Pub Date : 2024-08-29DOI: 10.1134/s1064229324600568
T. Kawakami, K. Makoto
Abstract
Earthworms are important ecosystem engineers that stabilize soil aggregates and increase the size of aggregates. The major determinants for the biomass, density, and mean individual weight of lumbricid earthworms are considered to be the availability of soil organic carbon (SOC) and calcium (Ca). However, the importance of SOC and Ca availability for lumbricid earthworms has not been tested simultaneously in the field. In addition, the ripple effects of SOC and Ca on the soil aggregate stability and relative abundance of larger aggregates (mean weight diameter; MWD) via earthworm communities are poorly understood. To fill these knowledge gaps, we conducted field research across a spatially wide range of cool temperate forests, where soils were classified as Cambisols and Andosols and evaluated the relationships among the biomass, density, and mean individual weight of lumbricid earthworms, soil chemical properties, and MWD by conducting structural equation modelling (SEM). Our results showed that SOC affected not the density but the mean individual weight of earthworms. On the other hand, interestingly, exchangeable Ca affected not the mean individual weight but the density of earthworms. These results suggest that SOC stimulates earthworm growth and that exchangeable. Ca enhances the fertility rate and/or survival rate in earthworm communities in forest ecosystems. Furthermore, SOC had a positive ripple effect on the MWD via an increase in the mean individual weight of earthworms. These results suggest that larger earthworms produce larger casts, which bind a larger amount of soil particles thus making larger aggregates.
{"title":"Differential Influence of Soil Organic Carbon and Calcium on the Community of Lumbricid Earthworms as Ecosystem Engineers in Cool Temperate Forests of Hokkaido","authors":"T. Kawakami, K. Makoto","doi":"10.1134/s1064229324600568","DOIUrl":"https://doi.org/10.1134/s1064229324600568","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Earthworms are important ecosystem engineers that stabilize soil aggregates and increase the size of aggregates. The major determinants for the biomass, density, and mean individual weight of lumbricid earthworms are considered to be the availability of soil organic carbon (SOC) and calcium (Ca). However, the importance of SOC and Ca availability for lumbricid earthworms has not been tested simultaneously in the field. In addition, the ripple effects of SOC and Ca on the soil aggregate stability and relative abundance of larger aggregates (mean weight diameter; MWD) via earthworm communities are poorly understood. To fill these knowledge gaps, we conducted field research across a spatially wide range of cool temperate forests, where soils were classified as Cambisols and Andosols and evaluated the relationships among the biomass, density, and mean individual weight of lumbricid earthworms, soil chemical properties, and MWD by conducting structural equation modelling (SEM). Our results showed that SOC affected not the density but the mean individual weight of earthworms. On the other hand, interestingly, exchangeable Ca affected not the mean individual weight but the density of earthworms. These results suggest that SOC stimulates earthworm growth and that exchangeable. Ca enhances the fertility rate and/or survival rate in earthworm communities in forest ecosystems. Furthermore, SOC had a positive ripple effect on the MWD via an increase in the mean individual weight of earthworms. These results suggest that larger earthworms produce larger casts, which bind a larger amount of soil particles thus making larger aggregates.</p>","PeriodicalId":11892,"journal":{"name":"Eurasian Soil Science","volume":"9 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142225230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Potassium behavior in calcareous soils are very complex and are affected by several factors, such as the content of carbonates and soil heating. In the present research, the comparison of four calcareous soils with varying amounts of carbonates, different mineralogy, and texture (collected from Fars province, southern Iran) was compared to analyze the content of K species, K release by solutions of 0.01 M CaCl2 and 1% wood vinegar, and K re-fixation. The study also investigated the impact of heating K-depleted soils to 100°C on the secondary release and re-fixation of K. The results showed that the studied soils contained 3–60% carbonates, 14–53% clay, and a relatively similar mineral composition: smectite, illite, chlorite, palygorskite (in dry areas), and vermiculite (in humid areas). Wood vinegar extracted more K from soils with less carbonates than CaCl2, while this difference was not significant for Fluvisols, which contains about 60% carbonates. Mollic Vertisols with low carbonate content (about 3%) and high levels of clay and smectite released less K in the initial phase. However, K release by this soil decreased less in the second phase, indicating the higher buffering capacity of Mollic Vertisols in providing soluble K. Heating the soil increased the secondary release of K, but decreased the amount of K re-fixation in soils treated with CaCl2. Generally, Mollic Vertisols fixed more K than other soils. In addition, the type of extractant had no effect on the content of K fixation in the studied soils except Mollic Vertisols. However, wood vinegar reduced the K fixation content in Mollic Vertisols compared to CaCl2. In general, it can be concluded that wood vinegar can provide more K to the plants without dissolving K-bearing minerals compared to CaCl2. In addition, soil heating can influence the process of K release and fixation in K-depleted soils.
