Pub Date : 2024-01-26DOI: 10.1186/s42408-024-00246-2
Maral Bashirzadeh, Mehdi Abedi, Mohammad Farzam
Plant-plant interactions are among the most important factors affecting the natural recovery of vegetation. While the impacts of nurse plants on species composition and biodiversity are well documented, the effects of different nurse’s growth forms on all biodiversity components including taxonomic, functional, and phylogenetic diversity have been less studied and compared, especially for their effects on different times after fire disturbance. This research was focused on comparing the effects of a perennial grass (Elymus hispidens), a perennial herb (Phlomis cancellata), and a high shrub species (Lonicera nummulariifolia) on species composition and the biodiversity components, and how these impacts change across five sites with short-term (1 and 4 years sites), long-term (10 and 20 years sites) times since last fire and a control site where no fire was known in recorded history in semi-arid shrublands of Fereizi Chenaran located in Northeast of Iran. The changes of species composition and taxonomic, functional, and phylogenetic diversity were calculated with respect to the presence/absence of nurse’s growth forms, fire history, and their interactions. Nurse shrubs affected species composition and all biodiversity components, whereas all indices were reduced when considering Elymus grass as nurse plant. On the other hand, the herb Phlomis enhanced species composition and taxonomic diversity, while it had a negative effect on functional and phylogenetic diversity. Such specific effects of nurse types were mostly observed under long timescales (i.e., 10- and 20-year sites). Interestingly, the relative importance of nurse types and time since the last fire largely explained the variation of species composition and biodiversity components, with larger effects of nurse types on all biodiversity components. However, we found a significant contribution of fire explaining variation of species composition and phylogenetic diversity. These results indicated nurse plants can affect the post-fire recovery of vegetation by providing specific mechanisms controlling beneficiary relatedness depending on their growth forms and time scales since the last fire. Therefore, these findings suggest perennial plants in the form of nurse species as a useful factor to develop techniques of active restoration in burned ecosystems.
{"title":"Plant-plant interactions influence post-fire recovery depending on fire history and nurse growth form","authors":"Maral Bashirzadeh, Mehdi Abedi, Mohammad Farzam","doi":"10.1186/s42408-024-00246-2","DOIUrl":"https://doi.org/10.1186/s42408-024-00246-2","url":null,"abstract":"Plant-plant interactions are among the most important factors affecting the natural recovery of vegetation. While the impacts of nurse plants on species composition and biodiversity are well documented, the effects of different nurse’s growth forms on all biodiversity components including taxonomic, functional, and phylogenetic diversity have been less studied and compared, especially for their effects on different times after fire disturbance. This research was focused on comparing the effects of a perennial grass (Elymus hispidens), a perennial herb (Phlomis cancellata), and a high shrub species (Lonicera nummulariifolia) on species composition and the biodiversity components, and how these impacts change across five sites with short-term (1 and 4 years sites), long-term (10 and 20 years sites) times since last fire and a control site where no fire was known in recorded history in semi-arid shrublands of Fereizi Chenaran located in Northeast of Iran. The changes of species composition and taxonomic, functional, and phylogenetic diversity were calculated with respect to the presence/absence of nurse’s growth forms, fire history, and their interactions. Nurse shrubs affected species composition and all biodiversity components, whereas all indices were reduced when considering Elymus grass as nurse plant. On the other hand, the herb Phlomis enhanced species composition and taxonomic diversity, while it had a negative effect on functional and phylogenetic diversity. Such specific effects of nurse types were mostly observed under long timescales (i.e., 10- and 20-year sites). Interestingly, the relative importance of nurse types and time since the last fire largely explained the variation of species composition and biodiversity components, with larger effects of nurse types on all biodiversity components. However, we found a significant contribution of fire explaining variation of species composition and phylogenetic diversity. These results indicated nurse plants can affect the post-fire recovery of vegetation by providing specific mechanisms controlling beneficiary relatedness depending on their growth forms and time scales since the last fire. Therefore, these findings suggest perennial plants in the form of nurse species as a useful factor to develop techniques of active restoration in burned ecosystems.","PeriodicalId":12273,"journal":{"name":"Fire Ecology","volume":"14 1","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139578445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-25DOI: 10.1186/s42408-023-00242-y
Faiza Qayyum, Nagwan Abdel Samee, Maali Alabdulhafith, Ahmed Aziz, Mohammad Hijjawi
Predicting wildfire progression is vital for countering its detrimental effects. While numerous studies over the years have delved into forecasting various elements of wildfires, many of these complex models are perceived as “black boxes”, making it challenging to produce transparent and easily interpretable outputs. Evaluating such models necessitates a thorough understanding of multiple pivotal factors that influence their performance. This study introduces a deep learning methodology based on transformer to determine wildfire susceptibility. To elucidate the connection between predictor variables and the model across diverse parameters, we employ SHapley Additive exPlanations (SHAP) for a detailed analysis. The model’s predictive robustness is further bolstered through various cross-validation techniques. Upon examining various wildfire spread rate prediction models, transformer stands out, outperforming its peers in terms of accuracy and reliability. Although the models demonstrated a high level of accuracy when applied to the development dataset, their performance deteriorated when evaluated against the separate evaluation dataset. Interestingly, certain models that showed the lowest errors during the development stage exhibited the highest errors in the subsequent evaluation phase. In addition, SHAP outcomes underscore the invaluable role of explainable AI in enriching our comprehension of wildfire spread rate prediction.
