Pub Date : 2023-07-27DOI: 10.21303/2461-4262.2023.002948
S. Abbasova, Gulbahar Mammadova
To establish premature optimal well operation modes, it is necessary to consider the process of well operation within the framework of ongoing processes in the common reservoir-well hydrodynamic system and take into account the peculiarities of changes in the properties of the gas condensate mixture and the thermobaric conditions of the reservoir in it. Therefore, the object of the study is the operation of a gas condensate well in the event of technological complications in it, which requires the selection of the necessary optimal operating mode to prevent these complications by comprehensively taking into account the factors influencing this process in the “reservoir-well” system. The article proposes a calculation scheme for establishing the optimal operating mode of a gas condensate well without the formation of a liquid plug at the bottomhole, taking into account the formation deformation during field development in the depletion mode. The problem is solved by determining the required current working volume of produced gas (as well as condensate), bottomhole and contour values of reservoir pressure, condensate saturation and reservoir porosity. As a result of the study, it was revealed that the determined characteristics of the selected optimal mode of a gas condensate well are significantly affected by a change in the reservoir properties of the reservoir (for example, the permeability of the reservoir), which in turn leads to a change in the optimal working gas flow rate of the well. The considered problem has not been previously studied in its full formulation, which is presented in this article, where the solution of the problem under study is achieved taking into account the change in the physical properties of the reservoir fluid and gas, as well as the reservoir properties of the reservoir under conditions of a change in the state of the reservoir system due to emerging deformation processes in the reservoir
{"title":"Development of a calculation scheme for selecting the optimal mode of operation of a gas condensate well taking into account the deformation conditions of the formation","authors":"S. Abbasova, Gulbahar Mammadova","doi":"10.21303/2461-4262.2023.002948","DOIUrl":"https://doi.org/10.21303/2461-4262.2023.002948","url":null,"abstract":"To establish premature optimal well operation modes, it is necessary to consider the process of well operation within the framework of ongoing processes in the common reservoir-well hydrodynamic system and take into account the peculiarities of changes in the properties of the gas condensate mixture and the thermobaric conditions of the reservoir in it. Therefore, the object of the study is the operation of a gas condensate well in the event of technological complications in it, which requires the selection of the necessary optimal operating mode to prevent these complications by comprehensively taking into account the factors influencing this process in the “reservoir-well” system. \u0000The article proposes a calculation scheme for establishing the optimal operating mode of a gas condensate well without the formation of a liquid plug at the bottomhole, taking into account the formation deformation during field development in the depletion mode. The problem is solved by determining the required current working volume of produced gas (as well as condensate), bottomhole and contour values of reservoir pressure, condensate saturation and reservoir porosity. As a result of the study, it was revealed that the determined characteristics of the selected optimal mode of a gas condensate well are significantly affected by a change in the reservoir properties of the reservoir (for example, the permeability of the reservoir), which in turn leads to a change in the optimal working gas flow rate of the well. \u0000The considered problem has not been previously studied in its full formulation, which is presented in this article, where the solution of the problem under study is achieved taking into account the change in the physical properties of the reservoir fluid and gas, as well as the reservoir properties of the reservoir under conditions of a change in the state of the reservoir system due to emerging deformation processes in the reservoir","PeriodicalId":11804,"journal":{"name":"EUREKA: Physics and Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73313078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-27DOI: 10.21303/2461-4262.2023.002795
Kien Huy Nguyen, D. V. Pham, Quoc Ve Tran
