首页 > 最新文献

Food Chemistry: X最新文献

英文 中文
Different smoking processes with the special fuel rods: Impart a smoky aroma to Souchong black tea.
IF 6.5 1区 农林科学 Q1 CHEMISTRY, APPLIED Pub Date : 2024-12-29 eCollection Date: 2025-01-01 DOI: 10.1016/j.fochx.2024.102142
Weisu Tian, Jiao Feng, Jinyuan Wang, Hongzheng Lin, Qianlian Chen, Jiayun Zhuang, Guanjun Pan, Jiake Zhao, Lirong Tang, Zhilong Hao

The smoky scent is the most distinctive feature for Souchong black tea. To reduce the dependence on pinewood in the smoking process of Souchong black tea, it is crucial to find an effective alternative smoking material. Five black tea samples were prepared via using specially designed fuel rods as the smoking material in this study. Sensory analysis showed that DS (smoking at the drying stage) had the most favorable aroma, featuring a pleasant smoky aroma with floral and fruity notes. 69 volatile compounds were detected in five tested samples. Key volatiles such as β-caryophyllene, nerolidol, guaiacol, and α-terpineol, known for their woody or smoky aroma, were prominent in both DS and TS (the traditional Lapsang Souchong process) samples (OAV > 1, VIP > 1 and P < 0.05). However, DS exhibited significantly lower concentration of these volatiles than TS, giving it a more pleasant aroma. Additionally, phenylethyl alcohol and α-farnesene were characteristic volatiles in FS (smoking at the fermentation stage) and DS, imparting a sweet, mildly smoky aroma. Therefore, using these specialized fuel rods to smoking process at drying stage is an optimal method for processing Souchong black tea. These findings provide a theoretical foundation for stabilizing Souchong black tea quality, promoting green and low-carbon tea production methods.

{"title":"Different smoking processes with the special fuel rods: Impart a smoky aroma to Souchong black tea.","authors":"Weisu Tian, Jiao Feng, Jinyuan Wang, Hongzheng Lin, Qianlian Chen, Jiayun Zhuang, Guanjun Pan, Jiake Zhao, Lirong Tang, Zhilong Hao","doi":"10.1016/j.fochx.2024.102142","DOIUrl":"https://doi.org/10.1016/j.fochx.2024.102142","url":null,"abstract":"<p><p>The smoky scent is the most distinctive feature for Souchong black tea. To reduce the dependence on pinewood in the smoking process of Souchong black tea, it is crucial to find an effective alternative smoking material. Five black tea samples were prepared via using specially designed fuel rods as the smoking material in this study. Sensory analysis showed that DS (smoking at the drying stage) had the most favorable aroma, featuring a pleasant smoky aroma with floral and fruity notes. 69 volatile compounds were detected in five tested samples. Key volatiles such as <i>β</i>-caryophyllene, nerolidol, guaiacol, and <i>α</i>-terpineol, known for their woody or smoky aroma, were prominent in both DS and TS (the traditional Lapsang Souchong process) samples (OAV > 1, VIP > 1 and <i>P</i> < 0.05). However, DS exhibited significantly lower concentration of these volatiles than TS, giving it a more pleasant aroma. Additionally, phenylethyl alcohol and <i>α</i>-farnesene were characteristic volatiles in FS (smoking at the fermentation stage) and DS, imparting a sweet, mildly smoky aroma. Therefore, using these specialized fuel rods to smoking process at drying stage is an optimal method for processing Souchong black tea. These findings provide a theoretical foundation for stabilizing Souchong black tea quality, promoting green and low-carbon tea production methods.</p>","PeriodicalId":12334,"journal":{"name":"Food Chemistry: X","volume":"25 ","pages":"102142"},"PeriodicalIF":6.5,"publicationDate":"2024-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11754824/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143028215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Subregional pedoclimatic conditions with contrasted UV-radiation shape host-microbiome and metabolome phenotypes in the grape berry.
IF 6.5 1区 农林科学 Q1 CHEMISTRY, APPLIED Pub Date : 2024-12-29 eCollection Date: 2025-01-01 DOI: 10.1016/j.fochx.2024.102139
Viviana Martins, Cécile Abdallah, António Teixeira, Carolina Moreira, Márcio Nóbrega, Arnaud Lanoue, Hernâni Gerós