{"title":"Shapley-based interpretation of deep learning models for wildfire spread rate prediction","authors":"Faiza Qayyum, Nagwan Abdel Samee, Maali Alabdulhafith, Ahmed Aziz, Mohammad Hijjawi","doi":"10.1186/s42408-023-00242-y","DOIUrl":"https://doi.org/10.1186/s42408-023-00242-y","url":null,"abstract":"Predicting wildfire progression is vital for countering its detrimental effects. While numerous studies over the years have delved into forecasting various elements of wildfires, many of these complex models are perceived as “black boxes”, making it challenging to produce transparent and easily interpretable outputs. Evaluating such models necessitates a thorough understanding of multiple pivotal factors that influence their performance. This study introduces a deep learning methodology based on transformer to determine wildfire susceptibility. To elucidate the connection between predictor variables and the model across diverse parameters, we employ SHapley Additive exPlanations (SHAP) for a detailed analysis. The model’s predictive robustness is further bolstered through various cross-validation techniques. Upon examining various wildfire spread rate prediction models, transformer stands out, outperforming its peers in terms of accuracy and reliability. Although the models demonstrated a high level of accuracy when applied to the development dataset, their performance deteriorated when evaluated against the separate evaluation dataset. Interestingly, certain models that showed the lowest errors during the development stage exhibited the highest errors in the subsequent evaluation phase. In addition, SHAP outcomes underscore the invaluable role of explainable AI in enriching our comprehension of wildfire spread rate prediction.","PeriodicalId":12273,"journal":{"name":"Fire Ecology","volume":"58 1","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139554550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-22DOI: 10.1186/s42408-023-00239-7
Nicoló Perello, Andrea Trucchia, Francesco Baghino, Bushra Sanira Asif, Lola Palmieri, Nicola Rebora, Paolo Fiorucci
Socio-economic changes in recent decades have resulted in an accumulation of fuel within Mediterranean forests, creating conditions conducive to potential catastrophic wildfires intensified by climate change. Consequently, several wildfire management systems have integrated prescribed fires as a proactive strategy for land management and wildfire risk reduction. The preparation of prescribed fires involves meticulous planning, entailing the identification of specific objectives, verification of prescriptions, and the definition of various scenarios. During the planning phase, simulation models offer a valuable decision-support tool for the qualitative and quantitative assessment of different scenarios. In this study, we harnessed the capabilities of the well-established wildfire simulation tool PROPAGATOR, to identify areas where prescribed fires can be performed, optimizing the wildfire risk mitigation and the costs. We selected a case study in the Liguria region, Italy, where the model is utilized operationally by the regional wildfire risk management system in emergency situations. Initially, we employed the propagation model to simulate a historical wildfire event, showcasing its potential as an emergency response tool. We focused on the most significant fire incident that occurred in the Liguria region in 2022. Subsequently, we employed PROPAGATOR to identify optimal areas for prescribed fires with the dual objectives of maximizing the mitigation of wildfire risk and minimizing treatment costs. The delineation of potential areas for prescribed fires has been established in accordance with regional regulations and expert-based insights. The methodology put forth in this study is capable of discerning the most suitable areas for the implementation of prescribed burns from a preselected set. A Monte Carlo simulation framework was employed to evaluate the efficacy of prescribed burns in mitigating the spread of wildfires. This assessment accounted for a variety of conditions, including fuel loads, ignition points, and meteorological patterns. The PROPAGATOR model was utilized to simulate the progression of wildfire spread. This study underscores the utility of PROPAGATOR in offering both quantitative and qualitative insights that can inform prescribed fire planning. Our methodology has been designed to involve active engagement with subject matter experts throughout the process, to develop scenarios grounded in their expert opinions. The ability to assess diverse scenarios and acquire quantitative information empowers decision-makers to make informed choices, thereby advancing safer and more efficient fire management practices.
{"title":"Cellular automata-based simulators for the design of prescribed fire plans: the case study of Liguria, Italy","authors":"Nicoló Perello, Andrea Trucchia, Francesco Baghino, Bushra Sanira Asif, Lola Palmieri, Nicola Rebora, Paolo Fiorucci","doi":"10.1186/s42408-023-00239-7","DOIUrl":"https://doi.org/10.1186/s42408-023-00239-7","url":null,"abstract":"Socio-economic changes in recent decades have resulted in an accumulation of fuel within Mediterranean forests, creating conditions conducive to potential catastrophic wildfires intensified by climate change. Consequently, several wildfire management systems have integrated prescribed fires as a proactive strategy for land management and wildfire risk reduction. The preparation of prescribed fires involves meticulous planning, entailing the identification of specific objectives, verification of prescriptions, and the definition of various scenarios. During the planning phase, simulation models offer a valuable decision-support tool for the qualitative and quantitative assessment of different scenarios. In this study, we harnessed the capabilities of