首页 > 最新文献

ETRI Journal最新文献

英文 中文
DeepMonitor: A comprehensive approach for real-time hazard detection for industrial safety DeepMonitor:一种全面的工业安全实时危险检测方法
IF 1.6 4区 计算机科学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2025-03-14 DOI: 10.4218/etrij.2024-0284
Seonhoon Lee, YeongSeung Baek, Heung-Seon Oh, Seonho Kim

Recognizing workers' locations and automatically assigning warnings are crucial for preventing industrial injuries. However, existing warning systems are unsuitable for industrial environments as they rely solely on images or insufficiently leverage multi-sensor inputs. Their distance- or plane-based warning assignment strategies are limited when managing 3D spatial environments. To address these issues, we propose DeepMonitor, a novel industrial automatic warning system that incorporates a prior knowledge-based 2D-to-3D conversion and a multi-sensor, space-based warning assignment strategy. We use a mature 2D object detector to avoid the need for 3D training datasets and apply prior knowledge with multi-sensors to reduce the search space for workers' locations. To manage 3D spatial environments, warnings are assigned based on the overlap ratios between workers and zones, defined as 3D bounding boxes. We have constructed a novel dataset for industrial safety and have tested our system against existing approaches. Results demonstrate our system's superiority, achieving an F1-score 16.7% and 24.7% higher than those of the image-only and camera-geometry systems, respectively.