{"title":"Effect of Low Temperature Heating of Potassium-Depleted Soils on Secondary Potassium Release to Calcium Chloride and Wood Vinegar and Fixation","authors":"Mahdi Najafi-Ghiri, Hamid Reza Boostani, Soheila Sadat Hashemi","doi":"10.1134/s1064229324601082","DOIUrl":"https://doi.org/10.1134/s1064229324601082","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Potassium behavior in calcareous soils are very complex and are affected by several factors, such as the content of carbonates and soil heating. In the present research, the comparison of four calcareous soils with varying amounts of carbonates, different mineralogy, and texture (collected from Fars province, southern Iran) was compared to analyze the content of K species, K release by solutions of 0.01 M CaCl<sub>2</sub> and 1% wood vinegar, and K re-fixation. The study also investigated the impact of heating K-depleted soils to 100°C on the secondary release and re-fixation of K. The results showed that the studied soils contained 3–60% carbonates, 14–53% clay, and a relatively similar mineral composition: smectite, illite, chlorite, palygorskite (in dry areas), and vermiculite (in humid areas). Wood vinegar extracted more K from soils with less carbonates than CaCl<sub>2</sub>, while this difference was not significant for Fluvisols, which contains about 60% carbonates. Mollic Vertisols with low carbonate content (about 3%) and high levels of clay and smectite released less K in the initial phase. However, K release by this soil decreased less in the second phase, indicating the higher buffering capacity of Mollic Vertisols in providing soluble K. Heating the soil increased the secondary release of K, but decreased the amount of K re-fixation in soils treated with CaCl<sub>2</sub>. Generally, Mollic Vertisols fixed more K than other soils. In addition, the type of extractant had no effect on the content of K fixation in the studied soils except Mollic Vertisols. However, wood vinegar reduced the K fixation content in Mollic Vertisols compared to CaCl<sub>2</sub>. In general, it can be concluded that wood vinegar can provide more K to the plants without dissolving K-bearing minerals compared to CaCl<sub>2</sub>. In addition, soil heating can influence the process of K release and fixation in K-depleted soils.</p>","PeriodicalId":11892,"journal":{"name":"Eurasian Soil Science","volume":"1 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141870410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-30DOI: 10.1134/s1064229324601124
Anyou Xie, Qingwei Zhou, Li Fu, Lichuan Zhan, Weihong Wu
Abstract
On-the-go soil sensors have emerged as promising tools for real-time, high-resolution soil nutrient monitoring in precision agriculture. This review provides a comprehensive overview of the current state-of-the-art in on-the-go soil sensor technology, discussing the potential benefits, limitations, and applications of various sensor types, including optical sensors (Vis-NIR, MIR, ATR spectroscopy) and electrochemical sensors (ISEs, ISFETs). The integration of these sensors with positioning systems (GPS) enables the generation of detailed soil nutrient maps, which can guide site-specific management practices and optimize fertilizer application rates. However, factors such as soil moisture, texture, and heterogeneity can affect sensor performance, necessitating robust calibration models and standardized protocols. Future perspectives highlight the need for multi-sensor systems, incorporation into IoT networks for smart farming, and enhancing affordability and adoptability of on-the-go sensor technologies to promote widespread adoption in precision agriculture.