the well-established wildfire simulation tool PROPAGATOR, to identify areas where prescribed fires can be performed, optimizing the wildfire risk mitigation and the costs. We selected a case study in the Liguria region, Italy, where the model is utilized operationally by the regional wildfire risk management system in emergency situations. Initially, we employed the propagation model to simulate a historical wildfire event, showcasing its potential as an emergency response tool. We focused on the most significant fire incident that occurred in the Liguria region in 2022. Subsequently, we employed PROPAGATOR to identify optimal areas for prescribed fires with the dual objectives of maximizing the mitigation of wildfire risk and minimizing treatment costs. The delineation of potential areas for prescribed fires has been established in accordance with regional regulations and expert-based insights. The methodology put forth in this study is capable of discerning the most suitable areas for the implementation of prescribed burns from a preselected set. A Monte Carlo simulation framework was employed to evaluate the efficacy of prescribed burns in mitigating the spread of wildfires. This assessment accounted for a variety of conditions, including fuel loads, ignition points, and meteorological patterns. The PROPAGATOR model was utilized to simulate the progression of wildfire spread. This study underscores the utility of PROPAGATOR in offering both quantitative and qualitative insights that can inform prescribed fire planning. Our methodology has been designed to involve active engagement with subject matter experts throughout the process, to develop scenarios grounded in their expert opinions. The ability to assess diverse scenarios and acquire quantitative information empowers decision-makers to make informed choices, thereby advancing safer and more efficient fire management practices.","PeriodicalId":12273,"journal":{"name":"Fire Ecology","volume":"20 1","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139517808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-19DOI: 10.1186/s42408-023-00234-y
Marc Carreras-Sospedra, Shupeng Zhu, Michael MacKinnon, William Lassman, Jeffrey D. Mirocha, Michele Barbato, Donald Dabdub
Wildfires in 2020 ravaged California to set the annual record of area burned to date. Clusters of wildfires in Northern California surrounded the Bay Area covering the skies with smoke and raising the air pollutant concentrations to hazardous levels. This study uses the Fire Inventory from the National Center for Atmospheric Research database and the Community Multiscale Air Quality model to estimate the effects of wildfire emissions on air quality during the period from August 16 to October 28 of 2020. In addition, low-cost sensor data for fine particulate matter (PM2.5) from the PurpleAir network is used to enhance modeled PM2.5 concentrations. The resulting impacts on ozone and PM2.5 are used to quantify the health impacts caused by wildfires using the Benefits Mapping and Analysis Program – Community Edition. Wildfire activity significantly increased direct PM2.5 emissions and emissions of PM2.5 and ozone precursors. Direct PM2.5 emissions surged up to 38 times compared to an average day. Modeling results indicated that wildfires alone led to a rise in ozone daily maximum 8-h average by up to 10 ppb and exceeded PM2.5 air quality standards in numerous locations by up to 10 times. While modeled PM2.5 concentrations were lower than measurements, correcting these with PurpleAir data improved the accuracy. The correction using PurpleAir data increased estimates of wildfire-induced mortality due to PM2.5 exposure by up to 16%. The increased hospital admissions and premature mortality attributed to wildfires were found to be comparable to the health impacts avoided by strategies aimed at meeting ozone and PM2.5 air quality standards. This suggests that widespread wildfire emissions can negate years of efforts dedicated to controlling air pollution. The integration of low-cost sensor data proved invaluable in refining the estimates of health impacts from PM2.5 resulting from wildfires.
{"title":"Air quality and health impacts of the 2020 wildfires in California","authors":"Marc Carreras-Sospedra, Shupeng Zhu, Michael MacKinnon, William Lassman, Jeffrey D. Mirocha, Michele Barbato, Donald Dabdub","doi":"10.1186/s42408-023-00234-y","DOIUrl":"https://doi.org/10.1186/s42408-023-00234-y","url":null,"abstract":"Wildfires in 2020 ravaged California to set the annual record of area burned to date. Clusters of wildfires in Northern California surrounded the Bay Area covering the skies with smoke and raising the air pollutant concentrations to hazardous levels. This study uses the Fire Inventory from the National Center for Atmospheric Research database and the Community Multiscale Air Quality model to estimate the effects of wildfire emissions on air quality during the period from August 16 to October 28 of 2020. In addition, low-cost sensor data for fine particulate matter (PM2.5) from the PurpleAir network is used to enhance modeled PM2.5 concentrations. The resulting impacts on ozone and PM2.5 are used to quantify the health impacts caused by wildfires using the Benefits Mapping and Analysis Program – Community Edition. Wildfire activity significantly increased direct PM2.5 emissions and emissions of PM2.5 and ozone precursors. Direct PM2.5 emissions surged up to 38 times compared to an average day. Modeling results indicated that wildfires alone led to a rise in ozone daily maximum 8-h average by up to 10 ppb and exceeded PM2.5 air quality standards in numerous locations by up to 10 times. While modeled PM2.5 concentrations were lower than measurements, correcting these with PurpleAir data improved the accuracy. The correction using PurpleAir data increased estimates of wildfire-induced mortality due to PM2.5 exposure by up to 16%. The increased hospital admissions and premature mortality attributed to wildfires were found to be comparable to the health impacts avoided by strategies aimed at meeting ozone and PM2.5 air quality standards. This suggests that widespread wildfire emissions can negate years of efforts dedicated to controlling air pollution. The integration of low-cost sensor data proved invaluable in refining the estimates of health impacts from PM2.5 resulting from wildfires.","PeriodicalId":12273,"journal":{"name":"Fire Ecology","volume":"10 1","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139509838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-18DOI: 10.1186/s42408-023-00240-0