This study used integrative omics to address the response of key elements of the grapevine holobiont to contrasted pedoclimatic conditions found in distinct subregions of Douro Valley (Portugal). A metabolic OPLS-DA model predicted with 100 % accuracy the geographic origin of berries; higher UV radiation, higher temperature and lower precipitation stimulated the accumulation of phenolic acids, flavonols and malvidin conjugates, in detriment of amino acids, organic acids, flavan-3-ols, proanthocyanidins and non-malvidin anthocyanins. Metabarcoding showed a trade-off between bacteria and fungal diversity among subregions, with Pseudomonas, Lactobacillus, Aspergillus and Penicillium acting as intraregional microbial markers. The high phenotypic plasticity of berries and the role of microbes in this process are relevant upon current projections for increased UV radiation and temperature in Southern European viticulture, in a climate change scenario, with predicted impacts on regional wine quality and on the development of adaptation strategies for resilient viticulture.

{"title":"Subregional pedoclimatic conditions with contrasted UV-radiation shape host-microbiome and metabolome phenotypes in the grape berry.","authors":"Viviana Martins, Cécile Abdallah, António Teixeira, Carolina Moreira, Márcio Nóbrega, Arnaud Lanoue, Hernâni Gerós","doi":"10.1016/j.fochx.2024.102139","DOIUrl":"10.1016/j.fochx.2024.102139","url":null,"abstract":"<p><p>This study used integrative omics to address the response of key elements of the grapevine holobiont to contrasted pedoclimatic conditions found in distinct subregions of Douro Valley (Portugal). A metabolic OPLS-DA model predicted with 100 % accuracy the geographic origin of berries; higher UV radiation, higher temperature and lower precipitation stimulated the accumulation of phenolic acids, flavonols and malvidin conjugates, in detriment of amino acids, organic acids, flavan-3-ols, proanthocyanidins and non-malvidin anthocyanins. Metabarcoding showed a trade-off between bacteria and fungal diversity among subregions, with <i>Pseudomonas</i>, <i>Lactobacillus, Aspergillus</i> and <i>Penicillium</i> acting as intraregional microbial markers. The high phenotypic plasticity of berries and the role of microbes in this process are relevant upon current projections for increased UV radiation and temperature in Southern European viticulture, in a climate change scenario, with predicted impacts on regional wine quality and on the development of adaptation strategies for resilient viticulture.</p>","PeriodicalId":12334,"journal":{"name":"Food Chemistry: X","volume":"25 ","pages":"102139"},"PeriodicalIF":6.5,"publicationDate":"2024-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11750517/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143022831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The stabilization mechanism of the pea protein and rutin complex at the gas/liquid interface and its application in low-fat cream.
IF 6.5 1区 农林科学 Q1 CHEMISTRY, APPLIED Pub Date : 2024-12-28 eCollection Date: 2025-01-01 DOI: 10.1016/j.fochx.2024.102140
Chunyang Xia, Fangxiao Lou, Shuo Zhang, Tianfu Cheng, Zhaodong Hu, Zengwang Guo, Ping Ma

The objective of this study was to substitute partially fat with pea protein isolate (PP)/rutin (Ru) complexes to produce a healthy and stable low-fat whipped cream. Ru enhanced the foam properties of PP. The Ru binding equivalent was the best at a mass ratio of PP/Ru of 64:4, the PP/Ru complexes particle size was the smallest. The synergistic adsorption of Ru reduced the interfacial tension of the complexes and accelerated their diffusion, permeation, and rearrangement at the air/water interface. The results of rheology and Lissajous plots suggested that PP/Ru complexes functioned as an interfacing stabilizer, enhanced the elastic strength of interface film, and improved the stability of foam. PP/Ru complexes as a fat substitute promoted the aggregation of fat globules and the formation of fat globule network structure. When the substitution rate is 10 %, the texture, stability, and microstructure of the sample are nearly identical to those of full-fat cream.

