首页 > 最新文献

Proceedings of the 2004 International Symposium on Low Power Electronics and Design (IEEE Cat. No.04TH8758)最新文献

英文 中文
Power-optimal pipelining in deep submicron technology 深亚微米技术中的功率优化流水线
Seongmoo Heo, K. Asanović
This paper explores the effectiveness of pipelining as a power saving tool, where the reduction in logic depth per stage is used to reduce supply voltage at a fixed clock frequency. We examine power-optimal pipelining in deep submicron technology, both analytically and by simulation. Simulation uses a 70 nm predictive process with a fanout-of-four inverter chain model including input/output flipflops, and results are shown to match theory well. The simulation results show that power-optimal logic depth is 6 to 8 FO4 and optimal power saving varies from 55 to 80% compared to a 24 FO4 logic depth, depending on threshold voltage, activity factor, and presence of clock-gating. We decompose the power consumption of a circuit into three components, switching power, leakage power, and idle power, and present the following insights into power-optimal pipelining. First, power-optimal logic depth decreases and optimal power savings increase for larger activity factors, where switching power dominates over leakage and idle power. Second, pipelining is more effective with lower threshold voltages at high activity factors, but higher threshold voltages give better results at lower activity factors where leakage current dominates. Lastly, clock-gating enables deeper pipelining and more power saving because it reduces timing element overhead when the activity factor is low.
本文探讨了流水线作为一种节能工具的有效性,其中每级逻辑深度的减少用于降低固定时钟频率下的电源电压。我们分析和模拟了深亚微米技术中的功率最优流水线。仿真采用70 nm预测工艺,采用包含输入/输出触发器的四扇通逆变器链模型,结果与理论吻合良好。仿真结果表明,与24 FO4逻辑深度相比,功率最优逻辑深度为6至8 FO4,最优省电范围为55至80%,具体取决于阈值电压、活动因子和时钟门控的存在。我们将电路的功耗分解为三个部分:开关功率、漏电功率和空闲功率,并对功率优化流水线提出以下见解。首先,对于较大的活动因数,功率最优逻辑深度降低,最优功耗节省增加,其中开关功率占主导地位,而不是泄漏和空闲功率。其次,在活度系数高的情况下,较低的阈值电压对管道输送更有效,但在泄漏电流占主导地位的较低活度系数下,较高的阈值电压效果更好。最后,时钟门控可以实现更深层次的流水线和更省电,因为当活动因子较低时,它可以减少定时元件的开销。
{"title":"Power-optimal pipelining in deep submicron technology","authors":"Seongmoo Heo, K. Asanović","doi":"10.1145/1013235.1013291","DOIUrl":"https://doi.org/10.1145/1013235.1013291","url":null,"abstract":"This paper explores the effectiveness of pipelining as a power saving tool, where the reduction in logic depth per stage is used to reduce supply voltage at a fixed clock frequency. We examine power-optimal pipelining in deep submicron technology, both analytically and by simulation. Simulation uses a 70 nm predictive process with a fanout-of-four inverter chain model including input/output flipflops, and results are shown to match theory well. The simulation results show that power-optimal logic depth is 6 to 8 FO4 and optimal power saving varies from 55 to 80% compared to a 24 FO4 logic depth, depending on threshold voltage, activity factor, and presence of clock-gating. We decompose the power consumption of a circuit into three components, switching power, leakage power, and idle power, and present the following insights into power-optimal pipelining. First, power-optimal logic depth decreases and optimal power savings increase for larger activity factors, where switching power dominates over leakage and idle power. Second, pipelining is more effective with lower threshold voltages at high activity factors, but higher threshold voltages give better results at lower activity factors where leakage current dominates. Lastly, clock-gating enables deeper pipelining and more power saving because it reduces timing element overhead when the activity factor is low.","PeriodicalId":120002,"journal":{"name":"Proceedings of the 2004 International Symposium on Low Power Electronics and Design (IEEE Cat. No.04TH8758)","volume":"114 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2004-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122766830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 31
SEPAS: A highly accurate energy-efficient branch predictor SEPAS:一个高度精确的节能分支预测器
A. Baniasadi, Andreas Moshovos
Designers have invested much effort in developing accurate branch predictors with short learning periods. Such techniques rely on exploiting complex and relatively large structures. Although exploiting such structures is necessary to achieve high accuracy and fast learning, once the short learning phase is over, a simple structure can efficiently predict the branch outcome for the majority of branches. Moreover, for a large number of branches, once the branch reaches the steady state phase, updating the branch predictor unit is unnecessary since there is already enough information available to the predictor to predict the branch outcome accurately. Therefore, aggressive usage of complex large branch predictors appears to be inefficient since it results in unnecessary energy consumption. In this work we introduce Selective Predictor Access (SEPAS) to exploit this design inefficiency. SEPAS uses a simple power efficient structure to identify well behaved branch instructions that are in their steady state phase. Once such branches are identified, the predictor is no longer accessed to predict their outcome or to update the associated data. We show that it is possible to reduce the number of predictor accesses and energy consumption considerably with a negligible performance loss (worst case 0.25%).