识别工人的位置并自动发出警告对于防止工伤至关重要。然而,现有的预警系统不适合工业环境,因为它们仅仅依赖于图像或没有充分利用多传感器输入。它们基于距离或平面的预警分配策略在管理三维空间环境时受到限制。为了解决这些问题,我们提出了DeepMonitor,这是一种新型的工业自动预警系统,它结合了基于先验知识的2d到3d转换和多传感器、基于空间的预警分配策略。我们使用成熟的2D目标检测器来避免对3D训练数据集的需要,并将多传感器的先验知识应用于减少工人位置的搜索空间。为了管理3D空间环境,根据工作人员和区域之间的重叠比率(定义为3D边界框)分配警告。我们为工业安全构建了一个新的数据集,并针对现有方法测试了我们的系统。结果证明了我们系统的优越性,其f1得分分别比纯图像系统和相机几何系统高16.7%和24.7%。
{"title":"DeepMonitor: A comprehensive approach for real-time hazard detection for industrial safety","authors":"Seonhoon Lee,&nbsp;YeongSeung Baek,&nbsp;Heung-Seon Oh,&nbsp;Seonho Kim","doi":"10.4218/etrij.2024-0284","DOIUrl":"https://doi.org/10.4218/etrij.2024-0284","url":null,"abstract":"<p>Recognizing workers' locations and automatically assigning warnings are crucial for preventing industrial injuries. However, existing warning systems are unsuitable for industrial environments as they rely solely on images or insufficiently leverage multi-sensor inputs. Their distance- or plane-based warning assignment strategies are limited when managing 3D spatial environments. To address these issues, we propose DeepMonitor, a novel industrial automatic warning system that incorporates a prior knowledge-based 2D-to-3D conversion and a multi-sensor, space-based warning assignment strategy. We use a mature 2D object detector to avoid the need for 3D training datasets and apply prior knowledge with multi-sensors to reduce the search space for workers' locations. To manage 3D spatial environments, warnings are assigned based on the overlap ratios between workers and zones, defined as 3D bounding boxes. We have constructed a novel dataset for industrial safety and have tested our system against existing approaches. Results demonstrate our system's superiority, achieving an F1-score 16.7% and 24.7% higher than those of the image-only and camera-geometry systems, respectively.</p>","PeriodicalId":11901,"journal":{"name":"ETRI Journal","volume":"47 5","pages":"959-969"},"PeriodicalIF":1.6,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.4218/etrij.2024-0284","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145335692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
2024 Reviewer List 2024审稿人名单
IF 1.3 4区 计算机科学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2025-02-27 DOI: 10.4218/etr2.70008
<p>A, Ashwini, Vel Tech Rangarajan Dr Sagunthala R&D Institute of Science and Technology</p><p>A, Revathi, SASTRA Deemed University</p><p>A, UMAMAGESWARI, SRM University - Ramapuram Campus</p><p>Abd El-Hafeez, Tarek, Minia University</p><p>Abd Rahman, Mohd Amiruddin, Universiti Putra Malaysia</p><p>Abdi, Asad, University of Derby</p><p>Abdullah, Hadeel, University of Technology</p><p>Abebe, Abiy, Addis Ababa Institute of Technology</p><p>Adewunmi, Mary, National Center for Technology Management</p><p>Afify, Heba M., Higher Inst. of Engineering in Shorouk Academy</p><p>Ahmad, Mushtaq, Nanjing University of Aeronautics and Astronautics</p><p>Ahmed, Suhaib, Baba Ghulam Shah Badshah University</p><p>Ahn, Sungsoo, Gyeongsang National University</p><p>Akbar, Son, Universitas Ahmad Dahlan</p><p>Akhriza, Tubagus, Kampus STIMATA</p><p>Akoushideh, Alireza, Technical and Vocational University</p><p>Al-Araji, Ahmed S., University of technology - Iraq</p><p>Al-Azzoni, Issam, Al Ain University</p><p>Alfaverh, Fayiz, University of Hertfordshire</p><p>alghanimi, abdulhameed, Middle Technical Univ.</p><p>Ali, Dia M, Ninevah University</p><p>ali, Tariq, PMAS Arid Agriculture university</p><p>Alikhani, Nasim,</p><p>Al-Kaltakchi, Musab T. S., Mustansiriyah University</p><p>Al-kaltakchi, Musab, Mustansiriyah University</p><p>Alkinoon, Mohammed, University of Central Florida</p><p>Al-masni, Mohammed A., Sejong University</p><p>Al-Sakkaf, Ahmed Gaafar, Universidad Carlos III de Madrid Escuela Politécnica Superior</p><p>Ansarian, Sasan,</p><p>Arora, Shashank, SUNY</p><p>Asgher, Umer, National University of Sciences and Technology</p><p>Ashraf, Umer, NIT Srinagar</p><p>atashbar, mahmoud, Azarbaijan Shahid Madani University,</p><p>Atrey, Pradeep, State University of New York</p><p>Azim, Rezaul, University of Chittagong</p><p>B, Srinivas, Maharaj Vijayaram Gajapathi Ram College of Engineering</p><p>Baek, Donghyun, Chung-Ang University</p><p>Baek, Hoki, Kyungpook National University</p><p>Balbinot, Alexandre, Universidade Federal do Rio Grande do Sul</p><p>BANDI, SUDHEER, Panimalar Engineering College</p><p>Baranwal, Alok, NIT-Durgapur</p><p>Baydargil, Husnu Baris, Institute for Basic Science</p><p>Beniwal, Ruby, Jaypee Institute of Information Technology</p><p>Benrabah, Abdeldjabar,</p><p>Bhattacharya, Ratnadeep, The George Washington University</p><p>Bhowmik, Showmik, Ghani Khan Choudhury Institute of Engineering and Technology</p><p>Bonthagorla, Praveen Kumar, National Institute of Technology Goa</p><p>Byun, Gangil, UNIST</p><p>Byun, Hayoung, Myongji University</p><p>C, Arunkumar Madhuvappan, Vinayaka Mission's Kirupananda Variyar Engineering College</p><p>Callou, G., UFRPE</p><p>Cammarasana, Simone, CNR-IMATI</p><p>Castillo-Soria, Francisco, Universidad Autónoma de San Luis Potosí</p><p>Ceberio, Josu, University of the Basque Country</p><p>Cha, Ho-Young, Hongik University</p><p>Chabir, Karim, ENIG</p><p>Chaudhary, Girdhari, Jeonbuk National University</p><p>Che, Ren
哈马德,穆罕默德,梅努菲亚大学计算机学院;信息Han, Jae-Ho,高丽大学hari, pattimi,国立理工大学WarangalHaryono, Asep,国家研究与创新机构印度尼西亚共和国ahassan, Emad, Menoufia大学,Salim, SkikdaHong, Won Bin, POSTECHHu, Han,伯明翰大学hu, Jianfei,东南大学hu, Zeng,仲凯农业与工程大学huang,桂敏,广西可信软件重点实验室huang, xiangwei,华盛顿大学huang, Yu,广州大学:hung, Kwok-Wai, TencentIqbal, Amjad, CECOS IT与新兴科学大学jabin, Suraiya, Jamia Millia Islamia计算机科学系jaiswal, Shruti,印度信息技术学院AllahabadJamalipour, Abbas,悉尼大学jang, Kangwook, KAISTJee, Hee-Jung,忠北国立大学jeong, Doo Seok,汉阳大学jeong, Doo Seok, ETRIJi, Xun,大连海事大学jiang, Kui, wang Zhongyuan,武汉大学jin, zhejun,青岛大学joo, yang - ik,国立韩国海洋大学Jung, hyun - jun,群山大学Jung, soon - chul, ETRIJung, Soyi,亚洲大学Jung, yoon - tae, kastkafle, Ved,国立信息通信技术研究所kang, Hyemin,韩国能源技术研究所kang, Jung - Won, ETRIKanjanasit, Komsan, Songkla王子大学kaushik, Neha, Kasturba理工学院khan, Angshuman,国立PatnaKhan理工学院,awis, kaushik, Neha, kaasturba理工学院khan, Angshuman,橡树岭国家实验室可汗,Safiullah,贝尔法斯特女王大学可汗,苏丹,国立技术大学,khokhar, Sahil, gjus&&tkim,白圭,丰田信息技术中心,美国,金东华,国防开发机构首尔办事处,金德洙,koreatech,金圭,高丽大学,金焕津,普渡大学,金炯锡,韩国海洋大学,金贤贤,仁川国立大学,金正昌,韩国海洋大学,金正根,光云大学,金志亨,金立金,中勋,韩国海洋大学,金国真,金立金,Seyeon,科罗拉多大学博尔德,金世贤,西江大学,金秀雄,金立金,成俊,首尔大学,金汝汉,东西大学,金永贤,国防开发机构,金城关,忠南大学,库玛·冈瓦尔,拉维,印度理工学院。