{"title":"The stabilization mechanism of the pea protein and rutin complex at the gas/liquid interface and its application in low-fat cream.","authors":"Chunyang Xia, Fangxiao Lou, Shuo Zhang, Tianfu Cheng, Zhaodong Hu, Zengwang Guo, Ping Ma","doi":"10.1016/j.fochx.2024.102140","DOIUrl":"10.1016/j.fochx.2024.102140","url":null,"abstract":"<p><p>The objective of this study was to substitute partially fat with pea protein isolate (PP)/rutin (Ru) complexes to produce a healthy and stable low-fat whipped cream. Ru enhanced the foam properties of PP. The Ru binding equivalent was the best at a mass ratio of PP/Ru of 64:4, the PP/Ru complexes particle size was the smallest. The synergistic adsorption of Ru reduced the interfacial tension of the complexes and accelerated their diffusion, permeation, and rearrangement at the air/water interface. The results of rheology and Lissajous plots suggested that PP/Ru complexes functioned as an interfacing stabilizer, enhanced the elastic strength of interface film, and improved the stability of foam. PP/Ru complexes as a fat substitute promoted the aggregation of fat globules and the formation of fat globule network structure. When the substitution rate is 10 %, the texture, stability, and microstructure of the sample are nearly identical to those of full-fat cream.</p>","PeriodicalId":12334,"journal":{"name":"Food Chemistry: X","volume":"25 ","pages":"102140"},"PeriodicalIF":6.5,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11750516/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143022140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of different white nanomaterials on pH response ability and physicochemical performance of anthocyanin-loaded carboxymethyl cellulose-polyvinyl alcohol films.
IF 6.5 1区 农林科学 Q1 CHEMISTRY, APPLIED Pub Date : 2024-12-28 eCollection Date: 2025-01-01 DOI: 10.1016/j.fochx.2024.102137
Yuqian Li, Xue Yang, Yunfei Zou, Huixuan Zhang, Ying Zhou, Qiujin Zhu, Yuanyuan Liu, Zhengcong Wang

The anthocyanin-loaded films based on natural polymers as pH-responsive indicator are widely applied in the food preservation. However, the low mechanical strength and storage stability limited their practical application, there is an urgent demand to improve the performance of anthocyanin-loaded films. In order to avoid affecting the color indication of anthocyanins, we explored the effect of eight kinds of white nanomaterials on improving the performance of films. The results revealed that some nanomaterials showed capability in improving the polymer molecular interactions and enhancement in mechanical properties, barrier ability, and antioxidant activity. However, nanomaterials containing Zn was not suitable for anthocyanin-loaded film modification, because it could destroy the pH responsiveness of anthocyanin. The nano Al2O3 could increase the sensitivity of anthocyanin-loaded film in pH-response, which achieved the highest performance score during pork storage. This investigation will provide theoretical support for the development of more optimized pH-responsive anthocyanin-loaded films in the future.

{"title":"Effects of different white nanomaterials on pH response ability and physicochemical performance of anthocyanin-loaded carboxymethyl cellulose-polyvinyl alcohol films.","authors":"Yuqian Li, Xue Yang, Yunfei Zou, Huixuan Zhang, Ying Zhou, Qiujin Zhu, Yuanyuan Liu, Zhengcong Wang","doi":"10.1016/j.fochx.2024.102137","DOIUrl":"10.1016/j.fochx.2024.102137","url":null,"abstract":"<p><p>The anthocyanin-loaded films based on natural polymers as pH-responsive indicator are widely applied in the food preservation. However, the low mechanical strength and storage stability limited their practical application, there is an urgent demand to improve the performance of anthocyanin-loaded films. In order to avoid affecting the color indication of anthocyanins, we explored the effect of eight kinds of white nanomaterials on improving the performance of films. The results revealed that some nanomaterials showed capability in improving the polymer molecular interactions and enhancement in mechanical properties, barrier ability, and antioxidant activity. However, nanomaterials containing Zn was not suitable for anthocyanin-loaded film modification, because it could destroy the pH responsiveness of anthocyanin. The nano Al<sub>2</sub>O<sub>3</sub> could increase the sensitivity of anthocyanin-loaded film in pH-response, which achieved the highest performance score during pork storage. This investigation will provide theoretical support for the development of more optimized pH-responsive anthocyanin-loaded films in the future.</p>","PeriodicalId":12334,"journal":{"name":"Food Chemistry: X","volume":"25 ","pages":"102137"},"PeriodicalIF":6.5,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11750485/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143022817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative study on organoleptic properties and volatile organic compounds in turmeric, turmeric essential oil, and by-products using E-nose, HS-GC-IMS, and HS-GC-MS.
IF 6.5 1区 农林科学 Q1 CHEMISTRY, APPLIED Pub Date : 2024-12-28 eCollection Date: 2025-01-01 DOI: 10.1016/j.fochx.2024.102107
Bing Yang, Wanjia Wang, Jianuo Zhang, Wei Gao, Lipeng Fan, Bimal Chitrakar, Yaxin Sang