设计人员投入了大量精力开发具有短学习周期的准确分支预测器。这种技术依赖于开发复杂和相对较大的结构。虽然利用这种结构是实现高精度和快速学习的必要条件,但一旦短暂的学习阶段结束,一个简单的结构就可以有效地预测大多数分支的分支结果。此外,对于大量分支,一旦分支达到稳态阶段,更新分支预测器单元是不必要的,因为预测器已经有足够的信息可以准确地预测分支结果。因此,过度使用复杂的大分支预测器似乎是低效的,因为它会导致不必要的能源消耗。在这项工作中,我们引入了选择性预测器访问(SEPAS)来利用这种设计低效率。SEPAS使用一个简单的节能结构来识别处于稳态阶段的表现良好的分支指令。一旦确定了这样的分支,就不再访问预测器来预测它们的结果或更新相关的数据。我们表明,在性能损失可以忽略不计(最坏情况为0.25%)的情况下,可以大大减少预测器访问的数量和能耗。
{"title":"SEPAS: A highly accurate energy-efficient branch predictor","authors":"A. Baniasadi, Andreas Moshovos","doi":"10.1145/1013235.1013250","DOIUrl":"https://doi.org/10.1145/1013235.1013250","url":null,"abstract":"Designers have invested much effort in developing accurate branch predictors with short learning periods. Such techniques rely on exploiting complex and relatively large structures. Although exploiting such structures is necessary to achieve high accuracy and fast learning, once the short learning phase is over, a simple structure can efficiently predict the branch outcome for the majority of branches. Moreover, for a large number of branches, once the branch reaches the steady state phase, updating the branch predictor unit is unnecessary since there is already enough information available to the predictor to predict the branch outcome accurately. Therefore, aggressive usage of complex large branch predictors appears to be inefficient since it results in unnecessary energy consumption. In this work we introduce Selective Predictor Access (SEPAS) to exploit this design inefficiency. SEPAS uses a simple power efficient structure to identify well behaved branch instructions that are in their steady state phase. Once such branches are identified, the predictor is no longer accessed to predict their outcome or to update the associated data. We show that it is possible to reduce the number of predictor accesses and energy consumption considerably with a negligible performance loss (worst case 0.25%).","PeriodicalId":120002,"journal":{"name":"Proceedings of the 2004 International Symposium on Low Power Electronics and Design (IEEE Cat. No.04TH8758)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2004-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123629961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 30
Low-power asynchronous Viterbi decoder for wireless applications 用于无线应用的低功耗异步维特比解码器
Mohamed Kawokgy, C. Salama
This paper describes the implementation of an asynchronous 64-state, 1/2-rate Viterbi decoder using an original architecture and design methodology. The decoder is intended for wireless communications applications, where bit rates over 100 Mb/s and minimum power consumption are sought. The choice of an asynchronous design was predicated by the power and speed advantages of such a methodology. Asynchronous designs are inherently data driven and are active only when doing useful work, enabling considerable savings in power and operating at the average speed of all components. The decoder, implemented in a 0.18 /spl mu/m CMOS technology, occupies an area of 2 mm/sup 2/ and operates above 200 Mb/s while consuming 85 mW: a 55% power reduction when compared to state of the art synchronous design implemented in a 0.25 /spl mu/m technology.
本文描述了一个异步64状态,1/2速率维特比解码器使用原始的架构和设计方法的实现。该解码器用于无线通信应用,其中比特率超过100 Mb/s,并寻求最小的功耗。异步设计的选择取决于这种方法的功能和速度优势。异步设计本质上是数据驱动的,只有在执行有用的工作时才会激活,从而大大节省了功耗,并以所有组件的平均速度运行。该解码器采用0.18 /spl mu/m CMOS技术,占地面积为2 mm/sup / 2/,运行速度超过200 Mb/s,功耗为85 mW:与采用0.25 /spl mu/m技术的同步设计相比,功耗降低55%。
{"title":"Low-power asynchronous Viterbi decoder for wireless applications","authors":"Mohamed Kawokgy, C. Salama","doi":"10.1145/1013235.1013306","DOIUrl":"https://doi.org/10.1145/1013235.1013306","url":null,"abstract":"This paper describes the implementation of an asynchronous 64-state, 1/2-rate Viterbi decoder using an original architecture and design methodology. The decoder is intended for wireless communications applications, where bit rates over 100 Mb/s and minimum power consumption are sought. The choice of an asynchronous design was predicated by the power and speed advantages of such a methodology. Asynchronous designs are inherently data driven and are active only when doing useful work, enabling considerable savings in power and operating at the average speed of all components. The decoder, implemented in a 0.18 /spl mu/m CMOS technology, occupies an area of 2 mm/sup 2/ and operates above 200 Mb/s while consuming 85 mW: a 55% power reduction when compared to state of the art synchronous design implemented in a 0.25 /spl mu/m technology.","PeriodicalId":120002,"journal":{"name":"Proceedings of the 2004 International Symposium on Low Power Electronics and Design (IEEE Cat. No.04TH8758)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2004-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132008303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 31
期刊
Proceedings of the 2004 International Symposium on Low Power Electronics and Design (IEEE Cat. No.04TH8758)
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1