{"title":"From Lab to Field: Advancements and Applications of On-The-Go Soil Sensors for Real-Time Monitoring","authors":"Anyou Xie, Qingwei Zhou, Li Fu, Lichuan Zhan, Weihong Wu","doi":"10.1134/s1064229324601124","DOIUrl":"https://doi.org/10.1134/s1064229324601124","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>On-the-go soil sensors have emerged as promising tools for real-time, high-resolution soil nutrient monitoring in precision agriculture. This review provides a comprehensive overview of the current state-of-the-art in on-the-go soil sensor technology, discussing the potential benefits, limitations, and applications of various sensor types, including optical sensors (Vis-NIR, MIR, ATR spectroscopy) and electrochemical sensors (ISEs, ISFETs). The integration of these sensors with positioning systems (GPS) enables the generation of detailed soil nutrient maps, which can guide site-specific management practices and optimize fertilizer application rates. However, factors such as soil moisture, texture, and heterogeneity can affect sensor performance, necessitating robust calibration models and standardized protocols. Future perspectives highlight the need for multi-sensor systems, incorporation into IoT networks for smart farming, and enhancing affordability and adoptability of on-the-go sensor technologies to promote widespread adoption in precision agriculture.</p>","PeriodicalId":11892,"journal":{"name":"Eurasian Soil Science","volume":"3 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141870408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-30DOI: 10.1134/s1064229323603566
Fang Wang, Xiaoli Wang, Rong Zhao, Lihua Zhang, Suhua Li, Nan Zhang, Haozhang Han
Abstract
Extended cultivation of Chinese cabbage in facility leads to significant continuous cropping challenges, which limits the healthy and sustainable development of the cabbage industry. This study employed metagenomic sequencing to examine soil microbial changes under continuous cropping, integrating soil chemical properties to investigate correlations between soil microbiota and soil quality. Results indicated that after continuous cropping of three varieties of Chinese cabbage, there were decreases in microbial Operational Taxonomic Units (OTUs) and the abundance and diversity of soil microbial communities. Pseudomonadota and Actinomycetota were the most dominant Phyla in the soil microbial community. The continuous cropping of three varieties of Chinese cabbage significantly increased the relative abundance of Pseudomonadota but decreased that of Actinomycetota and increased the relative abundance of Gemmatimonas, Enhygromyxa, Rhizobium, Steroidobacter, and Bacillus, decreased the relative abundance of Pseudomonas, Bradyrhizobium, Nocardioides, and Solirubrobacter. The relative abundance of Nocardioides demonstrated a significant negative correlation with ({text{NO}}_{3}^{ - }), Cl–, and available Fe, Cu, and Zn levels. Conversely, Pseudomonas abundance showed a significant positive correlation with soil pH but a negative correlation with ({text{NO}}_{3}^{ - }), ({text{HCO}}_{3}^{ - }), ({text{SO}}_{4}^{{2 - }}), Cl–, Ca2+, Na+, K+, and available Fe, Cu, and Zn levels. These findings suggested that the reduced abundance of Nocardioides and Pseudomonas may contribute substantially to the continuous cropping challenges observed in the three vegetable crops studied.
