材料,在水葫芦生物碳复合材料的碳化温度下浸渍 Cu 原子。该复合材料使用的水葫芦粉末和苯酚-甲醛的成分比例为 30:70。渗碳温度分别为 600 ℃、800 ℃ 和 1000 ℃,升温速率为 7 ℃/分钟。这项研究使用了扫描电子显微镜(SEM)、X 射线衍射(XRD)、LCR 计和矢量网络分析仪。结果表明,在碳化温度下浸渍铜原子可增加纳米结构的面积,从而增加复合材料中微孔的形成。碳化温度越高,Cu 和碳化合物的比例会增加,而晶体结构的比例会降低。Cu 原子的浸渍进一步增强了复合材料对电磁波辐射的吸收。在碳化温度下,在布袋莲生物碳复合材料中浸渍 Cu 原子可提高复合材料的导电性。这项研究成果有望应用于电子工业、电池和电气设备,并可用于保护设备免受电磁干扰,尤其是在电信和医疗领域。
{"title":"Investigation of electrical conductivity and electromagnetic wave absorption capabilities of water hyacinth biocarbon impregnated with Cu atom","authors":"Sugeng Hadi Susilo, Azam Muzakhim Imanudin, Taufiq Rochman, Supriatna Adhisuwignjo","doi":"10.21303/2461-4262.2024.003057","DOIUrl":"https://doi.org/10.21303/2461-4262.2024.003057","url":null,"abstract":"This paper discusses the impregnation of Cu atoms at carbonization temperature of water hyacinth bio carbon composite. This composite is used as an absorber of electromagnetic waves. Because the inference of electromagnetic waves can cause damage to other electronic equipment. In addition, electromagnetic wave radiation can cause various human health problems. The purpose of the research is to obtain a material that is able to absorb electromagnetic waves and increase electrical conductivity, impregnation of Cu atoms at carbonization temperature of water hyacinth bio carbon composite. The composite material uses a composition ratio of water hyacinth powder and phenol-formaldehyde of 30:70. The carburization temperatures used were 600 °C, 800 °C, and 1000 °C with a heat increase rate of 7 °C/minute. This study used Scanning Electron Micrograph (SEM), X-Ray Diffraction (XRD), LCR Meter, and vector network analyzer. The results show that the impregnation of Cu atoms at carbonization temperature can increase the area of the nanostructure, thereby increasing the formation of micropores in the composite. The higher the carbonization temperature, the percentage of Cu and carbon compounds can increase, while the percentage of crystal structure decreases. Impregnation of Cu atoms further strengthens the composite's absorption of electromagnetic wave radiation. Impregnation of Cu atoms in water hyacinth bio carbon composites at carbonization temperature can increase the electrical conductivity of the composite. The results of this research have potential applications in the electronics industry, batteries, and electrical devices, and can be used to protect devices from electromagnetic interference, especially in telecommunications and the medical field","PeriodicalId":11804,"journal":{"name":"EUREKA: Physics and Engineering","volume":"174 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140479122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-31DOI: 10.21303/2461-4262.2024.003148
T. Photsathian, T. Suttikul, W. Tangsrirat
Electrical energy is now widely recognized as an essential part of life for humans, as it powers many daily amenities and devices that people cannot function without. Examples of these include traffic signals, medical equipment in hospitals, electrical appliances used in homes and offices, and public transportation. The process that generates electricity can pollute the air. Even though natural gas used in power plants is derived from fossil fuels, it can nevertheless produce air pollutants involving particulate matter (PM), nitrogen oxides (NOx), and carbon monoxide (CO), which affect human health and cause environmental problems. Numerous researchers have devoted significant efforts to developing methods that not only facilitate the monitoring of current air quality but also possess the capability to predict the impacts of this increasing rise. The primary cause of air pollution issues associated with electricity generation is the combustion of fossil fuels. The objective of this study was to create three multiple linear regression models using artificial intelligence (AI) technology and data collected from sensors positioned around the energy generator. The objective was to precisely predict the amount of air pollution that electricity generation would produce. The highly accurate forecasted data proved valuable in determining operational parameters that resulted in minimal air pollution emissions. The predicted values were accurate with the mean squared error (MSE) of 0.008, the mean absolute error (MAE) of 0.071, and the mean absolute percentage error (MAPE) of 0.006 for the turbine energy yield (TEY). For the CO, the MSE was 2.029, the MAE was 0.791, and the MAPE was 0.934. For the NOx, the MSE was 69.479, the MAE was 6.148, and the MAPE was 0.096. The results demonstrate that the models developed have a high level of accuracy in identifying operational conditions that result in minimal air pollution emissions, with the exception of NOx. The accuracy of the NOx model is relatively lower, but it may still be used to estimate the pattern of NOx emissions
{"title":"Prediction of air pollution from power generation using machine learning","authors":"T. Photsathian, T. Suttikul, W. Tangsrirat","doi":"10.21303/2461-4262.2024.003148","DOIUrl":"https://doi.org/10.21303/2461-4262.2024.003148","url":null,"abstract":"Electrical energy is now widely recognized as an essential part of life for humans, as it powers many daily amenities and devices that people cannot function without. Examples of these include traffic signals, medical equipment in hospitals, electrical appliances used in homes and offices, and public transportation. The process that generates electricity can pollute the air. Even though natural gas used in power plants is derived from fossil fuels, it can nevertheless produce air pollutants involving particulate matter (PM), nitrogen oxides (NOx), and carbon monoxide (CO), which affect human health and cause environmental problems. Numerous researchers have devoted significant efforts to developing methods that not only facilitate the monitoring of current air quality but also possess the capability to predict the impacts of this increasing rise. The primary cause of air pollution issues associated with electricity generation is the combustion of fossil fuels. The objective of this study was to create three multiple linear regression models using artificial intelligence (AI) technology and data collected from sensors positioned around the energy generator. The objective was to precisely predict the amount of air pollution that electricity generation would produce. The highly accurate forecasted data proved valuable in determining operational parameters that resulted in minimal air pollution emissions. The predicted values were accurate with the mean squared error (MSE) of 0.008, the mean absolute error (MAE) of 0.071, and the mean absolute percentage error (MAPE) of 0.006 for the turbine energy yield (TEY). For the CO, the MSE was 2.029, the MAE was 0.791, and the MAPE was 0.934. For the NOx, the MSE was 69.479, the MAE was 6.148, and the MAPE was 0.096. The results demonstrate that the models developed have a high level of accuracy in identifying operational conditions that result in minimal air pollution emissions, with the exception of NOx. The accuracy of the NOx model is relatively lower, but it may still be used to estimate the pattern of NOx emissions","PeriodicalId":11804,"journal":{"name":"EUREKA: Physics and Engineering","volume":"21 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140477261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}