In this study, in order to optimize the quality criteria of the machined surface based on the Archimedean spiral, the relieving grinding process (RGP) was performed to machine the material of HSS P18 in a 1Б811 machine with four input parameters including graininess of grinding wheel (G), grinding wheel hardness (Hd), velocity of grinding wheel (V), and feed rate (s) and with three quality criteria including surface roughness (Ra), hardening of surface layer (∆HRC), and hardened layer thickness (∆L). Taguchi-AHP-Topsis method was successfully applied to solve the Multi-Criteria Decision Making (MCDM) problem in this case. The optimized results of the output parameters are surface roughness of 0.21 µm, surface hardening of 1.45 HRC, and hardened layer thickness of 34.18 µm. These results were determined at the set of the input parameters includes G, V, s with their values of 120, 24 m/s, 2.08 m/min, respectively, and Hd at level 1. The optimal results were verified through the comparison between the calculated and the experimental results using this set of optimal parameters. The differences between the calculated results and the experimental results were quite small (maximum different value was 4.8 %) Thus, the results of this study can be applied to solve the multi-objective optimization problems in RGP of the GMT surface based on the Archimedean spiral
{"title":"A multi-criteria decision-making in relieving grinding process of surface of gear milling tooth based on the archimedean spiral using taguchi-ahp-topsis method","authors":"Kien Huy Nguyen, D. V. Pham, Quoc Ve Tran","doi":"10.21303/2461-4262.2023.002795","DOIUrl":"https://doi.org/10.21303/2461-4262.2023.002795","url":null,"abstract":"In this study, in order to optimize the quality criteria of the machined surface based on the Archimedean spiral, the relieving grinding process (RGP) was performed to machine the material of HSS P18 in a 1Б811 machine with four input parameters including graininess of grinding wheel (G), grinding wheel hardness (Hd), velocity of grinding wheel (V), and feed rate (s) and with three quality criteria including surface roughness (Ra), hardening of surface layer (∆HRC), and hardened layer thickness (∆L). Taguchi-AHP-Topsis method was successfully applied to solve the Multi-Criteria Decision Making (MCDM) problem in this case. The optimized results of the output parameters are surface roughness of 0.21 µm, surface hardening of 1.45 HRC, and hardened layer thickness of 34.18 µm. These results were determined at the set of the input parameters includes G, V, s with their values of 120, 24 m/s, 2.08 m/min, respectively, and Hd at level 1. The optimal results were verified through the comparison between the calculated and the experimental results using this set of optimal parameters. The differences between the calculated results and the experimental results were quite small (maximum different value was 4.8 %) Thus, the results of this study can be applied to solve the multi-objective optimization problems in RGP of the GMT surface based on the Archimedean spiral","PeriodicalId":11804,"journal":{"name":"EUREKA: Physics and Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81040980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-27DOI: 10.21303/2461-4262.2023.002761
L. F. Wiranata, D. Kurniadi
There are still several obstacles to calculating fluid flow rate measurement on custody transfer, such as the distribution of one-phase fluid flow rate, less sTable pressure, and fluid flow rate changes, which are still the main problems in the process of a measuring system. To calculate the flow rate of one phase fluid, there is a method often used, namely transit time. In practice, the transit time works to send the ultrasonic pulse from upstream to downstream, which had to have a delay because the transducer must switch the function of a transducer to become transmitter or receiver. So, this paper proposed a new strategy of measurement multipath ultrasonic flowmeter (UFLW) with a simultaneous transit time method using a dual transmitter and receiver. The simultaneous method is a measuring technique that utilizes a pair of ultrasonic transducers as both trigger and receiver. The first transducer serves as the transmitter, while the second functions as the receiver, capturing the signal at the same time without changing their positions or roles. In order to implement the configuration setup, let’s try to use 3 paths configuration with 6 pairs of transducers, 3 on the upstream and 3 on the downstream. To estimate the flow velocity, let’s use long short-term memory (LSTM), which is one of the recurrent neural networks (RNN) architectures in the deep learning algorithm, and to evaluate the performance, let’s use the Bland-Altman plot and root mean squared error (RMSE) and validation loss of the LSTM model. The result shows RMSE 0.289 from the actual flow velocity, which means an LTSM with simultaneous multipath ultrasonic can reduce the error between prediction and actual measurement