{"title":"Differences in the Soil Prokaryotic Microbiome during Continuous and Single Cultivation of Three Varieties of Chinese Cabbage","authors":"Fang Wang, Xiaoli Wang, Rong Zhao, Lihua Zhang, Suhua Li, Nan Zhang, Haozhang Han","doi":"10.1134/s1064229323603566","DOIUrl":"https://doi.org/10.1134/s1064229323603566","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Extended cultivation of Chinese cabbage in facility leads to significant continuous cropping challenges, which limits the healthy and sustainable development of the cabbage industry. This study employed metagenomic sequencing to examine soil microbial changes under continuous cropping, integrating soil chemical properties to investigate correlations between soil microbiota and soil quality. Results indicated that after continuous cropping of three varieties of Chinese cabbage, there were decreases in microbial Operational Taxonomic Units (OTUs) and the abundance and diversity of soil microbial communities. Pseudomonadota and Actinomycetota were the most dominant Phyla in the soil microbial community. The continuous cropping of three varieties of Chinese cabbage significantly increased the relative abundance of Pseudomonadota but decreased that of Actinomycetota and increased the relative abundance of <i>Gemmatimonas</i>, <i>Enhygromyxa</i>, <i>Rhizobium</i>, <i>Steroidobacter</i>, and <i>Bacillus</i>, decreased the relative abundance of <i>Pseudomonas</i>, <i>Bradyrhizobium</i>, <i>Nocardioides</i>, and <i>Solirubrobacter</i>. The relative abundance of <i>Nocardioides</i> demonstrated a significant negative correlation with <span>({text{NO}}_{3}^{ - })</span>, Cl<sup>–</sup>, and available Fe, Cu, and Zn levels. Conversely, <i>Pseudomonas</i> abundance showed a significant positive correlation with soil pH but a negative correlation with <span>({text{NO}}_{3}^{ - })</span>, <span>({text{HCO}}_{3}^{ - })</span>, <span>({text{SO}}_{4}^{{2 - }})</span>, Cl<sup>–</sup>, Ca<sup>2+</sup>, Na<sup>+</sup>, K<sup>+</sup>, and available Fe, Cu, and Zn levels. These findings suggested that the reduced abundance of <i>Nocardioides</i> and <i>Pseudomonas</i> may contribute substantially to the continuous cropping challenges observed in the three vegetable crops studied.</p>","PeriodicalId":11892,"journal":{"name":"Eurasian Soil Science","volume":"31 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141870409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-30DOI: 10.1134/s106422932460129x
N. E. García-Calderón, E. Fuentes-Romero, E. Ikkonen, V. Sidorova
Abstract
We measured dark CO2 fluxes and CH4 emissions from two naturally vegetated ecosystems of the Mezquital Valley irrigated with wastewater from Mexico City. The ecosystems were characterized by high groundwater levels; the vegetation was represented mainly by saltgrass in the first plot and chairmaker’s bulrush in the second. A dark chamber technique was used for the study from August 2008 to June 2009. For the two studied plots, mean values (mean ± SE) for dark ecosystem CO2 fluxes (Rtot), soil CO2 emission (Rsoil), and heterotrophic respiration (Rhet) were 26 ± 5, 14 ± 3 and 12 ± 3 mg C m–2 h–1, respectively, The annual cumulative fluxes Rtot, Rsoil and Rhet equal to 234, 127 and 103 g C m–2 y–1, respectively. The contribution of Rsoil to Rtot, and Rhet to Rsoil varied significantly over the study period, with no clear relationship to seasonal dynamics. The observed low CO2 fluxes may be due to soil salinization resulting from wastewater flooding. The fluxes of CH4 were observed in the flooded plot, with peaks up to 370 µg C m–2 h–1. The fluxes of CH4 were significantly higher when plants were present in the measurement chamber than when there were no plants, confirming the important role of plant cover in CH4 transport. Unlike CH4 fluxes, CO2 fluxes show seasonal dynamics, mainly due to their strong dependence on temperature. The observed results may be useful for properly estimating the global C budget and the contribution of saline soils to C fluxes.