The properties, applications, and in vitro bioactivities of turmeric, turmeric essential oil (TEO), and turmeric essential oil by-products (TEO-BP) were evaluated using sensory analysis, gas chromatography-mass spectrometry (GC-MS), gas chromatography-ion mobility spectrometry (GC-IMS), and electronic nose techniques. A total of 62 and 66 volatile organic compounds (VOCs), primarily terpenoids and sesquiterpenoids, were identified by GC-MS and GC-IMS, respectively. Distillation temperature, particularly at 90 °C, significantly influenced the color and organoleptic properties of TEO, with variations in VOC profiles driving these differences. Molecular distillation at 90 °C was found to optimize the purification and concentration of key VOCs in TEO. All turmeric samples demonstrated robust antioxidant and α-glucosidase inhibitory activities, with TEO-90 exhibiting the highest bioactivity. These results underscore the potential applications of TEO and TEO-BP in food and nutraceutical industries, offering a sustainable strategy to reduce waste and enhance the efficient utilization of turmeric resources.

{"title":"Comparative study on organoleptic properties and volatile organic compounds in turmeric, turmeric essential oil, and by-products using E-nose, HS-GC-IMS, and HS-GC-MS.","authors":"Bing Yang, Wanjia Wang, Jianuo Zhang, Wei Gao, Lipeng Fan, Bimal Chitrakar, Yaxin Sang","doi":"10.1016/j.fochx.2024.102107","DOIUrl":"https://doi.org/10.1016/j.fochx.2024.102107","url":null,"abstract":"<p><p>The properties, applications, and in vitro bioactivities of turmeric, turmeric essential oil (TEO), and turmeric essential oil by-products (TEO-BP) were evaluated using sensory analysis, gas chromatography-mass spectrometry (GC-MS), gas chromatography-ion mobility spectrometry (GC-IMS), and electronic nose techniques. A total of 62 and 66 volatile organic compounds (VOCs), primarily terpenoids and sesquiterpenoids, were identified by GC-MS and GC-IMS, respectively. Distillation temperature, particularly at 90 °C, significantly influenced the color and organoleptic properties of TEO, with variations in VOC profiles driving these differences. Molecular distillation at 90 °C was found to optimize the purification and concentration of key VOCs in TEO. All turmeric samples demonstrated robust antioxidant and α-glucosidase inhibitory activities, with TEO-90 exhibiting the highest bioactivity. These results underscore the potential applications of TEO and TEO-BP in food and nutraceutical industries, offering a sustainable strategy to reduce waste and enhance the efficient utilization of turmeric resources.</p>","PeriodicalId":12334,"journal":{"name":"Food Chemistry: X","volume":"25 ","pages":"102107"},"PeriodicalIF":6.5,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11754684/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143028188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis of differential metabolites in Liuyang douchi at different fermentation stages based on untargeted metabolomics approach.
IF 6.5 1区 农林科学 Q1 CHEMISTRY, APPLIED Pub Date : 2024-12-28 eCollection Date: 2025-01-01 DOI: 10.1016/j.fochx.2024.102097
Liwen Jiang, Yi Chen, Tiantian Zhao, Pao Li, Luyan Liao, Yang Liu