{"title":"The development of simultaneous transducer ultrasonic with dual-transducer to measure flow velocity in the pipe","authors":"L. F. Wiranata, D. Kurniadi","doi":"10.21303/2461-4262.2023.002761","DOIUrl":"https://doi.org/10.21303/2461-4262.2023.002761","url":null,"abstract":"There are still several obstacles to calculating fluid flow rate measurement on custody transfer, such as the distribution of one-phase fluid flow rate, less sTable pressure, and fluid flow rate changes, which are still the main problems in the process of a measuring system. To calculate the flow rate of one phase fluid, there is a method often used, namely transit time. In practice, the transit time works to send the ultrasonic pulse from upstream to downstream, which had to have a delay because the transducer must switch the function of a transducer to become transmitter or receiver. So, this paper proposed a new strategy of measurement multipath ultrasonic flowmeter (UFLW) with a simultaneous transit time method using a dual transmitter and receiver. The simultaneous method is a measuring technique that utilizes a pair of ultrasonic transducers as both trigger and receiver. The first transducer serves as the transmitter, while the second functions as the receiver, capturing the signal at the same time without changing their positions or roles. In order to implement the configuration setup, let’s try to use 3 paths configuration with 6 pairs of transducers, 3 on the upstream and 3 on the downstream. To estimate the flow velocity, let’s use long short-term memory (LSTM), which is one of the recurrent neural networks (RNN) architectures in the deep learning algorithm, and to evaluate the performance, let’s use the Bland-Altman plot and root mean squared error (RMSE) and validation loss of the LSTM model. The result shows RMSE 0.289 from the actual flow velocity, which means an LTSM with simultaneous multipath ultrasonic can reduce the error between prediction and actual measurement","PeriodicalId":11804,"journal":{"name":"EUREKA: Physics and Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85846413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-27DOI: 10.21303/2461-4262.2023.002789
Ngoc-Tien Tran
Topology optimization (TO) has become increasingly popular as a useful tool for designers and engineers during the initial stages of design. TO aims to optimize the geometry of a design to achieve a specific objective, which can range from discrete grid-like structures to continuum structures. In essence, the geometry is parameterized pixel-by-pixel, with the material density of each element or mesh point serving as a design variable. After that, the optimization problem is addressed using mathematical programming and analytic gradient calculation-based optimization approaches. In this paper, we investigate the material distribution when performing topology optimization for an isotropic material with boundary conditions including fixed structures, supports, or external forces changing. In addition, we investigate more cases where there are material holes in the design domain, meaning that the density of the material is zero. In this study, the modified SIMP method and filter sensitivity are used for topology optimization. The results of the study are the optimized structural domains and the change in compliance according to the number of iterations. The results indicate that the compliance value of most structures reaches convergence after optimization up to the 20th iteration. Moreover, if the force applied to the design domain is symmetrical, the optimal structure also exhibits symmetry. Thus, the distribution of material is concentrated at the positions of the supports. Topology optimization produces designs that both meet boundary conditions while saving material and reducing their mass. The results obtained are important data for structural optimization design for isotropic elastomeric materials. From there, it can be applied to real objects with different requirements and conditions
{"title":"Topology optimization of isotropic elastic materials in the two-dimensional design domain with changes in characteristic boundary conditions","authors":"Ngoc-Tien Tran","doi":"10.21303/2461-4262.2023.002789","DOIUrl":"https://doi.org/10.21303/2461-4262.2023.002789","url":null,"abstract":"Topology optimization (TO) has become increasingly popular as a useful tool for designers and engineers during the initial stages of design. TO aims to optimize the geometry of a design to achieve a specific objective, which can range from discrete grid-like structures to continuum structures. In essence, the geometry is parameterized pixel-by-pixel, with the material density of each element or mesh point serving as a design variable. After that, the optimization problem is addressed using mathematical programming and analytic gradient calculation-based optimization approaches. In this paper, we investigate the material distribution when performing topology optimization for an isotropic material with boundary conditions including fixed structures, supports, or external forces changing. In addition, we investigate more cases where there are material holes in the design domain, meaning that the density of the material is zero. In this study, the modified SIMP method and filter sensitivity are used for topology optimization. The results of the study are the optimized structural domains and the change in compliance according to the number of iterations. The results indicate that the compliance value of most structures