Kumar, Abhishek, Bharat工程技术学院Kumar, Amit, NIT斯利那加Kumar, Prashant,国立技术学院JamshedpurKung, Jaeha,高丽大学kwon, Soonhong,世宗大学laitrakun, Seksan,法政大学诗林通国际技术学院lau, FC。,科罗拉多州立大学,lee, Huu Binh,顺化科学大学,lee, Chang Ki,江原大学,lee, Chul- ho,德克萨斯州立大学,lee, Dongjae,高丽大学,lee, Eui Chul,祥明大学,lee, hwan,中央大学,lee, Ingyu, Troy大学,lee, Jong-Heon, ETRILee, Juyong,昌原大学,lee,光宰,首尔大学,lee, Seongjin,首尔大学,lee, Woojoo,中央大学,lee, Youngjoo, postech, lee, Chun,中国电子科技大学德州a & M大学系统李冠勋,昊阳,上海交通大学李军,广州大学,李磊,哥本哈根大学李明,浙江师范大学李强,济南大学李强,沭阳,兰州交通大学李晓晖,太原理工大学李兴华,武汉大学李兴旺,河南理工大学李zan,吉林大学李振宇,梁国熙,温州理工大学梁,九镇,常州大学,梁,开泰,工业大学,代尔夫特,林,玉金,苏明女子大学,林,翠,国立联合大学,刘,方明,华中科技大学,刘,盛恒,东南大学,刘,学康,兰开斯特大学,刘,云,西南大学,刘,平,吉林大学,m, Gowri shankar, Bannari Amman理工学院,马,Linh Van, GISTMa,帅,彭成实验室,mahmoud, Mohamed,技术与应用科学大学应用科学学院索哈尔·马尔霍特拉、马尼沙、昌迪加尔大学、马利克、普拉迪普、卡林加工业技术学院被认为是大学、毛春旭、华南理工大学、闵炳旭、延世大学、闵泉、成、广西师范大学、米拉米尔哈尼、法尔沙德、伊西克大学、莫海森、马纳尔、东北伊利诺伊大学、穆罕默德、谢赫·S。 moon, Kee,圣地亚哥州立大学moon, Kee,圣地亚哥州立大学moradi, Elahe,伊斯兰阿扎德大学murtala, Sheriff,岭南大学ynaghibzadeh, Mahmoud, Ferdowsi大学MashhadNam, Seung-Woo,首尔国立大学ynath, Abhigyan, Pt Jawahar Lal Nehru Mem Med, CollNauman, Ali,岭南大学ynguyen Nhu, Chien, DeltaxNguyen, Anh,蒙大拿大学anguyan, Ba Cao,电信大学ynguyen, Long H. B,科学大学gretir,Mine, alto大学oh, Sangchul, ETRIOniga, Valeria-Ersilia, Gheorghe Asachi工业大学iasiotimo, Alberto, PisaOzen大学,Hakan,中东技术大学,japan, Zhihong,广州新华大学,anda, Sanjaya Kumar,国立理工大学,WarangalPark, Chanjun,高丽大学公园,Cheoneum, Hanbat国立大学公园,Heechun, UNISTPark, jaehyung,世宗大学公园,Jae-Hyun,中央大学公园,Jeongwoo,成均馆大学园区、世宗、釜山国立大学园区、Jun-Young、忠北国立大学帕特拉、Ardhendu Sekhar、sidko - kanko - birsha大学帕特拉、乔瓦尼、埃纳帕帕斯高丽大学、科斯塔斯、伯罗伯尼撒-佩什科夫大学、伊利亚W、布宁叶列茨国立大学皮切克、斯特杰潘、代尔夫特理工大学皮蒂拉基斯、亚历山德罗斯、亚里士多德塞萨洛尼基大学波德达、马尔科、皮萨波波维奇大学、加布里耶拉、诺维市大学商学院、普里亚达什、Neeraj、JIS工程学院quy, Vu Khanh, Hung Yen科技教育大学rafi, Vempalle, JNTUA工程学院grahman, Ziaur,黄冈师范大学rajaguru, Harikumar, Bannari Amman理工学院rajput, Amitesh, Birla理工学院- Pilani校区rasheed, Nada, Al-K
{"title":"2024 Reviewer List","authors":"","doi":"10.4218/etr2.70008","DOIUrl":"https://doi.org/10.4218/etr2.70008","url":null,"abstract":"&lt;p&gt;A, Ashwini, Vel Tech Rangarajan Dr Sagunthala R&amp;D Institute of Science and Technology&lt;/p&gt;&lt;p&gt;A, Revathi, SASTRA Deemed University&lt;/p&gt;&lt;p&gt;A, UMAMAGESWARI, SRM University - Ramapuram Campus&lt;/p&gt;&lt;p&gt;Abd El-Hafeez, Tarek, Minia University&lt;/p&gt;&lt;p&gt;Abd Rahman, Mohd Amiruddin, Universiti Putra Malaysia&lt;/p&gt;&lt;p&gt;Abdi, Asad, University of Derby&lt;/p&gt;&lt;p&gt;Abdullah, Hadeel, University of Technology&lt;/p&gt;&lt;p&gt;Abebe, Abiy, Addis Ababa Institute of Technology&lt;/p&gt;&lt;p&gt;Adewunmi, Mary, National Center for Technology Management&lt;/p&gt;&lt;p&gt;Afify, Heba M., Higher Inst. of Engineering in Shorouk Academy&lt;/p&gt;&lt;p&gt;Ahmad, Mushtaq, Nanjing University of Aeronautics and Astronautics&lt;/p&gt;&lt;p&gt;Ahmed, Suhaib, Baba Ghulam Shah Badshah University&lt;/p&gt;&lt;p&gt;Ahn, Sungsoo, Gyeongsang National University&lt;/p&gt;&lt;p&gt;Akbar, Son, Universitas Ahmad Dahlan&lt;/p&gt;&lt;p&gt;Akhriza, Tubagus, Kampus STIMATA&lt;/p&gt;&lt;p&gt;Akoushideh, Alireza, Technical and Vocational University&lt;/p&gt;&lt;p&gt;Al-Araji, Ahmed S., University of technology - Iraq&lt;/p&gt;&lt;p&gt;Al-Azzoni, Issam, Al Ain University&lt;/p&gt;&lt;p&gt;Alfaverh, Fayiz, University of Hertfordshire&lt;/p&gt;&lt;p&gt;alghanimi, abdulhameed, Middle Technical Univ.&lt;/p&gt;&lt;p&gt;Ali, Dia M, Ninevah University&lt;/p&gt;&lt;p&gt;ali, Tariq, PMAS Arid Agriculture university&lt;/p&gt;&lt;p&gt;Alikhani, Nasim,&lt;/p&gt;&lt;p&gt;Al-Kaltakchi, Musab T. S., Mustansiriyah University&lt;/p&gt;&lt;p&gt;Al-kaltakchi, Musab, Mustansiriyah University&lt;/p&gt;&lt;p&gt;Alkinoon, Mohammed, University of Central Florida&lt;/p&gt;&lt;p&gt;Al-masni, Mohammed A., Sejong University&lt;/p&gt;&lt;p&gt;Al-Sakkaf, Ahmed Gaafar, Universidad Carlos III de Madrid Escuela Politécnica Superior&lt;/p&gt;&lt;p&gt;Ansarian, Sasan,&lt;/p&gt;&lt;p&gt;Arora, Shashank, SUNY&lt;/p&gt;&lt;p&gt;Asgher, Umer, National University of Sciences and Technology&lt;/p&gt;&lt;p&gt;Ashraf, Umer, NIT Srinagar&lt;/p&gt;&lt;p&gt;atashbar, mahmoud, Azarbaijan Shahid Madani University,&lt;/p&gt;&lt;p&gt;Atrey, Pradeep, State University of New York&lt;/p&gt;&lt;p&gt;Azim, Rezaul, University of Chittagong&lt;/p&gt;&lt;p&gt;B, Srinivas, Maharaj Vijayaram Gajapathi Ram College of Engineering&lt;/p&gt;&lt;p&gt;Baek, Donghyun, Chung-Ang University&lt;/p&gt;&lt;p&gt;Baek, Hoki, Kyungpook National University&lt;/p&gt;&lt;p&gt;Balbinot, Alexandre, Universidade Federal do Rio Grande do Sul&lt;/p&gt;&lt;p&gt;BANDI, SUDHEER, Panimalar Engineering College&lt;/p&gt;&lt;p&gt;Baranwal, Alok, NIT-Durgapur&lt;/p&gt;&lt;p&gt;Baydargil, Husnu Baris, Institute for Basic Science&lt;/p&gt;&lt;p&gt;Beniwal, Ruby, Jaypee Institute of Information Technology&lt;/p&gt;&lt;p&gt;Benrabah, Abdeldjabar,&lt;/p&gt;&lt;p&gt;Bhattacharya, Ratnadeep, The George Washington University&lt;/p&gt;&lt;p&gt;Bhowmik, Showmik, Ghani Khan Choudhury Institute of Engineering and Technology&lt;/p&gt;&lt;p&gt;Bonthagorla, Praveen Kumar, National Institute of Technology Goa&lt;/p&gt;&lt;p&gt;Byun, Gangil, UNIST&lt;/p&gt;&lt;p&gt;Byun, Hayoung, Myongji University&lt;/p&gt;&lt;p&gt;C, Arunkumar Madhuvappan, Vinayaka Mission's Kirupananda Variyar Engineering College&lt;/p&gt;&lt;p&gt;Callou, G., UFRPE&lt;/p&gt;&lt;p&gt;Cammarasana, Simone, CNR-IMATI&lt;/p&gt;&lt;p&gt;Castillo-Soria, Francisco, Universidad Autónoma de San Luis Potosí&lt;/p&gt;&lt;p&gt;Ceberio, Josu, University of the Basque Country&lt;/p&gt;&lt;p&gt;Cha, Ho-Young, Hongik University&lt;/p&gt;&lt;p&gt;Chabir, Karim, ENIG&lt;/p&gt;&lt;p&gt;Chaudhary, Girdhari, Jeonbuk National University&lt;/p&gt;&lt;p&gt;Che, Ren","PeriodicalId":11901,"journal":{"name":"ETRI Journal","volume":"47 1","pages":"167-171"},"PeriodicalIF":1.3,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.4218/etr2.70008","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143497340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Secure nonorthogonal multiple access with energy harvesting-assisted full-duplex receivers 利用能量收集辅助全双工接收器实现非正交多路访问
IF 1.6 4区 计算机科学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2025-02-25 DOI: 10.4218/etrij.2024-0335
Toi Le-Thanh, Khuong Ho-Van