{"title":"СО2 and СН4 Fluxes in Wetland Ecosystems of the Mezquital Valley, Central Mexico","authors":"N. E. García-Calderón, E. Fuentes-Romero, E. Ikkonen, V. Sidorova","doi":"10.1134/s106422932460129x","DOIUrl":"https://doi.org/10.1134/s106422932460129x","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>We measured dark CO<sub>2</sub> fluxes and CH<sub>4</sub> emissions from two naturally vegetated ecosystems of the Mezquital Valley irrigated with wastewater from Mexico City. The ecosystems were characterized by high groundwater levels; the vegetation was represented mainly by saltgrass in the first plot and chairmaker’s bulrush in the second. A dark chamber technique was used for the study from August 2008 to June 2009. For the two studied plots, mean values (mean ± SE) for dark ecosystem CO<sub>2</sub> fluxes (<i>R</i><sub>tot</sub>), soil CO<sub>2</sub> emission (<i>R</i><sub>soil</sub>), and heterotrophic respiration (<i>R</i><sub>het</sub>) were 26 ± 5, 14 ± 3 and 12 ± 3 mg C m<sup>–2</sup> h<sup>–1</sup>, respectively, The annual cumulative fluxes <i>R</i><sub>tot</sub>, <i>R</i><sub>soil</sub> and <i>R</i><sub>het</sub> equal to 234, 127 and 103 g C m<sup>–2</sup> y<sup>–1</sup>, respectively. The contribution of <i>R</i><sub>soil</sub> to <i>R</i><sub>tot</sub>, and <i>R</i><sub>het</sub> to <i>R</i><sub>soil</sub> varied significantly over the study period, with no clear relationship to seasonal dynamics. The observed low CO<sub>2</sub> fluxes may be due to soil salinization resulting from wastewater flooding. The fluxes of CH<sub>4</sub> were observed in the flooded plot, with peaks up to 370 µg C m<sup>–2</sup> h<sup>–1</sup>. The fluxes of CH<sub>4</sub> were significantly higher when plants were present in the measurement chamber than when there were no plants, confirming the important role of plant cover in CH<sub>4</sub> transport. Unlike CH<sub>4</sub> fluxes, CO<sub>2</sub> fluxes show seasonal dynamics, mainly due to their strong dependence on temperature. The observed results may be useful for properly estimating the global C budget and the contribution of saline soils to C fluxes.</p>","PeriodicalId":11892,"journal":{"name":"Eurasian Soil Science","volume":"96 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141870411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-30DOI: 10.1134/s1064229324600854
S. Bhuyan, D. K. Patgiri, B. K. Medhi, B. Deka, G. G. Kandali, S. J. Medhi, S. Kalidas-Singh, A. Debnath, R. R. Zhiipao, T. Tsomu, S. R. Devegowda, M. Sandillya
Abstract
Prediction of soil quality index is one of the suitable options to determine the productivity of a cropping system. Rice based cropping systems are the most important cropping systems followed in the North Bank Plain region. The productivity of such system has declined continuously due to deterioration of soil quality. The current study was carried out in Cambisols soil to establish soil quality index based on soil physical and chemical properties and identify quality indicators from the rice cropping system. A total of 180 geo-referenced surface soil samples were collected from five rice based cropping systems. The principal components analysis and machine learning model were used to screen the minimum data set indicators for computing the soil quality index. The minimum data set indicators were found as cation exchange capacity, micro aggregate, organic carbon, total porosity and available phosphorus. The SQI for the district ranged from 0.48 to 0.87, with an average of 0.62. The SQI was more significantly positively correlated with the rice equivalent yield of rice potato-based cropping systems, followed by rice rabi vegetables. The spatial variability of the SQI was presented on the geographical information system (GIS) platform through inverse distance weighting (IDW) method of interpolation.
{"title":"Prediction of Soil Quality Index (SQI) and Its Minimum Dataset Indicators for Rice-Based Cropping Systems in the North Bank Plain Zone of Assam","authors":"S. Bhuyan, D. K. Patgiri, B. K. Medhi, B. Deka, G. G. Kandali, S. J. Medhi, S. Kalidas-Singh, A. Debnath, R. R. Zhiipao, T. Tsomu, S. R. Devegowda, M. Sandillya","doi":"10.1134/s1064229324600854","DOIUrl":"https://doi.org/10.1134/s1064229324600854","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Prediction of soil quality index is one of the suitable options to determine the productivity of a cropping system. Rice based cropping systems are the most important cropping systems followed in the North Bank Plain region. The productivity