Ashley A. Coble, Brooke E. Penaluna, Laura J. Six, Jake Verschuyl
<p><b>Correction: Fire Ecol 19, 34 (2023)</b></p><p><b>https://doi.org/10.1186/s42408-023–00192-5</b></p><p>When analysing subsequent years of fish and amphibian data, the authors identified an error in some of the reach area calculations that affected vertebrate densities for some sites (density and biomass density for fish and amphibians). Specifically, the formula for reach area in some cells (5 sites) referenced wetted width from an adjacent site instead of the correct site. Because this error did not occur across all cells (sites) and because abundance data were not affected this calculation error was not readily apparent. This error affected densities for fish and amphibians at some sites, including 2 of the most severely burned sites, and therefore affects the individual fish and amphibian responses reported in Fig. 7 a, b. For consistency, Fig. 5 (PCA) has also been updated to reflect these changes.</p><figure><figcaption><b data-test="figure-caption-text">Fig. 5</b></figcaption><picture><source srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1186%2Fs42408-023-00240-0/MediaObjects/42408_2023_240_Fig1_HTML.png?as=webp" type="image/webp"/><img alt="figure 1" aria-describedby="Fig1" height="1604" loading="lazy" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1186%2Fs42408-023-00240-0/MediaObjects/42408_2023_240_Fig1_HTML.png" width="685"/></picture><p>Principal components analysis (PCA) and relationships of axes with fire severity and pre-fire stand age. <b>a</b> PCA with scores and loadings of physical, chemical, biological, and watershed characteristics. <b>b</b> Principal component 1 (PC1) varied as a function of fire severity as RAVG mean. <b>c</b> Principal component 2 (PC2) varied as a function of pre-fire stand age</p><span>Full size image</span><svg aria-hidden="true" focusable="false" height="16" role="img" width="16"><use xlink:href="#icon-eds-i-chevron-right-small" xmlns:xlink="http://www.w3.org/1999/xlink"></use></svg></figure><p>This correction affects only the fish and amphibian density and biomass density results (Fig. 5, Fig. 7 panel a and b), with minimal edits to the text. However, this small adjustment does not affect the overall conclusions or interpretation of the article, which focuses on the response of in-stream large wood and riparian coarse wood to wildfire.</p><figure><figcaption><b data-test="figure-caption-text">Fig. 7</b></figcaption><picture><source srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1186%2Fs42408-023-00240-0/MediaObjects/42408_2023_240_Fig2_HTML.png?as=webp" type="image/webp"/><img alt="figure 2" aria-describedby="Fig2" height="551" loading="lazy" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1186%2Fs42408-023-00240-0/MediaObjects/42408_2023_240_Fig2_HTML.png" width="685"/></picture><p>Biological responses that varied as a function of fire severity (RAVG). Biological responses included: <b>a</b> fish densit
图 5b;附加文件 2)火灾严重程度是 PC1 的一个重要预测因子,它表明火灾越严重的流域,其树木死亡率、挽救性采伐、光照可用性、 DOC、DON、NH4+、鱼类密度和溪流温度越高,树冠覆盖率、敏感和不耐受大型无脊椎动物类群、刮削器百分比以及溪流和河岸地区的小直径木材越低(图 5b;附加文件 2)。第五段我们假设溪流生物群会对暴露于更严重火灾的溪流做出负面反应,我们的结果与一些顶级捕食者的假设一致。在顶级捕食者(鱼类或两栖动物)中,我们发现只有鱼类密度和鱼类生物量密度随火灾严重程度和火灾前林木年龄而变化,而两栖动物密度和两栖动物生物量密度则不随任何预测因子而变化(图 5)。我们观察到鱼类密度与火灾严重程度、火灾前林龄以及它们各自的主效应之间存在明显的交互作用。鱼类生物量密度随火灾严重程度而变化,但不随火灾前林龄或它们之间的交互作用而变化。我们的假设是,溪流生物群会对遭受严重火灾的溪流做出负面反应,我们的结果与两栖动物的假设一致,但与鱼类的假设不一致。两栖动物的密度随火灾严重程度和火灾前林木年龄的变化而变化,而鱼类的密度则随火灾严重程度的变化而变化。鱼类生物量密度和两栖动物生物量密度不随任何预测因子的变化而变化(图 5)。我们没有观察到两栖动物密度与火灾严重程度和火灾前林木年龄之间存在明显的交互作用,但它们各自的主效应都很明显,在烧毁程度较轻的流域和火灾前林木年龄较大的地区,两栖动物密度较大。火灾严重程度和火灾前林木年龄对水生生态系统的影响 第一段在火灾严重程度较高的流域,上层林木死亡率、光照可用性、DOM 浓度、抢救性砍伐和溪流温度都有所上升,而树冠覆盖率、LW 直径、DOM 浓度和溪流温度都有所下降、敏感和不耐受大型无脊椎动物类群、刮食者功能摄食群、鱼类密度和鱼类生物量密度降低在燃烧严重程度较高的流域,上层树木死亡率、光照可用性、DOM 浓度、抢救性采伐、溪流温度和鱼类密度增加,而树冠覆盖率、LW 直径、鱼类生物量密度和鱼类生物量密度降低、火灾严重程度和火灾前林木年龄对水生生态系统的影响 第 6 段 我们发现,在整个研究区域内,火灾较严重的流域的鱼类密度和生物量密度都有所下降、这些变化可能共同导致了鱼类密度和鱼类生物量密度的下降。尽管在我们的研究中观察到了直接的下降,但预计这些本地种群将很快恢复(Rieman 和 Clayton,1997 年;Dunham 等人,2003 年;Rieman 等人,2012 年;Gomez Isaza 等人,2022 年)。尽管在我们的研究中观察到的捕食者反应不一,但预计这些本地种群将很快恢复(Rieman 和 Clayton,1997 年;Dunham 等,2003 年;Rieman 等,2012 年;Gomez Isaza 等,2022 年)。结论在喀斯喀特西部特大火灾后的最初 8 到 11 个月内,我们发现更严重的火灾烧毁了更多的上层河岸植被,导致光照、DOM 浓度和大型无脊椎动物密度增加,同时降低了树冠覆盖率、LW 直径、大型无脊椎动物多样性以及鱼类密度、在西卡斯卡特大火灾后的最初 8 到 11 个月内,我们发现更严重的火灾烧毁了更多的上层河岸植被,导致光照、DOM 浓度、大型无脊椎动物和鱼类密度增加,同时树冠覆盖率、LW 直径、大型无脊椎动物多样性和两栖动物密度降低附加文件 5 生物变量与火灾前林木年龄(y)的函数关系。变量包括:a) 无灰干质量(g m-2);b) 采集器-滤网(%);c) 碎纸机(%);d) EPT(%);e) 两栖动物密度(no. 生物变量与火灾前林龄(y)和火灾严重程度(RAVG)的函数关系。变量包括:a) 无灰干质量(克 m-2);b) 采集器-滤器(%);c) 碎纸机(%);d) EPT(%);e) 鱼类生物量密度(克 m-2);f) 两栖动物生物量密度(克 m-2)Coble, A.A., Penaluna, B.E., Six, L.J. et al. 火灾严重程度影响俄勒冈州西部流域的大型木材和溪流生态系统响应。Fire Ecol 19, 34 (2023). https://doi.org/10.1186/s42408-023-00192-5.Download 参考文献作者及单位NCASI, 2438 NW Professional Drive, Corvallis, OR, 97330, USAAshley A. CobleU.S.D.A. Forest Service, Pacific Northwest Research Station, 3200 SW Jefferson Way, Corvallis, OR, 97331, USABrooke E.PenalunaWeyerhaeuser Company, 505 N Pearl St, Centralia, WA, 98531, USALaura J. SixNCASI, 1117 3Rd Street, Anacortes, WA, 98221, USAJake VerschuylAuthorsAshley A. CobleView author publications您也可以在PubMed Google Scholar中搜索该作者Brooke E. PenalunaView author publications您也可以在PubMed Google Scholar中搜索该作者Laura J. Six查看作者发表的文章Six查看作者发表的文章您也可以在PubMed Google Scholar中搜索该作者Jake Verschuyl查看作者发表的文章您也可以在PubMed Google Scholar中搜索该作者通信作者Ashley A. Coble.开放存取本文采用知识共享署名 4.0 国际许可协议进行许可,该协议允许以任何媒介或格式使用、共享、改编、分发和复制,只要您适当注明原作者和来源,提供知识共享许可协议的链接,并注明是否进行了修改。本文中的图片或其他第三方材料均包含在文章的知识共享许可协议中,除非在材料的署名栏中另有说明。如果材料未包含在文章的知识共享许可协议中,且您打算使用的材料不符合法律规定或超出许可使用范围,您需要直接从版权所有者处获得许可。要查看该许可的副本,请访问 http://creativecommons.org/licenses/by/4.0/.Reprints and permissionsCite this articleCoble, A.A., Penaluna, B.E., Six, L.J. et al. Correction:Fire Ecol 20, 5 (2024). https://doi.org/10.1186/s42408-023-00240-0Download citationPublished: 18 January 2024DOI: https://doi.org/10.1186/s42408-023-00240-0Share this articleAnyone you share the following link with will be able to read this cont