This paper investigates securing nonorthogonal multiple access (NOMA) by leveraging receivers equipped with full-duplex (FD) communication and energy harvesting (EH) capabilities. These receivers decode their intended information while simultaneously jamming eavesdroppers using harvested energy, aiming to achieve high security, energy efficiency, and spectral efficiency. The study analyzes the proposed NOMA scheme with EH-assisted FD receivers across various key performance metrics for a quick performance assessment. The proposed analysis is validated through simulations, which demonstrate the influence of the proposed model on multiple specifications. Furthermore, the proposed model is shown to be considerably more secure than the conventional orthogonal multiple access (OMA) with EH-assisted FD receivers, revealing the advantages of NOMA over OMA.

本文研究了利用配备全双工(FD)通信和能量收集(EH)功能的接收器来保护非正交多址(NOMA)。这些接收器解码其预期的信息,同时利用收集的能量干扰窃听者,旨在实现高安全性,能源效率和频谱效率。该研究分析了采用eh辅助FD接收器的NOMA方案,跨各种关键性能指标进行快速性能评估。通过仿真验证了所提出的分析,验证了所提出的模型对多个规格的影响。此外,所提出的模型被证明比具有eh辅助FD接收器的传统正交多址(OMA)更安全,揭示了NOMA相对于OMA的优势。
{"title":"Secure nonorthogonal multiple access with energy harvesting-assisted full-duplex receivers","authors":"Toi Le-Thanh,&nbsp;Khuong Ho-Van","doi":"10.4218/etrij.2024-0335","DOIUrl":"https://doi.org/10.4218/etrij.2024-0335","url":null,"abstract":"<p>This paper investigates securing nonorthogonal multiple access (NOMA) by leveraging receivers equipped with full-duplex (FD) communication and energy harvesting (EH) capabilities. These receivers decode their intended information while simultaneously jamming eavesdroppers using harvested energy, aiming to achieve high security, energy efficiency, and spectral efficiency. The study analyzes the proposed NOMA scheme with EH-assisted FD receivers across various key performance metrics for a quick performance assessment. The proposed analysis is validated through simulations, which demonstrate the influence of the proposed model on multiple specifications. Furthermore, the proposed model is shown to be considerably more secure than the conventional orthogonal multiple access (OMA) with EH-assisted FD receivers, revealing the advantages of NOMA over OMA.</p>","PeriodicalId":11901,"journal":{"name":"ETRI Journal","volume":"47 6","pages":"1028-1038"},"PeriodicalIF":1.6,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.4218/etrij.2024-0335","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145719771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effective fingerprinting database construction through digital map-based RF signal modeling and partial measurements in indoor environments 通过基于数字地图的射频信号建模和室内环境的局部测量,构建有效的指纹数据库
IF 1.6 4区 计算机科学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2025-02-25 DOI: 10.4218/etrij.2024-0165
Jung Ho Lee, Taehun Kim, Youngsu Cho, Juil Jeon, Kyeongsoo Han, Taikjin Lee

This paper presents a radio-frequency (RF) signal modeling technology that builds a fingerprinting database for indoor localization quickly and accurately. Fingerprinting-based localization technology uses location-specific signal characteristics as a database; therefore, it is less sensitive to multipath problems. The proposed approach predicts signal propagation paths and calculates attenuation based on an indoor map, reducing infrastructure installation and data collection time. Because the indoor map lacks accurate information about all structures, the modeling results contain errors when compared to measurements. To address this, measurements from a partial area improve modeling accuracy by accounting for received signal strength changes caused by indoor structures. In experiments with seven beacons, the proposed database construction method achieves an average error of 5.16 dBm and a localization error of 1.61 m, comparable to the 1.14-m error in measurement-based databases, while reducing database construction time by 41.06%. These results demonstrate the effectiveness of the proposed technology in rapidly and accurately building databases for indoor localization.