reaches convergence after optimization up to the 20th iteration. Moreover, if the force applied to the design domain is symmetrical, the optimal structure also exhibits symmetry. Thus, the distribution of material is concentrated at the positions of the supports. Topology optimization produces designs that both meet boundary conditions while saving material and reducing their mass. The results obtained are important data for structural optimization design for isotropic elastomeric materials. From there, it can be applied to real objects with different requirements and conditions","PeriodicalId":11804,"journal":{"name":"EUREKA: Physics and Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78103927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-27DOI: 10.21303/2461-4262.2023.002797
Quang Duc Vu, Trung Dac Nguyen, Hoa Van Dang, D. T. Phan
The step hollow shaft components are composed of two layers of different materials, they are formed using tube hydroforming process due to its high strength and rigidity, low weight and flexible profiles, compared to traditional casting, welding, and forming methods. These products are effectively used in industries such as the automotive, shipbuilding, aerospace and defense, and oil and gas sectors. The success of various double layer pipe hydroforming process depends on several factors, with the most important being the internal pressure path and axial loading path. This paper presents research on the effect of input loading paths on the hydroforming ability of a different two-layer metal structure - an outer layer of SUS304 stainless steel and an inner layer of CDA110 copper - using 3D numerical simulations on Abaqus/CAE software. Output criteria were used to evaluate the forming ability of the formed components, including Von Mises stress, Plastic strain component (PEmax), wall thinning, and pipe profile, based on which the input loading paths were combined during the forming process. These output criteria allow for more accurate predictions of material behavior during the hydroforming process, as well as deformation and stress distribution. This can support the design process, improve product quality, reduce errors, and increase production efficiency. The research results can be applied as a basis for optimizing load paths for the next experimental step in the near future, for undergraduate and graduate training, as well as allowing designers and engineers to optimize the process of hydroforming of different 2-layer tubes, reducing costs, improving accuracy, flexible design, minimizing risks, and increasing efficiency
{"title":"Effect of loading paths on hydroforming ability of stepped hollow shaft components from double layer pipes","authors":"Quang Duc Vu, Trung Dac Nguyen, Hoa Van Dang, D. T. Phan","doi":"10.21303/2461-4262.2023.002797","DOIUrl":"https://doi.org/10.21303/2461-4262.2023.002797","url":null,"abstract":"The step hollow shaft components are composed of two layers of different materials, they are formed using tube hydroforming process due to its high strength and rigidity, low weight and flexible profiles, compared to traditional casting, welding, and forming methods. These products are effectively used in industries such as the automotive, shipbuilding, aerospace and defense, and oil and gas sectors. The success of various double layer pipe hydroforming process depends on several factors, with the most important being the internal pressure path and axial loading path. This paper presents research on the effect of input loading paths on the hydroforming ability of a different two-layer metal structure - an outer layer of SUS304 stainless steel and an inner layer of CDA110 copper - using 3D numerical simulations on Abaqus/CAE software. Output criteria were used to evaluate the forming ability of the formed components, including Von Mises stress, Plastic strain component (PEmax), wall thinning, and pipe profile, based on which the input loading paths were combined during the forming process. These output criteria allow for more accurate predictions of material behavior during the hydroforming process, as well as deformation and stress distribution. This can support the design process, improve product quality, reduce errors, and increase production efficiency. The research results can be applied as a basis for optimizing load paths for the next experimental step in the near future, for undergraduate and graduate training, as well as allowing designers and engineers to optimize the process of hydroforming of different 2-layer tubes, reducing costs, improving accuracy, flexible design, minimizing risks, and increasing efficiency","PeriodicalId":11804,"journal":{"name":"EUREKA: Physics and Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83985702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-27DOI: 10.21303/2461-4262.2023.002994
S. Panchenko, J. Gerlici, G. Vatulia, A. Lovska, V. Ravlyuk, J. Harusinec