The quality and flavor of Liuyang Douchi are usually closely related to the metabolites compostion. This work described the metabolic profiles of Liuyang douchi during fermentation. Obvious hydrolysis of carbohydrates, proteins and slight lipids degradation were observed. Notably, the qu-making and pile-fermentation stage of douchi could be easily distinguished according to their metabolites profile, and pile-fermentation stage showed the most abundant metabolites. Specifically, organic acid, such as succinic acid and lactic acid, accumulated during pile-fermentation, as well as amino acids and derivatives. Especially glutamate (Glu), which contributed to the umami taste, increased form 0.82 mg/g to 15.90 mg/g after fermentation. Meanwhile, metabolisms related to amino acids were also the main enrichment metabolic pathways. Among them, some flavor compunds such as phenylacetaldehyde might drived from phenylalanine metabolism. These results could provide a new understanding on the metabolic characteristics during Liuyang douchi fermentation.

{"title":"Analysis of differential metabolites in Liuyang douchi at different fermentation stages based on untargeted metabolomics approach.","authors":"Liwen Jiang, Yi Chen, Tiantian Zhao, Pao Li, Luyan Liao, Yang Liu","doi":"10.1016/j.fochx.2024.102097","DOIUrl":"10.1016/j.fochx.2024.102097","url":null,"abstract":"<p><p>The quality and flavor of Liuyang Douchi are usually closely related to the metabolites compostion. This work described the metabolic profiles of Liuyang douchi during fermentation. Obvious hydrolysis of carbohydrates, proteins and slight lipids degradation were observed. Notably, the qu-making and pile-fermentation stage of douchi could be easily distinguished according to their metabolites profile, and pile-fermentation stage showed the most abundant metabolites. Specifically, organic acid, such as succinic acid and lactic acid, accumulated during pile-fermentation, as well as amino acids and derivatives. Especially glutamate (Glu), which contributed to the umami taste, increased form 0.82 mg/g to 15.90 mg/g after fermentation. Meanwhile, metabolisms related to amino acids were also the main enrichment metabolic pathways. Among them, some flavor compunds such as phenylacetaldehyde might drived from phenylalanine metabolism. These results could provide a new understanding on the metabolic characteristics during Liuyang douchi fermentation.</p>","PeriodicalId":12334,"journal":{"name":"Food Chemistry: X","volume":"25 ","pages":"102097"},"PeriodicalIF":6.5,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11751413/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143022801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel chitosan microsphere as food processing enzyme immobilization carrier and its application in nucleotide production. 新型壳聚糖微球作为食品加工酶固定载体及其在核苷酸生产中的应用。
IF 6.5 1区 农林科学 Q1 CHEMISTRY, APPLIED Pub Date : 2024-12-27 eCollection Date: 2025-01-01 DOI: 10.1016/j.fochx.2024.102130
Xiao-Yan Yin, Rui-Fan Yang, Zhong-Hua Yang

Developing a robust and safe carrier for enzyme immobilization is crucial for their application in the food processing industry. In this study, a novel crosslinked chitosan microspheres (CSMs) were prepared using glutaraldehyde (GA) as the crosslinking agent, using a newly developed emulsification-neutralization combined method. Nuclease P1 (NP1) was immobilized onto these microspheres, the maximum activity of NP1@CSMs-GA reach to 53,859.4 U/g. The activity recovery yield reach to 75 %. Compared to the free NP1, the stability of NP1@CSMs-GA was significantly enhanced. Its vmax and Km is 895.71 mg/(g·min) and 77.27 mg/mL respectively. This NP1@CSMs-GA was utilized in production of nucleotides through hydrolysis of RNA. In BSTR, NP1@CSMs-GA retained more than 75.1 % initial activity after 10 cycles of reuse. Moreover, in PBR, the RNA hydrolysis conversion rate maintained 81 % after 24 h of continuous operation. These results demonstrate that NP1@CSMs-GA exhibits excellent reusability and production stability in practical processes.