本文提出了一种射频信号建模技术,该技术可以快速准确地建立室内指纹数据库。基于指纹的定位技术使用特定位置的信号特征作为数据库;因此,它对多路径问题不太敏感。该方法预测信号传播路径,并根据室内地图计算衰减,减少了基础设施安装和数据收集时间。由于室内地图缺乏关于所有结构的准确信息,因此与测量结果相比,建模结果存在误差。为了解决这个问题,从局部区域进行测量,通过考虑由室内结构引起的接收信号强度变化来提高建模精度。在7个信标的实验中,所提出的数据库构建方法的平均误差为5.16 dBm,定位误差为1.61 m,与基于测量的数据库的误差1.14 m相当,同时减少了41.06%的数据库构建时间。这些结果证明了该技术在快速准确地建立室内定位数据库方面的有效性。
{"title":"Effective fingerprinting database construction through digital map-based RF signal modeling and partial measurements in indoor environments","authors":"Jung Ho Lee,&nbsp;Taehun Kim,&nbsp;Youngsu Cho,&nbsp;Juil Jeon,&nbsp;Kyeongsoo Han,&nbsp;Taikjin Lee","doi":"10.4218/etrij.2024-0165","DOIUrl":"https://doi.org/10.4218/etrij.2024-0165","url":null,"abstract":"<p>This paper presents a radio-frequency (RF) signal modeling technology that builds a fingerprinting database for indoor localization quickly and accurately. Fingerprinting-based localization technology uses location-specific signal characteristics as a database; therefore, it is less sensitive to multipath problems. The proposed approach predicts signal propagation paths and calculates attenuation based on an indoor map, reducing infrastructure installation and data collection time. Because the indoor map lacks accurate information about all structures, the modeling results contain errors when compared to measurements. To address this, measurements from a partial area improve modeling accuracy by accounting for received signal strength changes caused by indoor structures. In experiments with seven beacons, the proposed database construction method achieves an average error of 5.16 dBm and a localization error of 1.61 m, comparable to the 1.14-m error in measurement-based databases, while reducing database construction time by 41.06%. These results demonstrate the effectiveness of the proposed technology in rapidly and accurately building databases for indoor localization.</p>","PeriodicalId":11901,"journal":{"name":"ETRI Journal","volume":"47 4","pages":"643-656"},"PeriodicalIF":1.6,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.4218/etrij.2024-0165","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144843482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Detection of IPv6 routing attacks using ANN and a novel IoT dataset 利用 ANN 和新型物联网数据集检测 IPv6 路由攻击
IF 1.3 4区 计算机科学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2025-02-11 DOI: 10.4218/etrij.2023-0506
Murat Emeç

The Internet of Things (IoT) is an intelligent network paradigm created by interconnected device networks. Although the importance of IoT systems has increased in various applications, the increasing number of connected devices has made security even more critical. This study presents the ROUT-4-2023 dataset, which represents a step toward the security of IoT networks. This dataset simulates potential attacks on RPL-based IoT networks and provides a new platform for researchers in this field. Using artificial intelligence and machine-learning techniques, a performance evaluation was performed on four different artificial neural network models (convolutional neural network, deep neural network, multilayer perceptron structure, and routing attack detection-fed forward neural network [RaD-FFNN]). The results show that the RaD-FFNN model has high accuracy, precision, and retrieval rates, indicating that it can be used as an effective tool for the security of IoT networks. This study contributes to the protection of IoT networks from potential attacks by presenting ROUT-4-2023 and RaD-FFNN models, which will lead to further research on IoT security.

物联网(IoT)是由互联设备网络创建的一种智能网络模式。虽然物联网系统在各种应用中的重要性不断增加,但连接设备数量的不断增加使得安全性变得更加重要。本研究介绍了 ROUT-4-2023 数据集,它代表了向物联网网络安全迈出的一步。该数据集模拟了对基于 RPL 的物联网网络的潜在攻击,为该领域的研究人员提供了一个新平台。利用人工智能和机器学习技术,对四种不同的人工神经网络模型(卷积神经网络、深度神经网络、多层感知器结构和路由攻击检测-前馈神经网络 [RaD-FFNN])进行了性能评估。结果表明,RaD-FFNN 模型具有较高的准确度、精确度和检索率,表明它可以作为物联网网络安全的有效工具。本研究通过提出 ROUT-4-2023 和 RaD-FFNN 模型,为保护物联网网络免受潜在攻击做出了贡献,并将进一步推动物联网安全方面的研究。
{"title":"Detection of IPv6 routing attacks using ANN and a novel IoT dataset","authors":"Murat Emeç","doi":"10.4218/etrij.2023-0506","DOIUrl":"https://doi.org/10.4218/etrij.2023-0506","url":null,"abstract":"<p>The Internet of Things (IoT) is an intelligent network paradigm created by interconnected device networks. Although the importance of IoT systems has increased in various applications, the increasing number of connected devices has made security even more critical. This study presents the ROUT-4-2023 dataset, which represents a step toward the security of IoT networks. This dataset simulates potential attacks on RPL-based IoT networks and provides a new platform for researchers in this field. Using artificial intelligence and machine-learning techniques, a performance evaluation was performed on four different artificial neural network models (convolutional neural network, deep neural network, multilayer perceptron structure, and routing attack detection-fed forward neural network [RaD-FFNN]). The results show that the RaD-FFNN model has high accuracy, precision, and retrieval rates, indicating that it can be used as an effective tool for the security of IoT networks. This study contributes to the protection of IoT networks from potential attacks by presenting ROUT-4-2023 and RaD-FFNN models, which will lead to further research on IoT security.</p>","PeriodicalId":11901,"journal":{"name":"ETRI Journal","volume":"47 2","pages":"350-361"},"PeriodicalIF":1.3,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.4218/etrij.2023-0506","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143835975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Strategy optimization method based on UAVs-assisted detection of covert communication 基于无人机辅助隐蔽通信检测的策略优化方法
IF 1.6 4区 计算机科学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2025-02-10 DOI: 10.4218/etrij.2024-0178
Xiaohan Wang, Wen Tian, Guangjie Liu, Yuwei Dai