{"title":"Correction: Fire severity influences large wood and stream ecosystem responses in western Oregon watersheds","authors":"Ashley A. Coble, Brooke E. Penaluna, Laura J. Six, Jake Verschuyl","doi":"10.1186/s42408-023-00240-0","DOIUrl":"https://doi.org/10.1186/s42408-023-00240-0","url":null,"abstract":"<p><b>Correction: Fire Ecol 19, 34 (2023)</b></p><p><b>https://doi.org/10.1186/s42408-023–00192-5</b></p><p>When analysing subsequent years of fish and amphibian data, the authors identified an error in some of the reach area calculations that affected vertebrate densities for some sites (density and biomass density for fish and amphibians). Specifically, the formula for reach area in some cells (5 sites) referenced wetted width from an adjacent site instead of the correct site. Because this error did not occur across all cells (sites) and because abundance data were not affected this calculation error was not readily apparent. This error affected densities for fish and amphibians at some sites, including 2 of the most severely burned sites, and therefore affects the individual fish and amphibian responses reported in Fig. 7 a, b. For consistency, Fig. 5 (PCA) has also been updated to reflect these changes.</p><figure><figcaption><b data-test=\"figure-caption-text\">Fig. 5</b></figcaption><picture><source srcset=\"//media.springernature.com/lw685/springer-static/image/art%3A10.1186%2Fs42408-023-00240-0/MediaObjects/42408_2023_240_Fig1_HTML.png?as=webp\" type=\"image/webp\"/><img alt=\"figure 1\" aria-describedby=\"Fig1\" height=\"1604\" loading=\"lazy\" src=\"//media.springernature.com/lw685/springer-static/image/art%3A10.1186%2Fs42408-023-00240-0/MediaObjects/42408_2023_240_Fig1_HTML.png\" width=\"685\"/></picture><p>Principal components analysis (PCA) and relationships of axes with fire severity and pre-fire stand age. <b>a</b> PCA with scores and loadings of physical, chemical, biological, and watershed characteristics. <b>b</b> Principal component 1 (PC1) varied as a function of fire severity as RAVG mean. <b>c</b> Principal component 2 (PC2) varied as a function of pre-fire stand age</p><span>Full size image</span><svg aria-hidden=\"true\" focusable=\"false\" height=\"16\" role=\"img\" width=\"16\"><use xlink:href=\"#icon-eds-i-chevron-right-small\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"></use></svg></figure><p>This correction affects only the fish and amphibian density and biomass density results (Fig. 5, Fig. 7 panel a and b), with minimal edits to the text. However, this small adjustment does not affect the overall conclusions or interpretation of the article, which focuses on the response of in-stream large wood and riparian coarse wood to wildfire.</p><figure><figcaption><b data-test=\"figure-caption-text\">Fig. 7</b></figcaption><picture><source srcset=\"//media.springernature.com/lw685/springer-static/image/art%3A10.1186%2Fs42408-023-00240-0/MediaObjects/42408_2023_240_Fig2_HTML.png?as=webp\" type=\"image/webp\"/><img alt=\"figure 2\" aria-describedby=\"Fig2\" height=\"551\" loading=\"lazy\" src=\"//media.springernature.com/lw685/springer-static/image/art%3A10.1186%2Fs42408-023-00240-0/MediaObjects/42408_2023_240_Fig2_HTML.png\" width=\"685\"/></picture><p>Biological responses that varied as a function of fire severity (RAVG). Biological responses included: <b>a</b> fish densit","PeriodicalId":12273,"journal":{"name":"Fire Ecology","volume":"4 1","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139496593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-17DOI: 10.1186/s42408-023-00233-z
José Manuel Fernández-Guisuraga, Paulo M. Fernandes
Prescribed burning (PB) is becoming relevant in fuel reduction and thus fire hazard abatement in fire-prone ecosystems of southern Europe. Yet, empirical evidence on the effectiveness of this practice to mitigate wildfire severity in Mediterranean shrublands is non-existent, despite being the focus of PB efforts in this region. Here, we intended to quantify the protective effect of PB treatment units (2005–2021) to subsequent wildfire severity in shrublands across mainland Portugal, as well as the relative contribution and complex interactions between drivers of wildfire severity in PB-treated areas and untreated neighboring counterparts through Random Forest regression. We leveraged cloud-computing remote sensing data processing in Google Earth Engine to estimate fire severity (PB and wildfire) as the Relativized Burn Ratio (RBR) using Landsat data catalog. PB treatment was particularly effective at mitigating wildfire severity at the first PB-wildfire encounter in shrublands, with a mean reduction of around 24% in RBR units. Fuel age (i.e., time since prescribed burning) in PB-wildfire intersection areas overwhelmed to a large extent the effect of fire weather, burning probability, and PB severity. The mitigating effect of PB on wildfire severity persisted for a fuel age of around 5 years. However, this effect decreased with increasingly adverse fire weather conditions, such that