开发一种稳定、安全的酶固定化载体对其在食品加工业中的应用至关重要。本研究以戊二醛(GA)为交联剂,采用新开发的乳化-中和复合法制备了新型交联壳聚糖微球(csm)。将核酸酶P1 (NP1)固定在这些微球上,NP1@CSMs-GA的最大活性可达53,859.4 U/g。活性回收率达75%。与游离的NP1相比,NP1@CSMs-GA的稳定性显著增强。vmax和Km分别为895.71 mg/(g·min)和77.27 mg/mL。这个NP1@CSMs-GA被用于通过RNA水解生产核苷酸。在BSTR中,NP1@CSMs-GA在10个循环重用后保留了超过75.1%的初始活性。此外,在PBR中,连续操作24 h后,RNA水解转化率保持在81%。这些结果表明,NP1@CSMs-GA在实际生产过程中具有良好的可重用性和生产稳定性。
{"title":"A novel chitosan microsphere as food processing enzyme immobilization carrier and its application in nucleotide production.","authors":"Xiao-Yan Yin, Rui-Fan Yang, Zhong-Hua Yang","doi":"10.1016/j.fochx.2024.102130","DOIUrl":"10.1016/j.fochx.2024.102130","url":null,"abstract":"<p><p>Developing a robust and safe carrier for enzyme immobilization is crucial for their application in the food processing industry. In this study, a novel crosslinked chitosan microspheres (CSMs) were prepared using glutaraldehyde (GA) as the crosslinking agent, using a newly developed emulsification-neutralization combined method. Nuclease P1 (NP1) was immobilized onto these microspheres, the maximum activity of NP1@CSMs-GA reach to 53,859.4 U/g. The activity recovery yield reach to 75 %. Compared to the free NP1, the stability of NP1@CSMs-GA was significantly enhanced. Its v<sub>max</sub> and K<sub>m</sub> is 895.71 mg/(g·min) and 77.27 mg/mL respectively. This NP1@CSMs-GA was utilized in production of nucleotides through hydrolysis of RNA. In BSTR, NP1@CSMs-GA retained more than 75.1 % initial activity after 10 cycles of reuse. Moreover, in PBR, the RNA hydrolysis conversion rate maintained 81 % after 24 h of continuous operation. These results demonstrate that NP1@CSMs-GA exhibits excellent reusability and production stability in practical processes.</p>","PeriodicalId":12334,"journal":{"name":"Food Chemistry: X","volume":"25 ","pages":"102130"},"PeriodicalIF":6.5,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11750442/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143003061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of storage on volatile organic components and physiological properties of different storage-tolerant rice varieties.
IF 6.5 1区 农林科学 Q1 CHEMISTRY, APPLIED Pub Date : 2024-12-27 eCollection Date: 2025-01-01 DOI: 10.1016/j.fochx.2024.102134
Dawei Zhu, Xin Zheng, Huiyin Dong, Xingquan Liu, Xianqiao Hu, Mingxue Chen, Xin Liu, Yafang Shao

The effects of storage on rice flavor among different rice varieties have not been well studied. To address this gap, we analyzed volatile organic components (VOCs) identified by gas chromatography-ion mobility spectrometry (GC-IMS) and related physicochemical properties of different storage-tolerant rice varieties during storage. The results showed that VOCs of four rice varieties significantly changed after 6 months of storage; OPLS-DA analysis classified the four rice varieties into two groups. There were fewer (N81 and JH1) and more significant changes (N84 and ZJ96) after storage, and the hexanal and 2-pentylfuran were considered the key VOCs for flavor changes during storage. Lipoxygenase (LOX) activity first increased and then decreased, while antioxidant activities decreased during storage. Under these conditions, oleic and linoleic acids were hydrolyzed. These results provide a better understanding of rice flavor changes after storage between different storable rice varieties.