Unmanned aerial vehicles (UAVs) are highly mobile and easily deployable devices that have become an important component of wireless communication countermeasures. Covert communication, the main method used to ensure wireless communication security, has been extensively studied in recent years. However, existing research primarily uses UAVs as auxiliary tools for covert communications, to improve communication performance, ignoring situations in which the detector utilizes UAVs for interference suppression. In this study, we propose a UAV-assisted jamming detection covert communication game model. Specifically, the UAV actively transmits noise to Alice's transmission channels to disrupt covert transmission when Willie detects a covert communication transmission. Furthermore, we analyze the adversarial process between the detector and Alice under UAV-assisted jamming based on game theory, theoretically verify the conditions for the existence of a Nash equilibrium, and formulate optimal strategies for both sides.

无人机(uav)是一种高度机动和易于部署的设备,已成为无线通信对抗的重要组成部分。隐蔽通信是保证无线通信安全的主要方法,近年来得到了广泛的研究。然而,现有的研究主要将无人机作为隐蔽通信的辅助工具,以提高通信性能,忽略了探测器利用无人机进行干扰抑制的情况。在本研究中,我们提出了一种无人机辅助干扰检测隐蔽通信博弈模型。具体来说,当威利检测到隐蔽通信传输时,无人机主动将噪声传输到爱丽丝的传输通道,以破坏隐蔽传输。在此基础上,基于博弈论分析了无人机辅助干扰下探测器与爱丽丝的对抗过程,从理论上验证了纳什均衡存在的条件,并制定了双方的最优策略。
{"title":"Strategy optimization method based on UAVs-assisted detection of covert communication","authors":"Xiaohan Wang,&nbsp;Wen Tian,&nbsp;Guangjie Liu,&nbsp;Yuwei Dai","doi":"10.4218/etrij.2024-0178","DOIUrl":"https://doi.org/10.4218/etrij.2024-0178","url":null,"abstract":"<p>Unmanned aerial vehicles (UAVs) are highly mobile and easily deployable devices that have become an important component of wireless communication countermeasures. Covert communication, the main method used to ensure wireless communication security, has been extensively studied in recent years. However, existing research primarily uses UAVs as auxiliary tools for covert communications, to improve communication performance, ignoring situations in which the detector utilizes UAVs for interference suppression. In this study, we propose a UAV-assisted jamming detection covert communication game model. Specifically, the UAV actively transmits noise to Alice's transmission channels to disrupt covert transmission when Willie detects a covert communication transmission. Furthermore, we analyze the adversarial process between the detector and Alice under UAV-assisted jamming based on game theory, theoretically verify the conditions for the existence of a Nash equilibrium, and formulate optimal strategies for both sides.</p>","PeriodicalId":11901,"journal":{"name":"ETRI Journal","volume":"47 4","pages":"603-616"},"PeriodicalIF":1.6,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.4218/etrij.2024-0178","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144843428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sparse joint representation for massive MIMO satellite uplink and downlink based on dictionary learning 基于字典学习的海量MIMO卫星上下行稀疏联合表示
IF 1.6 4区 计算机科学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2025-01-24 DOI: 10.4218/etrij.2024-0190
Qing-Yang Guan, Shuang Wu, Zhuang Miao

We address the challenge of jointly representing uplink (UL) and downlink (DL) channels for a massive multiple-input multiple-output satellite system. We employ dictionary learning for sparse representation with the goal of minimizing the number of UL/DL pilots and improving accuracy. Additionally, by considering the angular reciprocity, a common dictionary support can be established to enhance the performance. However, what type of dictionary model is suited for UL/DL channel representation remains an unknown field. Previous research has utilized predefined dictionaries, such as DFT or ODFT bases, which are unable to adapt to dynamic scenarios. Training dictionaries have demonstrated the potential to significantly improve accuracy; however, a lack of analysis regarding dictionary constraints exists. To address this issue, we analyze the conditional constraints of the dictionary for joint UL/DL channel representation, aiming to quantify the maximum boundary while proposing a constrained dictionary learning algorithm with singular value decomposition to obtain an effective representation and conduct an adaptability analysis in dynamic satellite communication scenarios.

我们解决了联合表示大规模多输入多输出卫星系统的上行(UL)和下行(DL)通道的挑战。我们使用字典学习进行稀疏表示,目标是最小化UL/DL导频的数量并提高准确性。此外,通过考虑角度互易性,可以建立通用字典支持,从而提高性能。然而,什么类型的字典模型适合于UL/DL通道表示仍然是一个未知的领域。以前的研究使用了预定义的字典,如DFT或ODFT基,这些字典无法适应动态场景。训练字典已经证明了显著提高准确性的潜力;然而,缺乏对字典约束的分析。为了解决这一问题,我们分析了联合UL/DL信道表示的字典条件约束,旨在量化最大边界,同时提出了一种带有奇异值分解的约束字典学习算法,以获得有效的表示,并进行了动态卫星通信场景下的适应性分析。
{"title":"Sparse joint representation for massive MIMO satellite uplink and downlink based on dictionary learning","authors":"Qing-Yang Guan,&nbsp;Shuang Wu,&nbsp;Zhuang Miao","doi":"10.4218/etrij.2024-0190","DOIUrl":"https://doi.org/10.4218/etrij.2024-0190","url":null,"abstract":"<p>We address the challenge of jointly representing uplink (UL) and downlink (DL) channels for a massive multiple-input multiple-output satellite system. We employ dictionary learning for sparse representation with the goal of minimizing the number of UL/DL pilots and improving accuracy. Additionally, by considering the angular reciprocity, a common dictionary support can be established to enhance the performance. However, what type of dictionary model is suited for UL/DL channel representation remains an unknown field. Previous research has utilized predefined dictionaries, such as DFT or ODFT bases, which are unable to adapt to dynamic scenarios. Training dictionaries have demonstrated the potential to significantly improve accuracy; however, a lack of analysis regarding dictionary constraints exists. To address this issue, we analyze the conditional constraints of the dictionary for joint UL/DL channel representation, aiming to quantify the maximum boundary while proposing a constrained dictionary learning algorithm with singular value decomposition to obtain an effective representation and conduct an adaptability analysis in dynamic satellite communication scenarios.</p>","PeriodicalId":11901,"journal":{"name":"ETRI Journal","volume":"47 4","pages":"617-631"},"PeriodicalIF":1.6,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.4218/etrij.2024-0190","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144843419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Peak-to-average power ratio reduction of orthogonal frequency division multiplexing signals using improved salp swarm optimization-based partial transmit sequence model 基于改进salp群优化的部分发射序列模型降低正交频分复用信号的峰均功率比
IF 1.3 4区 计算机科学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2025-01-21 DOI: 10.4218/etrij.2023-0347
Vandana Tripathi, Prabhat Patel, Prashant Kumar Jain, Shailja Shukla