The object of the research is the processes of thermal stress, perception and redistribution of loads by the brake composite pad during braking of the car in operation. In the current conditions, wedge-dual wear of composite brake pads is observed in the braking systems of freight cars, the feature of which is the deterioration of the braking efficiency of freight trains. With this type of wear, both an increase in the load on the brake pad and an "underuse" of the amount of pressure on it can occur. A comprehensive thermal calculation was carried out for composite brake pads with uniform and wedge-dual wear. The results of the calculation showed that the amount of pressure on an abnormally worn pad is 23.3 % less than that acting on a pad with nominal values. It has been proven that the change in the pressure force on the composite pad with different values of the wear parameters during braking leads to a change in the braking force that occurs between the wheel and the rail during braking. The calculation of the strength of the composite brake pad with wedge-dual wear was carried out. The obtained results will make it possible to develop measures to modernize the elements of the brake lever transmission of freight cars. The field of practical use of the obtained results is car-building enterprises. The conditions for the practical use of the results are the brake lever transmissions of carriages of cars with a gauge of 1520 mm. The conducted studies prove the negative impact of wedge-dual wear not only on braking efficiency, but also on the strength of brake pads. This makes it necessary to create measures aimed at its elimination, which will contribute to increasing the level of train traffic safety and significantly reducing the operational costs of maintaining freight cars
{"title":"Studying the load of composite brake pads under high-temperature impact from the rolling surface of wheels","authors":"S. Panchenko, J. Gerlici, G. Vatulia, A. Lovska, V. Ravlyuk, J. Harusinec","doi":"10.21303/2461-4262.2023.002994","DOIUrl":"https://doi.org/10.21303/2461-4262.2023.002994","url":null,"abstract":"The object of the research is the processes of thermal stress, perception and redistribution of loads by the brake composite pad during braking of the car in operation. \u0000In the current conditions, wedge-dual wear of composite brake pads is observed in the braking systems of freight cars, the feature of which is the deterioration of the braking efficiency of freight trains. With this type of wear, both an increase in the load on the brake pad and an \"underuse\" of the amount of pressure on it can occur. \u0000A comprehensive thermal calculation was carried out for composite brake pads with uniform and wedge-dual wear. The results of the calculation showed that the amount of pressure on an abnormally worn pad is 23.3 % less than that acting on a pad with nominal values. \u0000It has been proven that the change in the pressure force on the composite pad with different values of the wear parameters during braking leads to a change in the braking force that occurs between the wheel and the rail during braking. \u0000The calculation of the strength of the composite brake pad with wedge-dual wear was carried out. \u0000The obtained results will make it possible to develop measures to modernize the elements of the brake lever transmission of freight cars. \u0000The field of practical use of the obtained results is car-building enterprises. The conditions for the practical use of the results are the brake lever transmissions of carriages of cars with a gauge of 1520 mm. \u0000The conducted studies prove the negative impact of wedge-dual wear not only on braking efficiency, but also on the strength of brake pads. This makes it necessary to create measures aimed at its elimination, which will contribute to increasing the level of train traffic safety and significantly reducing the operational costs of maintaining freight cars","PeriodicalId":11804,"journal":{"name":"EUREKA: Physics and Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72695530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-27DOI: 10.21303/2461-4262.2023.002836
A. Aripriharta, Triawan Waskita Bayuanggara, I. Fadlika, S. Sujito, A. Afandi, N. Mufti, M. Diantoro, G. Horng
Shaded conditions cause a decrease in the performance of photovoltaic (PV) systems. In this situation, the power versus voltage curve shows two maximum power points, namely local (LMPP) and global (GMPP). The main challenge for extracting the maximum power from a PV system during shading conditions is the existence of a false maximum or LMPP along with a true maximum or GMPP. Traditional maximum power point tracking (MPPT) has faced hurdles in overcoming the situation. Therefore, this paper describes the implementation of Queen Honey Bee Migration (or QHBM for short) to track GMPP of PV systems, which called QHBM MPPT. The highlight of this paper is the simulation results of QHBM MPPT on PV systems under various shading conditions. We implemented QHBM MPPT on a boost converter installed on a 1200 Wp PV system. We conducted a simulation using MATLAB® with five scenarios