{"title":"Effects of storage on volatile organic components and physiological properties of different storage-tolerant rice varieties.","authors":"Dawei Zhu, Xin Zheng, Huiyin Dong, Xingquan Liu, Xianqiao Hu, Mingxue Chen, Xin Liu, Yafang Shao","doi":"10.1016/j.fochx.2024.102134","DOIUrl":"10.1016/j.fochx.2024.102134","url":null,"abstract":"<p><p>The effects of storage on rice flavor among different rice varieties have not been well studied. To address this gap, we analyzed volatile organic components (VOCs) identified by gas chromatography-ion mobility spectrometry (GC-IMS) and related physicochemical properties of different storage-tolerant rice varieties during storage. The results showed that VOCs of four rice varieties significantly changed after 6 months of storage; OPLS-DA analysis classified the four rice varieties into two groups. There were fewer (N81 and JH1) and more significant changes (N84 and ZJ96) after storage, and the hexanal and 2-pentylfuran were considered the key VOCs for flavor changes during storage. Lipoxygenase (LOX) activity first increased and then decreased, while antioxidant activities decreased during storage. Under these conditions, oleic and linoleic acids were hydrolyzed. These results provide a better understanding of rice flavor changes after storage between different storable rice varieties.</p>","PeriodicalId":12334,"journal":{"name":"Food Chemistry: X","volume":"25 ","pages":"102134"},"PeriodicalIF":6.5,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11751419/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143022821","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inter- and intra-varietal clonal differences influence the aroma compound profiles of wines analyzed by GC-MS and GC-IMS.
IF 6.5 1区 农林科学 Q1 CHEMISTRY, APPLIED Pub Date : 2024-12-27 eCollection Date: 2025-01-01 DOI: 10.1016/j.fochx.2024.102136
Huawei Chen, Shijian Bai, Bowei Yang, Ruihua Ren, Zizhu Tang, Zhenwen Zhang, Qingqing Zeng

To investigate the impact of genetic factors on wine aroma, wines made from 22 clones of five grape varieties (Vitis vinifera L.) were used to analyze the volatile compounds by headspace solid phase microextraction gas chromatography mass spectrometer (HS-SPME-GC-MS) and headspace gas chromatography-ion mobility spectrometry (HS-GC-IMS). Results showed that 52 and 49 aroma compounds were identified from 22 clones of wines by two technologies, respectively. Esters were the most abundant compounds, followed by alcohols and aldehydes. The aroma profiles demonstrated significant varietal and clonal diversity, the clones with the highest aroma compound content were CH VCR6, PN VCR20, CS VCR11, ML VCR101, and CF 678. Partial least squares discriminant analysis (PLS-DA) identified decanoic acid, 1-heptanol, diethyl succinate, ethyl octanoate, and octanal as key biomarkers for distinguishing 22 clones of wines. Our results revealed that white wine CH VCR6 and red wine CS VCR11 possessed the most complex aromas. These findings address the research gap concerning the genetic determinants of wine aroma, highlighting the significance of grape variety and clone selection in developing wines with desirable sensory attributes.

{"title":"Inter- and intra-varietal clonal differences influence the aroma compound profiles of wines analyzed by GC-MS and GC-IMS.","authors":"Huawei Chen, Shijian Bai, Bowei Yang, Ruihua Ren, Zizhu Tang, Zhenwen Zhang, Qingqing Zeng","doi":"10.1016/j.fochx.2024.102136","DOIUrl":"https://doi.org/10.1016/j.fochx.2024.102136","url":null,"abstract":"<p><p>To investigate the impact of genetic factors on wine aroma, wines made from 22 clones of five grape varieties (<i>Vitis vinifera</i> L.) were used to analyze the volatile compounds by headspace solid phase microextraction gas chromatography mass spectrometer (HS-SPME-GC-MS) and headspace gas chromatography-ion mobility spectrometry (HS-GC-IMS). Results showed that 52 and 49 aroma compounds were identified from 22 clones of wines by two technologies, respectively. Esters were the most abundant compounds, followed by alcohols and aldehydes. The aroma profiles demonstrated significant varietal and clonal diversity, the clones with the highest aroma compound content were CH VCR6, PN VCR20, CS VCR11, ML VCR101, and CF 678. Partial least squares discriminant analysis (PLS-DA) identified decanoic acid, 1-heptanol, diethyl succinate, ethyl octanoate, and octanal as key biomarkers for distinguishing 22 clones of wines. Our results revealed that white wine CH VCR6 and red wine CS VCR11 possessed the most complex aromas. These findings address the research gap concerning the genetic determinants of wine aroma, highlighting the significance of grape variety and clone selection in developing wines with desirable sensory attributes.</p>","PeriodicalId":12334,"journal":{"name":"Food Chemistry: X","volume":"25 ","pages":"102136"},"PeriodicalIF":6.5,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11754488/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143028223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Physicochemical characterization and in vitro digestibility of resistant starch from corn starch sugar residue. 玉米淀粉糖渣中抗性淀粉的理化特性及体外消化率研究。
IF 6.5 1区 农林科学 Q1 CHEMISTRY, APPLIED Pub Date : 2024-12-26 eCollection Date: 2025-01-01 DOI: 10.1016/j.fochx.2024.102113
Qianqian Dai, Xiaoke Li, Chuanbo He, Ying Liang, Hejian Xiong, Ying Ma, Shaowei Zhai