variation in wildfire severity was somewhat insensitive to fuel age under extreme fire weather. Similarly, the lowest wildfire severity experienced in sites with high burning probability, along with the interaction effect observed between burning probability and fuel age, suggest that repeated PB treatments may be useful in controlling fuel accumulation and mitigating wildfire severity. The relative contribution of fire weather in explaining wildfire severity was exceedingly high in untreated areas, doubling that of the other variables in the model in the absence of PB treatment variables. Our results suggest that the implementation of PB treatments at intervals of less than 5 years is of paramount importance to control fuel build-up and fire hazard under extreme fire weather in productive Mediterranean shrublands. Further research on this topic is warranted in other shrublands worldwide, namely in Mediterranean-type climate regions.
{"title":"Prescribed burning mitigates the severity of subsequent wildfires in Mediterranean shrublands","authors":"José Manuel Fernández-Guisuraga, Paulo M. Fernandes","doi":"10.1186/s42408-023-00233-z","DOIUrl":"https://doi.org/10.1186/s42408-023-00233-z","url":null,"abstract":"Prescribed burning (PB) is becoming relevant in fuel reduction and thus fire hazard abatement in fire-prone ecosystems of southern Europe. Yet, empirical evidence on the effectiveness of this practice to mitigate wildfire severity in Mediterranean shrublands is non-existent, despite being the focus of PB efforts in this region. Here, we intended to quantify the protective effect of PB treatment units (2005–2021) to subsequent wildfire severity in shrublands across mainland Portugal, as well as the relative contribution and complex interactions between drivers of wildfire severity in PB-treated areas and untreated neighboring counterparts through Random Forest regression. We leveraged cloud-computing remote sensing data processing in Google Earth Engine to estimate fire severity (PB and wildfire) as the Relativized Burn Ratio (RBR) using Landsat data catalog. PB treatment was particularly effective at mitigating wildfire severity at the first PB-wildfire encounter in shrublands, with a mean reduction of around 24% in RBR units. Fuel age (i.e., time since prescribed burning) in PB-wildfire intersection areas overwhelmed to a large extent the effect of fire weather, burning probability, and PB severity. The mitigating effect of PB on wildfire severity persisted for a fuel age of around 5 years. However, this effect decreased with increasingly adverse fire weather conditions, such that variation in wildfire severity was somewhat insensitive to fuel age under extreme fire weather. Similarly, the lowest wildfire severity experienced in sites with high burning probability, along with the interaction effect observed between burning probability and fuel age, suggest that repeated PB treatments may be useful in controlling fuel accumulation and mitigating wildfire severity. The relative contribution of fire weather in explaining wildfire severity was exceedingly high in untreated areas, doubling that of the other variables in the model in the absence of PB treatment variables. Our results suggest that the implementation of PB treatments at intervals of less than 5 years is of paramount importance to control fuel build-up and fire hazard under extreme fire weather in productive Mediterranean shrublands. Further research on this topic is warranted in other shrublands worldwide, namely in Mediterranean-type climate regions.","PeriodicalId":12273,"journal":{"name":"Fire Ecology","volume":"2 1","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139481245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-15DOI: 10.1186/s42408-023-00245-9
Anna Klimaszewski-Patterson, Theodore Dingemans, Christopher T. Morgan, Scott A. Mensing
Understanding pre-1850s fire history and its effect on forest structure can provide insights useful for fire managers in developing plans to moderate fire hazards in the face of forecasted climate change. While climate clearly plays a substantial role in California wildfires, traditional use of fire by Indigenous people also affected fire history and forest structure in the Sierra Nevada. Disentangling the effects of human versus climatically-induced fire on Sierran forests from paleoecological records has historically proved challenging, but here we use pollen-based forest structure reconstructions and comparative paleoclimatic-vegetation response modeling to identify periods of human impact over the last 1300 years at Markwood Meadow, Sierra National Forest. We find strong evidence for anthropogenic fires at Markwood Meadow ca. 1550 – 1750 C.E., contemporaneous with archaeological evidence for fundamental shifts in Indigenous lifeways. When we compare our findings to five other paleoecological sites in the central and southern Sierra Nevada, we find evidence for contemporaneous anthropogenic effects on forest structure across a broad swath of cismontane central California. This is significant because it implies that late 19th and early twentieth century forest structure – the structure that land managers most often seek to emulate – was in part the result anthropogenic fire and precolonial resource management. We consequently suggest that modern management strategies consider (1) further incorporating traditional ecological knowledge fire practices in consultation with local tribal groups, and (2) using pollen-based reconstructions to track how forest composition compares to pre-1850 C.E. conditions rather than the novel forest states encountered in the late 20th and early twenty-first centuries. These strategies could help mitigate the effects of forecast climate change and associated megafires on forests and on socio-ecological systems in a more comprehensive manner.