Several peak-to-average power ratio (PAPR) reduction methods have been used in orthogonal frequency division multiplexing (OFDM) applications. Among the available methods, partial transmit sequence (PTS) is an efficient PAPR reduction method but can be computationally expensive while determining optimal phase factors (OPFs). Therefore, an optimization algorithm, namely, the improved salp swarm optimization algorithm (ISSA), is incorporated with the PTS to reduce the PAPR of the OFDM signals with limited computational cost. The ISSA includes a dynamic weight element and Lévy flight process to improve the global exploration ability of the optimization algorithm and to control the global and local search ability of the population with a better convergence rate. Three evaluation measures, namely, the complementary cumulative distribution function (CCDF), bit error rate (BER), and symbol error rate (SER), demonstrate the efficacy of the PTS-ISSA model, which achieves a lower PAPR of 3.47 dB and is superior to other optimization algorithms using the PTS method.

在正交频分复用(OFDM)应用中使用了多种降低峰均功率比(PAPR)的方法。在现有方法中,部分发送序列(PTS)是一种有效的降低 PAPR 的方法,但在确定最佳相位系数(OPF)时计算成本较高。因此,一种优化算法,即改进的萨尔普群优化算法(ISSA),与 PTS 结合使用,以有限的计算成本降低 OFDM 信号的 PAPR。ISSA 包括动态权重元素和莱维飞行过程,以提高优化算法的全局探索能力,并以更高的收敛率控制种群的全局和局部搜索能力。互补累积分布函数 (CCDF)、误码率 (BER) 和符号误码率 (SER) 这三个评估指标证明了 PTS-ISSA 模型的有效性,该模型实现了较低的 3.47 dB PAPR,优于使用 PTS 方法的其他优化算法。
{"title":"Peak-to-average power ratio reduction of orthogonal frequency division multiplexing signals using improved salp swarm optimization-based partial transmit sequence model","authors":"Vandana Tripathi,&nbsp;Prabhat Patel,&nbsp;Prashant Kumar Jain,&nbsp;Shailja Shukla","doi":"10.4218/etrij.2023-0347","DOIUrl":"https://doi.org/10.4218/etrij.2023-0347","url":null,"abstract":"<p>Several peak-to-average power ratio (PAPR) reduction methods have been used in orthogonal frequency division multiplexing (OFDM) applications. Among the available methods, partial transmit sequence (PTS) is an efficient PAPR reduction method but can be computationally expensive while determining optimal phase factors (OPFs). Therefore, an optimization algorithm, namely, the improved salp swarm optimization algorithm (ISSA), is incorporated with the PTS to reduce the PAPR of the OFDM signals with limited computational cost. The ISSA includes a dynamic weight element and Lévy flight process to improve the global exploration ability of the optimization algorithm and to control the global and local search ability of the population with a better convergence rate. Three evaluation measures, namely, the complementary cumulative distribution function (CCDF), bit error rate (BER), and symbol error rate (SER), demonstrate the efficacy of the PTS-ISSA model, which achieves a lower PAPR of 3.47 dB and is superior to other optimization algorithms using the PTS method.</p>","PeriodicalId":11901,"journal":{"name":"ETRI Journal","volume":"47 2","pages":"256-269"},"PeriodicalIF":1.3,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.4218/etrij.2023-0347","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143836441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A graph neural network model application in point cloud structure for prolonged sitting detection system based on smartphone sensor data 基于智能手机传感器数据的久坐检测系统点云结构中的图神经网络模型应用
IF 1.3 4区 计算机科学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2025-01-21 DOI: 10.4218/etrij.2023-0190
Mardi Hardjianto, Jazi Eko Istiyanto, A. Min Tjoa, Arfa Shaha Syahrulfath, Satriawan Rasyid Purnama, Rifda Hakima Sari, Zaidan Hakim, M. Ridho Fuadin, Nias Ananto

The prolonged sitting inherent in modern work and study environments poses significant health risks, necessitating effective monitoring solutions. Traditional human activity recognition systems often fall short in these contexts owing to their reliance on structured data, which may fail to capture the complexity of human movements or accommodate the often incomplete or unstructured nature of healthcare data. To address this gap, our study introduces a novel application of graph neural networks (GNNs) for detecting prolonged sitting periods using point cloud data from smartphone sensors. Unlike conventional methods, our GNN model excels at processing the unordered, three-dimensional structure of sensor data, enabling more accurate classification of sedentary activities. The effectiveness of our approach is demonstrated by its superior ability to identify sitting, standing, and walking activities—critical for assessing health risks associated with prolonged sitting. By providing real-time activity recognition, our model offers a promising tool for healthcare professionals to mitigate the adverse effects of sedentary behavior.