of such system has declined continuously due to deterioration of soil quality. The current study was carried out in Cambisols soil to establish soil quality index based on soil physical and chemical properties and identify quality indicators from the rice cropping system. A total of 180 geo-referenced surface soil samples were collected from five rice based cropping systems. The principal components analysis and machine learning model were used to screen the minimum data set indicators for computing the soil quality index. The minimum data set indicators were found as cation exchange capacity, micro aggregate, organic carbon, total porosity and available phosphorus. The SQI for the district ranged from 0.48 to 0.87, with an average of 0.62. The SQI was more significantly positively correlated with the rice equivalent yield of rice potato-based cropping systems, followed by rice rabi vegetables. The spatial variability of the SQI was presented on the geographical information system (GIS) platform through inverse distance weighting (IDW) method of interpolation.</p>","PeriodicalId":11892,"journal":{"name":"Eurasian Soil Science","volume":"23 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141870407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-30DOI: 10.1134/s1064229324600611
Jun Zhang, Fenghua Zhang
Abstract
Crop rotation could effectively alleviate continuous cropping problems, but how it affects soil organic carbon (SOC) components and chemical structures in case of different duration of continuous cropping (CC) remains unclear. In this study, we selected cotton fields that had been continuously planted for 5, 10, 15, and 20 years for separate soybean rotations (SR). The mechanism of SR to improve soil quality in different duration of CC was determined by SOC components and their chemical structure. The results showed that the content of soil available nutrients, SOC, microbial biomass carbon and soluble organic carbon in the SR treatments significantly increased compared with those in the CC treatment (p < 0.05), but particulate organic carbon content decreased by 24.89–81.10%. Compared with CC in different years, SR treatments significantly reduced soil humus content. SR in 5, 10 and 15 years of CC cotton fields significantly increased the content of sucrase and decreased that of polyphenol oxidase. Compared with CC fields in different years (5-y, 10-y, 15-y, 20-y), SR increased the relative peak intensity of polysaccharides and decreased the relative peak intensity of alcohols and phenols. Among them, the relative peak intensity of R5-y, R10-y and R20-y aliphatic compounds increased, while that of R5-y, R15-y and R20-y aromatic compounds decreased, and R10-y recalcitrant components (Aliphatic + Aromatic) increased.
摘要 轮作可以有效缓解连作问题,但轮作如何影响不同连作期(CC)的土壤有机碳(SOC)成分和化学结构仍不清楚。在本研究中,我们选择了连续种植 5 年、10 年、15 年和 20 年的棉田分别与大豆进行轮作(SR)。通过 SOC 成分及其化学结构确定了 SR 在不同的 CC 期改善土壤质量的机制。结果表明,SR 处理的土壤可利用养分、SOC、微生物生物量碳和可溶性有机碳含量与 CC 处理相比显著增加(p < 0.05),但颗粒有机碳含量减少了 24.89%-81.10%。与不同年份的 CC 相比,SR 处理明显降低了土壤腐殖质含量。在 5 年、10 年和 15 年的 CC 棉花田中,SR 能显著提高蔗糖酶的含量,降低多酚氧化酶的含量。与不同年份(5 年、10 年、15 年、20 年)的 CC 棉花田相比,SR 提高了多糖的相对峰强度,降低了醇和酚的相对峰强度。其中,R5-y、R10-y和R20-y脂肪族化合物的相对峰强度增加,而R5-y、R15-y和R20-y芳香族化合物的相对峰强度降低,R10-y难溶组分(脂肪族+芳香族)的相对峰强度增加。
{"title":"Cotton Grown in Rotation with Soybean Alters Soil Organic Matter over Time","authors":"Jun Zhang, Fenghua Zhang","doi":"10.1134/s1064229324600611","DOIUrl":"https://doi.org/10.1134/s1064229324600611","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Crop rotation could effectively alleviate continuous cropping problems, but how it affects soil organic carbon (SOC) components and chemical structures in case of different duration of continuous cropping (CC) remains unclear. In this study, we selected cotton fields that had been continuously planted for 5, 10, 15, and 20 years for separate soybean rotations (SR). The mechanism of SR to improve soil quality in different duration of CC was determined by SOC components and their chemical structure. The results showed that the content of soil available nutrients, SOC, microbial biomass carbon and soluble organic carbon in the SR treatments significantly increased compared with those in the CC treatment (<i>p</i> < 0.05), but particulate organic carbon content decreased by 