{"title":"Human influence on late Holocene fire history in a mixed-conifer forest, Sierra National Forest, California","authors":"Anna Klimaszewski-Patterson, Theodore Dingemans, Christopher T. Morgan, Scott A. Mensing","doi":"10.1186/s42408-023-00245-9","DOIUrl":"https://doi.org/10.1186/s42408-023-00245-9","url":null,"abstract":"Understanding pre-1850s fire history and its effect on forest structure can provide insights useful for fire managers in developing plans to moderate fire hazards in the face of forecasted climate change. While climate clearly plays a substantial role in California wildfires, traditional use of fire by Indigenous people also affected fire history and forest structure in the Sierra Nevada. Disentangling the effects of human versus climatically-induced fire on Sierran forests from paleoecological records has historically proved challenging, but here we use pollen-based forest structure reconstructions and comparative paleoclimatic-vegetation response modeling to identify periods of human impact over the last 1300 years at Markwood Meadow, Sierra National Forest. We find strong evidence for anthropogenic fires at Markwood Meadow ca. 1550 – 1750 C.E., contemporaneous with archaeological evidence for fundamental shifts in Indigenous lifeways. When we compare our findings to five other paleoecological sites in the central and southern Sierra Nevada, we find evidence for contemporaneous anthropogenic effects on forest structure across a broad swath of cismontane central California. This is significant because it implies that late 19th and early twentieth century forest structure – the structure that land managers most often seek to emulate – was in part the result anthropogenic fire and precolonial resource management. We consequently suggest that modern management strategies consider (1) further incorporating traditional ecological knowledge fire practices in consultation with local tribal groups, and (2) using pollen-based reconstructions to track how forest composition compares to pre-1850 C.E. conditions rather than the novel forest states encountered in the late 20th and early twenty-first centuries. These strategies could help mitigate the effects of forecast climate change and associated megafires on forests and on socio-ecological systems in a more comprehensive manner.","PeriodicalId":12273,"journal":{"name":"Fire Ecology","volume":"1 1","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139469663","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-12DOI: 10.1186/s42408-023-00231-1
Zachary J. Robbins, E. L. Loudermilk, Tina G. Mozelewski, Kate Jones, R. Scheller
{"title":"Fire regimes of the Southern Appalachians may radically shift under climate change","authors":"Zachary J. Robbins, E. L. Loudermilk, Tina G. Mozelewski, Kate Jones, R. Scheller","doi":"10.1186/s42408-023-00231-1","DOIUrl":"https://doi.org/10.1186/s42408-023-00231-1","url":null,"abstract":"","PeriodicalId":12273,"journal":{"name":"Fire Ecology","volume":"2 8","pages":"1-17"},"PeriodicalIF":5.1,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139437836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-04DOI: 10.1186/s42408-023-00238-8
Ramesh Glückler, Josias Gloy, Elisabeth Dietze, Ulrike Herzschuh, Stefan Kruse
Wildfires are recognized as an important ecological component of larch-dominated boreal forests in eastern Siberia. However, long-term fire-vegetation dynamics in this unique environment are poorly understood. Recent paleoecological research suggests that intensifying fire regimes may induce millennial-scale shifts in forest structure and composition. This may, in turn, result in positive feedback on intensifying wildfires and permafrost degradation, apart from threatening human livelihoods. Most common fire-vegetation models do not explicitly include detailed individual-based tree population dynamics, but a focus on patterns of forest structure emerging from interactions among individual trees may provide a beneficial perspective on the impacts of changing fire regimes in eastern Siberia. To simulate these impacts on forest structure at millennial timescales, we apply the individual-based, spatially explicit vegetation model LAVESI-FIRE, expanded with a new fire module. Satellite-based fire observations along with fieldwork data were used to inform the implementation of wildfire occurrence and adjust model parameters. Simulations of annual forest development and wildfire activity at a study site in the Republic of Sakha (Yakutia) since the Last Glacial Maximum (c. 20,000 years BP) highlight the variable impacts of fire regimes on forest structure throughout time. Modeled annual fire probability and subsequent burned area in the Holocene compare well with a local reconstruction of charcoal influx in lake sediments. Wildfires can be followed by different forest regeneration pathways, depending on fire frequency and intensity and the pre-fire forest conditions. We find that medium-intensity wildfires at fire return intervals of 50 years or more benefit the dominance of fire-resisting Dahurian larch (Larix gmelinii (Rupr.) Rupr.), while stand-replacing fires tend to enable the establishment of evergreen conifers. Apart from post-fire mortality, wildfires modulate forest development mainly through competition effects and a reduction of the model’s litter layer. With its fine-scale population dynamics, LAVESI-FIRE can serve as a highly localized, spatially explicit tool to understand the long-term impacts of boreal wildfires on forest structure and to better constrain interpretations of paleoecological reconstructions of fire activity.