现代工作和学习环境中固有的长时间坐着对健康构成重大风险,需要有效的监测解决方案。由于传统的人类活动识别系统依赖于结构化数据,因此在这些情况下往往存在不足,这可能无法捕捉人类运动的复杂性,也无法适应医疗保健数据往往不完整或非结构化的性质。为了解决这一差距,我们的研究引入了一种新的应用图神经网络(gnn),利用智能手机传感器的点云数据来检测长时间的坐姿。与传统方法不同,我们的GNN模型擅长处理传感器数据的无序三维结构,从而能够更准确地分类久坐活动。我们的方法的有效性证明了它在识别坐着、站着和走路活动方面的卓越能力——这对于评估长时间坐着所带来的健康风险至关重要。通过提供实时活动识别,我们的模型为医疗保健专业人员提供了一个有前途的工具,以减轻久坐行为的不利影响。
{"title":"A graph neural network model application in point cloud structure for prolonged sitting detection system based on smartphone sensor data","authors":"Mardi Hardjianto,&nbsp;Jazi Eko Istiyanto,&nbsp;A. Min Tjoa,&nbsp;Arfa Shaha Syahrulfath,&nbsp;Satriawan Rasyid Purnama,&nbsp;Rifda Hakima Sari,&nbsp;Zaidan Hakim,&nbsp;M. Ridho Fuadin,&nbsp;Nias Ananto","doi":"10.4218/etrij.2023-0190","DOIUrl":"https://doi.org/10.4218/etrij.2023-0190","url":null,"abstract":"<p>The prolonged sitting inherent in modern work and study environments poses significant health risks, necessitating effective monitoring solutions. Traditional human activity recognition systems often fall short in these contexts owing to their reliance on structured data, which may fail to capture the complexity of human movements or accommodate the often incomplete or unstructured nature of healthcare data. To address this gap, our study introduces a novel application of graph neural networks (GNNs) for detecting prolonged sitting periods using point cloud data from smartphone sensors. Unlike conventional methods, our GNN model excels at processing the unordered, three-dimensional structure of sensor data, enabling more accurate classification of sedentary activities. The effectiveness of our approach is demonstrated by its superior ability to identify sitting, standing, and walking activities—critical for assessing health risks associated with prolonged sitting. By providing real-time activity recognition, our model offers a promising tool for healthcare professionals to mitigate the adverse effects of sedentary behavior.</p>","PeriodicalId":11901,"journal":{"name":"ETRI Journal","volume":"47 2","pages":"290-302"},"PeriodicalIF":1.3,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.4218/etrij.2023-0190","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143836442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spatial feature recognition and layout method based on improved CenterNet and LSTM frameworks 基于改进CenterNet和LSTM框架的空间特征识别与布局方法
IF 1.6 4区 计算机科学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2025-01-05 DOI: 10.4218/etrij.2024-0192
Yuxuan Gu, Fengyu Liu, Xiaodi Yi, Lewei Yang, Yunshu Wang

Existing spatial feature recognition and layout methods primarily identify spatial components manually, which is time-consuming and inefficient, and the constraint relationship between objects in space can be difficult to observe. Consequently, this study introduces an advanced spatial feature recognition and layout methodology employing enhanced CenterNet and LSTM (Long Short-Term Memory) frameworks, which is bifurcated into two major components—first, HCenterNet-based feature recognition enhances feature extraction through an attention mechanism and feature fusion technology, refining the identification of small targets within complex background areas; second, a GA-BiLSTM (Genetic Algorithm - Bidirectional LSTM)-based spatial layout model uses a bidirectional LSTM network optimized with a genetic algorithm (GA), aimed at fine-tuning the network parameters to yield more accurate spatial layouts. Experiments verified that compared with the CenterNet model, the recognition performance of the proposed HCenterNet-DIoU model improved by 7.44%. Moreover, the GA-BiLSTM model improved the overall layout accuracy by 10.08% compared with the LSTM model. Time cost analysis also confirmed that the proposed model could meet the real-time requirements.

现有的空间特征识别和布局方法主要是手工识别空间成分,耗时长、效率低,且空间中物体之间的约束关系难以观察。基于此,本研究引入了一种基于增强的CenterNet和LSTM(长短期记忆)框架的先进空间特征识别和布局方法,该方法分为两个主要部分:首先,基于hcenternet的特征识别通过注意机制和特征融合技术增强了特征提取,细化了复杂背景区域内小目标的识别;其次,基于GA- bilstm (Genetic Algorithm - Bidirectional LSTM)的空间布局模型采用遗传算法优化的双向LSTM网络,对网络参数进行微调,得到更精确的空间布局。实验验证,与CenterNet模型相比,提出的HCenterNet-DIoU模型的识别性能提高了7.44%。与LSTM模型相比,GA-BiLSTM模型总体布局精度提高了10.08%。时间成本分析也证实了所提出的模型能够满足实时性要求。
{"title":"Spatial feature recognition and layout method based on improved CenterNet and LSTM frameworks","authors":"Yuxuan Gu,&nbsp;Fengyu Liu,&nbsp;Xiaodi Yi,&nbsp;Lewei Yang,&nbsp;Yunshu Wang","doi":"10.4218/etrij.2024-0192","DOIUrl":"https://doi.org/10.4218/etrij.2024-0192","url":null,"abstract":"<p>Existing spatial feature recognition and layout methods primarily identify spatial components manually, which is time-consuming and inefficient, and the constraint relationship between objects in space can be difficult to observe. Consequently, this study introduces an advanced spatial feature recognition and layout methodology employing enhanced CenterNet and LSTM (Long Short-Term Memory) frameworks, which is bifurcated into two major components—first, HCenterNet-based feature recognition enhances feature extraction through an attention mechanism and feature fusion technology, refining the identification of small targets within complex background areas; second, a GA-BiLSTM (Genetic Algorithm - Bidirectional LSTM)-based spatial layout model uses a bidirectional LSTM network optimized with a genetic algorithm (GA), aimed at fine-tuning the network parameters to yield more accurate spatial layouts. Experiments verified that compared with the CenterNet model, the recognition performance of the proposed HCenterNet-DIoU model improved by 7.44%. Moreover, the GA-BiLSTM model improved the overall layout accuracy by 10.08% compared with the LSTM model. Time cost analysis also confirmed that the proposed model could meet the real-time requirements.</p>","PeriodicalId":11901,"journal":{"name":"ETRI Journal","volume":"47 4","pages":"721-736"},"PeriodicalIF":1.6,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.4218/etrij.2024-0192","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144843601","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
ETRI Journal
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1