which aim to show the various shadows that PV systems might encounter in reality. The MPPT QHBM is tested repeatedly and then the average value is taken to measure performance in MPP tracking. The average value is used to calculate tracking efficiency, number of iteration or convergence time. We also compared QHBM with other methods, namely incremental conductance (IC) and Particle Swarm Optimization (PSO). The results obtained show that the QHBM and PSO MPPTs outperform the IC MPPT in terms of efficiency, convergence time and the number of iterations. IC MPPTs oscillate under shading conditions since no knowledge of GMPP. Both PSO and QHBM MPPTs know GMPP from scouts or particles, respectively. Therefore, PSO and QHBM MPPTs are better than IC MPPT in various shading cases
{"title":"Comparison of queen honey bee colony migration with various MPPTs on photovoltaic system under shaded conditions","authors":"A. Aripriharta, Triawan Waskita Bayuanggara, I. Fadlika, S. Sujito, A. Afandi, N. Mufti, M. Diantoro, G. Horng","doi":"10.21303/2461-4262.2023.002836","DOIUrl":"https://doi.org/10.21303/2461-4262.2023.002836","url":null,"abstract":"Shaded conditions cause a decrease in the performance of photovoltaic (PV) systems. In this situation, the power versus voltage curve shows two maximum power points, namely local (LMPP) and global (GMPP). The main challenge for extracting the maximum power from a PV system during shading conditions is the existence of a false maximum or LMPP along with a true maximum or GMPP. Traditional maximum power point tracking (MPPT) has faced hurdles in overcoming the situation. Therefore, this paper describes the implementation of Queen Honey Bee Migration (or QHBM for short) to track GMPP of PV systems, which called QHBM MPPT. The highlight of this paper is the simulation results of QHBM MPPT on PV systems under various shading conditions. \u0000We implemented QHBM MPPT on a boost converter installed on a 1200 Wp PV system. We conducted a simulation using MATLAB® with five scenarios which aim to show the various shadows that PV systems might encounter in reality. The MPPT QHBM is tested repeatedly and then the average value is taken to measure performance in MPP tracking. The average value is used to calculate tracking efficiency, number of iteration or convergence time. We also compared QHBM with other methods, namely incremental conductance (IC) and Particle Swarm Optimization (PSO). The results obtained show that the QHBM and PSO MPPTs outperform the IC MPPT in terms of efficiency, convergence time and the number of iterations. IC MPPTs oscillate under shading conditions since no knowledge of GMPP. Both PSO and QHBM MPPTs know GMPP from scouts or particles, respectively. Therefore, PSO and QHBM MPPTs are better than IC MPPT in various shading cases","PeriodicalId":11804,"journal":{"name":"EUREKA: Physics and Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89930865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-25DOI: 10.21303/2461-4262.2023.002904
Taha Yaseen Khalaf, O. Hussein, Ahmed Y. Khalaf AL-Tarboolee
One of the most important human diseases that need to be considered in terms of development of the medical engineering devices is cardiovascular disease which is a significant cause of death globally recently. Valvular heart disease is normally treated by restoring or altering heart valves with an artificial one. But the new prosthetic valve designs necessitate testing for durability estimate and failure method. It is significant to simulate the circulation system by the building of a pulse duplicator system. This study is stated by clarifying the parameter and implementation steps of the pulse duplicator system in which the different researchers have utilized the system and tried to explain the design steps of using this system without going into the system design by steps or what are the main part of this system and how can be implemented, tested, and developed individually. In this design, a DC motor produces, through a hydraulic piston, a flow pulse to the left ventricle chamber model, which is linked with two interchangeable prosthetic heart valves. The computer is used to control and process data from volumetric flow rate and image. The findings show that the linear displacement, the velocity of the piston and the linear acceleration regularly become significant particularly and follows a sinusoidal wave shape during one cycle, when (crank length/connecting rod length) value is equal 0.2 or less. Several sets of measured flow rate readings were obtained by using flow meter sensor YF-S201, results after calibration showed the error rate falls within permissible limits