{"title":"Simulating long-term wildfire impacts on boreal forest structure in Central Yakutia, Siberia, since the Last Glacial Maximum","authors":"Ramesh Glückler, Josias Gloy, Elisabeth Dietze, Ulrike Herzschuh, Stefan Kruse","doi":"10.1186/s42408-023-00238-8","DOIUrl":"https://doi.org/10.1186/s42408-023-00238-8","url":null,"abstract":"Wildfires are recognized as an important ecological component of larch-dominated boreal forests in eastern Siberia. However, long-term fire-vegetation dynamics in this unique environment are poorly understood. Recent paleoecological research suggests that intensifying fire regimes may induce millennial-scale shifts in forest structure and composition. This may, in turn, result in positive feedback on intensifying wildfires and permafrost degradation, apart from threatening human livelihoods. Most common fire-vegetation models do not explicitly include detailed individual-based tree population dynamics, but a focus on patterns of forest structure emerging from interactions among individual trees may provide a beneficial perspective on the impacts of changing fire regimes in eastern Siberia. To simulate these impacts on forest structure at millennial timescales, we apply the individual-based, spatially explicit vegetation model LAVESI-FIRE, expanded with a new fire module. Satellite-based fire observations along with fieldwork data were used to inform the implementation of wildfire occurrence and adjust model parameters. Simulations of annual forest development and wildfire activity at a study site in the Republic of Sakha (Yakutia) since the Last Glacial Maximum (c. 20,000 years BP) highlight the variable impacts of fire regimes on forest structure throughout time. Modeled annual fire probability and subsequent burned area in the Holocene compare well with a local reconstruction of charcoal influx in lake sediments. Wildfires can be followed by different forest regeneration pathways, depending on fire frequency and intensity and the pre-fire forest conditions. We find that medium-intensity wildfires at fire return intervals of 50 years or more benefit the dominance of fire-resisting Dahurian larch (Larix gmelinii (Rupr.) Rupr.), while stand-replacing fires tend to enable the establishment of evergreen conifers. Apart from post-fire mortality, wildfires modulate forest development mainly through competition effects and a reduction of the model’s litter layer. With its fine-scale population dynamics, LAVESI-FIRE can serve as a highly localized, spatially explicit tool to understand the long-term impacts of boreal wildfires on forest structure and to better constrain interpretations of paleoecological reconstructions of fire activity.","PeriodicalId":12273,"journal":{"name":"Fire Ecology","volume":"100 1","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139105099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-02-07DOI: 10.1186/s42408-024-00249-z
Jennifer N Baron, Paul F Hessburg, Marc-André Parisien, Gregory A Greene, Sarah E Gergel, Lori D Daniels
Background: A clear understanding of the connectivity, structure, and composition of wildland fuels is essential for effective wildfire management. However, fuel typing and mapping are challenging owing to a broad diversity of fuel conditions and their spatial and temporal heterogeneity. In Canada, fuel types and potential fire behavior are characterized using the Fire Behavior Prediction (FBP) System, which uses an association approach to categorize vegetation into 16 fuel types based on stand structure and composition. In British Columbia (BC), provincial and national FBP System fuel type maps are derived from remotely sensed forest inventory data and are widely used for wildfire operations, fuel management, and scientific research. Despite their widespread usage, the accuracy and applicability of these fuel type maps have not been formally assessed. To address this knowledge gap, we quantified the agreement between on-site assessments and provincial and national fuel type maps in interior BC.
Results: We consistently found poor correspondence between field assessment data and both provincial and national fuel types. Mismatches were particularly frequent for (i) dry interior ecosystems, (ii) mixedwood and deciduous fuel types, and (iii) post-harvesting conditions. For 58% of field plots, there was no suitable match to the extant fuel structure and composition. Mismatches were driven by the accuracy and availability of forest inventory data and low applicability of the Canadian FBP System to interior BC fuels.
Conclusions: The fuel typing mismatches we identified can limit scientific research, but also challenge wildfire operations and fuel management decisions. Improving fuel typing accuracy will require a significant effort in fuel inventory data and system upgrades to adequately represent the diversity of extant fuels. To more effectively link conditions to expected fire behavior outcomes, we recommend a fuel classification approach and emphasis on observed fuels and measured fire behavior data for the systems we seek to represent.
Supplementary information: The online version contains supplementary material available at 10.1186/s42408-024-00249-z.
{"title":"Fuel types misrepresent forest structure and composition in interior British Columbia: a way forward.","authors":"Jennifer N Baron, Paul F Hessburg, Marc-André Parisien, Gregory A Greene, Sarah E Gergel, Lori D Daniels","doi":"10.1186/s42408-024-00249-z","DOIUrl":"10.1186/s42408-024-00249-z","url":null,"abstract":"<p><strong>Background: </strong>A clear understanding of the connectivity, structure, and composition of wildland fuels is essential for effective wildfire management. However, fuel typing and mapping are challenging owing to a broad diversity of fuel conditions and their spatial and temporal heterogeneity. In Canada, fuel types and potential fire behavior are characterized using the Fire Behavior Prediction (FBP) System, which uses an association approach to categorize vegetation into 16 fuel types based on stand structure and composition. In British Columbia (BC), provincial and national FBP System fuel type maps are derived from remotely sensed forest inventory data and are widely used for wildfire operations, fuel management, and scientific research. Despite their widespread usage, the accuracy and applicability of these fuel type maps have not been formally assessed. To address this knowledge gap, we quantified the agreement between on-site assessments and provincial and national fuel type maps in interior BC.</p><p><strong>Results: </strong>We consistently found poor correspondence between field assessment data and both provincial and national fuel types. Mismatches were particularly frequent for (i) dry interior ecosystems, (ii) mixedwood and deciduous fuel types, and (iii) post-harvesting conditions. For 58% of field plots, there was no suitable match to the extant fuel structure and composition. Mismatches were driven by the accuracy and availability of forest inventory data and low applicability of the Canadian FBP System to interior BC fuels.</p><p><strong>Conclusions: </strong>The fuel typing mismatches we identified can limit scientific research, but also challenge wildfire operations and fuel management decisions. Improving fuel typing accuracy will require a significant effort in fuel inventory data and system upgrades to adequately represent the diversity of extant fuels. To more effectively link conditions to expected fire behavior outcomes, we recommend a fuel classification approach and emphasis on observed fuels and measured fire behavior data for the systems we seek to represent.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1186/s42408-024-00249-z.</p>","PeriodicalId":12273,"journal":{"name":"Fire Ecology","volume":"20 1","pages":"15"},"PeriodicalIF":5.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10847212/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139706497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}