24.89–81.10%. Compared with CC in different years, SR treatments significantly reduced soil humus content. SR in 5, 10 and 15 years of CC cotton fields significantly increased the content of sucrase and decreased that of polyphenol oxidase. Compared with CC fields in different years (5-y, 10-y, 15-y, 20-y), SR increased the relative peak intensity of polysaccharides and decreased the relative peak intensity of alcohols and phenols. Among them, the relative peak intensity of R5-y, R10-y and R20-y aliphatic compounds increased, while that of R5-y, R15-y and R20-y aromatic compounds decreased, and R10-y recalcitrant components (Aliphatic + Aromatic) increased.</p>","PeriodicalId":11892,"journal":{"name":"Eurasian Soil Science","volume":"7 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141870414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-30DOI: 10.1134/s1064229324601306
Q. E. Guo, S. Y. Cao, L. L. Nan, B. Dong, Z. B. Zhan, Z. Wang
Abstract
Heavy metal pollution in soils is a common environmental issue. However, previous studies have primarily investigated the total concentrations of heavy metals, while fraction analysis of heavy metals has rarely been conducted. To bridge this gap, 18 topsoil samples of gray-brown desert farmland soil from the Jinchuan District, Gansu Province, China, were collected to analyze the total concentrations and fractions of Cu, Ni, Cd, Hg, Zn, Pb, and As with the Tessier sequential extraction method that were mainly found in the residual fraction (Pb 50%, As 99%). Ni and Pb were associated with secondary bound to carbonate fractions in most soil samples, while Cd, Hg, and Zn were associated with secondary bound to organic matter fractions. Cu was associated with secondary water-soluble, exchangeable, bound to carbonates, bound to Fe-Mn oxides, and bound to organic matter fractions. The mean values of RAC were in the sequence of Cu > Zn > Cd > Pb > Ni > Hg > As. The results of RSP indicated that the ecological risk levels of Cd, Ni, Cu, Zn, As, and Hg in the soils were low, and Pb was the most significant potential risk factor among all elements. The findings can be used to practice sustainable soil management in the area.
摘要 土壤中的重金属污染是一个常见的环境问题。然而,以往的研究主要调查重金属的总浓度,而很少进行重金属的组分分析。为了弥补这一空白,研究人员采集了中国甘肃省金川区灰褐色荒漠农田土壤的 18 个表层土样品,采用 Tessier 顺序萃取法分析了铜、镍、镉、汞、锌、铅和砷的总浓度和组分。在大多数土壤样本中,镍和铅与碳酸盐的二次结合部分有关,而镉、汞和锌则与有机物的二次结合部分有关。铜与次生水溶性、可交换性、与碳酸盐结合、与铁锰氧化物结合以及与有机物结合部分有关。RAC 的平均值依次为 Cu > Zn > Cd > Pb > Ni > Hg > As。RSP结果表明,土壤中的镉、镍、铜、锌、砷和汞的生态风险水平较低,而铅是所有元素中最重要的潜在风险因子。研究结果可用于该地区的可持续土壤管理。
{"title":"Ecological Risk Assessment of Cu, Ni, Cd, Hg, Zn, Pb and As in Typical Farmland Gray-Brown Desert Soil in China","authors":"Q. E. Guo, S. Y. Cao, L. L. Nan, B. Dong, Z. B. Zhan, Z. Wang","doi":"10.1134/s1064229324601306","DOIUrl":"https://doi.org/10.1134/s1064229324601306","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Heavy metal pollution in soils is a common environmental issue. However, previous studies have primarily investigated the total concentrations of heavy metals, while fraction analysis of heavy metals has rarely been conducted. To bridge this gap, 18 topsoil samples of gray-brown desert farmland soil from the Jinchuan District, Gansu Province, China, were collected to analyze the total concentrations and fractions of Cu, Ni, Cd, Hg, Zn, Pb, and As with the Tessier sequential extraction method that were mainly found in the residual fraction (Pb 50%, As 99%). Ni and Pb were associated with secondary bound to carbonate fractions in most soil samples, while Cd, Hg, and Zn were associated with secondary bound to organic matter fractions. Cu was associated with secondary water-soluble, exchangeable, bound to carbonates, bound to Fe-Mn oxides, and bound to organic matter fractions. The mean values of RAC were in the sequence of Cu > Zn > Cd > Pb > Ni > Hg > As. The results of RSP indicated that the ecological risk levels of Cd, Ni, Cu, Zn, As, and Hg in the soils were low, and Pb was the most significant potential risk factor among all elements. The findings can be used to practice sustainable soil management in the area.</p>","PeriodicalId":11892,"journal":{"name":"Eurasian Soil Science","volume":"15 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141870412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}