This study sought to investigate the thermal stability and digestibility of corn starch sugar residue resistant starch (CSSR-RS) through comparative analysis of the physicochemical properties and structural characteristics among CSSR-RS, high-amylose corn starch (HS), and normal corn starch (NS). CSSR-RS contained 51.76 % resistant starch (RS), with 42.6 % remaining after high-temperature treatment, which was significantly higher than HS, demonstrating strong resistance to gelatinization. CSSR-RS is characterized by highly ordered aggregation of small molecules with a C-type crystalline structure, and irregular granular structures with wrinkled surfaces. Compared with NS and HS, the short-range and long-range order of CSSR-RS were significantly higher, indicating excellent thermal stability. In vitro simulated digestion revealed that the total hydrolysis rate of CSSR-RS was significantly lower than those of NS and HS, and the residual digesta of CSSR-RS also showed better resistance to digestion than HS. CSSR-RS exhibited significant development prospects in healthy food.

本研究通过对比分析玉米淀粉抗糖渣淀粉(CSSR-RS)与高直链玉米淀粉(HS)和普通玉米淀粉(NS)的理化性质和结构特征,探讨CSSR-RS的热稳定性和消化率。CSSR-RS的抗性淀粉(RS)含量为51.76%,高温处理后的抗性淀粉残留量为42.6%,显著高于HS,表现出较强的抗糊化能力。CSSR-RS的特点是小分子高度有序聚集,具有c型晶体结构,不规则颗粒结构,表面皱褶。与NS和HS相比,CSSR-RS的近程和远程序均显著提高,表现出优异的热稳定性。体外模拟消化实验表明,CSSR-RS的总水解率显著低于NS和HS,且CSSR-RS的残余食糜也表现出比HS更好的消化抗性。CSSR-RS在健康食品领域具有重要的发展前景。
{"title":"Physicochemical characterization and <i>in vitro</i> digestibility of resistant starch from corn starch sugar residue.","authors":"Qianqian Dai, Xiaoke Li, Chuanbo He, Ying Liang, Hejian Xiong, Ying Ma, Shaowei Zhai","doi":"10.1016/j.fochx.2024.102113","DOIUrl":"https://doi.org/10.1016/j.fochx.2024.102113","url":null,"abstract":"<p><p>This study sought to investigate the thermal stability and digestibility of corn starch sugar residue resistant starch (CSSR-RS) through comparative analysis of the physicochemical properties and structural characteristics among CSSR-RS, high-amylose corn starch (HS), and normal corn starch (NS). CSSR-RS contained 51.76 % resistant starch (RS), with 42.6 % remaining after high-temperature treatment, which was significantly higher than HS, demonstrating strong resistance to gelatinization. CSSR-RS is characterized by highly ordered aggregation of small molecules with a C-type crystalline structure, and irregular granular structures with wrinkled surfaces. Compared with NS and HS, the short-range and long-range order of CSSR-RS were significantly higher, indicating excellent thermal stability. <i>In vitro</i> simulated digestion revealed that the total hydrolysis rate of CSSR-RS was significantly lower than those of NS and HS, and the residual digesta of CSSR-RS also showed better resistance to digestion than HS. CSSR-RS exhibited significant development prospects in healthy food.</p>","PeriodicalId":12334,"journal":{"name":"Food Chemistry: X","volume":"25 ","pages":"102113"},"PeriodicalIF":6.5,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11742812/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143002530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Food Chemistry: X
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1