{"title":"Design, analysis and construction of a simple pulse duplicator system","authors":"Taha Yaseen Khalaf, O. Hussein, Ahmed Y. Khalaf AL-Tarboolee","doi":"10.21303/2461-4262.2023.002904","DOIUrl":"https://doi.org/10.21303/2461-4262.2023.002904","url":null,"abstract":"One of the most important human diseases that need to be considered in terms of development of the medical engineering devices is cardiovascular disease which is a significant cause of death globally recently. Valvular heart disease is normally treated by restoring or altering heart valves with an artificial one. But the new prosthetic valve designs necessitate testing for durability estimate and failure method. It is significant to simulate the circulation system by the building of a pulse duplicator system. This study is stated by clarifying the parameter and implementation steps of the pulse duplicator system in which the different researchers have utilized the system and tried to explain the design steps of using this system without going into the system design by steps or what are the main part of this system and how can be implemented, tested, and developed individually. \u0000In this design, a DC motor produces, through a hydraulic piston, a flow pulse to the left ventricle chamber model, which is linked with two interchangeable prosthetic heart valves. The computer is used to control and process data from volumetric flow rate and image. The findings show that the linear displacement, the velocity of the piston and the linear acceleration regularly become significant particularly and follows a sinusoidal wave shape during one cycle, when (crank length/connecting rod length) value is equal 0.2 or less. Several sets of measured flow rate readings were obtained by using flow meter sensor YF-S201, results after calibration showed the error rate falls within permissible limits","PeriodicalId":11804,"journal":{"name":"EUREKA: Physics and Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73724707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-25DOI: 10.21303/2461-4262.2023.002846
O. Dyshin, I. Habibov, Sevda Aghammadova, S. Abasova, Matanat Hasanguliyeva
The paper develops a hybrid algorithm for predicting a linear dynamic system based on a combination of an adaptive Kalman filter with preprocessing using a wavelet packet analysis of the initial data of the background of the system under study. Being based on Fourier analysis, wavelet analysis and wavelet packet analysis are quite acceptable for time-frequency analysis of a signal, but they cannot be performed recursively and in real time and, therefore, cannot be used for dynamic analysis of random processes. In combination with the Kalman filter, a combination of the characteristics of the multiple-resolution wavelet transform and the recurrent formulas of the Kalman filter in real time is obtained. Since the original signal is usually given in the form of discrete measurements, to implement their convolution used in the Kalman filter, it is necessary to use cyclic convolutions with periodic continuation of the signal for any time interval. In the case of different values of the original signal at the ends of the considered time interval [0,T], the periodized signal can have large values and sharp different amplitude at the ends of the periodization interval. To smooth out the values of the periodized signal at the ends of the periodization interval, a cascade decomposition and recovery algorithm was used using Dobshy boundary wavelets with a finite number of moments. Signal recovery is performed in a series of operations comparable to the duration of the time interval under consideration. The smoothed signal obtained in this way is used as a Kalman filter platform for predicting the dynamic system under study. Taking into account that the correlation functions of the noise in the observation equation and the phase state of the system are usually unknown, the adaptation of the Kalman filter to these noises (interference) is carried out on the basis of a zeroing sequence. The manuscript does not contain related data
{"title":"Hybrid kalman filtering algorithm with wavelet packet data processing for linear dynamical systems","authors":"O. Dyshin, I. Habibov, Sevda Aghammadova, S. Abasova, Matanat Hasanguliyeva","doi":"10.21303/2461-4262.2023.002846","DOIUrl":"https://doi.org/10.21303/2461-4262.2023.002846","url":null,"abstract":"The paper develops a hybrid algorithm for predicting a linear dynamic system based on a combination of an adaptive Kalman filter with preprocessing using a wavelet packet analysis of the initial data of the background of the system under study. \u0000Being based on Fourier analysis, wavelet analysis and wavelet packet analysis are quite acceptable for time-frequency analysis of a signal, but they cannot be performed recursively and in real time and, therefore, cannot be used for dynamic analysis of random processes. In combination with the Kalman filter, a combination of the characteristics of the multiple-resolution wavelet transform and the recurrent formulas of the Kalman filter in real time is obtained. \u0000Since the original signal is usually given in the form of discrete measurements, to implement their convolution used in the Kalman filter, it is necessary to use cyclic convolutions with periodic continuation of the signal for any time interval. In the case of different values of the original signal at the ends of the considered time interval [0,T], the periodized signal can have large values and sharp different amplitude at the ends of the periodization interval. \u0000To smooth out the values of the periodized signal at the ends of the periodization interval, a cascade decomposition and recovery algorithm was used using Dobshy boundary wavelets with a finite number of moments. Signal recovery is performed in a series of operations comparable to the duration of the time interval under consideration. \u0000The smoothed signal obtained in this way is used as a Kalman filter platform for predicting the dynamic system under study. \u0000Taking into account that the correlation functions of the noise in the observation equation and the phase state of the system are usually unknown, the adaptation of the Kalman filter to these noises (interference) is carried out on the basis of a zeroing sequence. The manuscript does not contain related data","PeriodicalId":11804,"journal":{"name":"EUREKA: Physics and Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76057147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-25DOI: 10.21303/2461-4262.2023.002877
O. Kryazhych, O. Kovalenko, Victoria Itskovych, Kateryna Iushchenko
Birch juice is a drink made of birch sap of medium-sized wild trees at the springtime. It is popular especially in northern Europe and Asia on territories with occasionally waterlogged permeable soils. However, some of these areas coincide with highest tritium leakage ever recorded (Kyshtym, Chernobyl and Fukushima). Robust analyses on tritium levels (scintillation method) in the birch sap were carried out in location with a constant load of tritiated water between 2003 and 2016. Sampling the birch sap was carried out annually in season (usually from the final week of February to the first-week of April. Sampling of birch sap was usually has been carried out during the period when the daytime air temperature was within +(5–8) °C minimum for 3 days. During this period, began intensive sap flow. Data obtained is put in relation to air temperature and humidity in order to contribute to the understanding basic mechanisms of tritium intake via birch. Findings confirmed that tritium easily penetrates via water into any organism and it can accumulate there for much longer than its half-decay times. It was firstly revealed that it is possible to predict the concentration of this dangerous pollutant in the birch sap based on the temperature and humidity dynamics. And with continuous input of tritium into the environment, the concentration of tritium in free water increases polynomial. The specific tritium activity values due to the gradient of tritium concentration in the atmosphere-plant-ground system of the change in temperature and humidity. For the organization of monitoring and control, the possibility of radioecological safety for the affected areas was determined
{"title":"The modeling of changes in the specific activity of tritium in plants","authors":"O. Kryazhych, O. Kovalenko, Victoria Itskovych, Kateryna Iushchenko","doi":"10.21303/2461-4262.2023.002877","DOIUrl":"https://doi.org/10.21303/2461-4262.2023.002877","url":null,"abstract":"Birch juice is a drink made of birch sap of medium-sized wild trees at the springtime. It is popular especially in northern Europe and Asia on territories with occasionally waterlogged permeable soils. However, some of these areas coincide with highest tritium leakage ever recorded (Kyshtym, Chernobyl and Fukushima). Robust analyses on tritium levels (scintillation method) in the birch sap were carried out in location with a constant load of tritiated water between 2003 and 2016. Sampling the birch sap was carried out annually in season (usually from the final week of February to the first-week of April. Sampling of birch sap was usually has been carried out during the period when the daytime air temperature was within +(5–8) °C minimum for 3 days. During this period, began intensive sap flow. Data obtained is put in relation to air temperature and humidity in order to contribute to the understanding basic mechanisms of tritium intake via birch. Findings confirmed that tritium easily penetrates via water into any organism and it can accumulate there for much longer than its half-decay times. It was firstly revealed that it is possible to predict the concentration of this dangerous pollutant in the birch sap based on the temperature and humidity dynamics. And with continuous input of tritium into the environment, the concentration of tritium in free water increases polynomial. The specific tritium activity values due to the gradient of tritium concentration in the atmosphere-plant-ground system of the change in temperature and humidity. For the organization of monitoring and control, the possibility of radioecological safety for the affected areas was determined","PeriodicalId":11804,"journal":{"name":"EUREKA: Physics and Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73497342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}