Pub Date : 2024-05-13DOI: 10.3389/fevo.2024.1356679
Stephen P. Rubin, Melanie J. Davis, Eric E. Grossman, Isa Woo, Susan E. W. De La Cruz, Glynnis Nakai, John Y. Takekawa
Benthic invertebrates play vital roles in estuarine ecosystems, but like other taxa they have been excluded from former marshlands by diking and land use conversion. Dike removal is one way of restoring marsh, but the response of benthic invertebrates has been little studied. Also understudied is variation in benthic invertebrate communities across entire deltas, particularly in the Pacific Northwest of North America where deltas receive high flows and sediment loads for their size. Our goals were to evaluate invertebrate response to large-scale dike removal on the Nisqually River Delta in Puget Sound, Washington, U.S.A., characterize delta-wide invertebrate community variation, and relate invertebrate response and spatial variation to environmental conditions. We sampled invertebrates annually from one year before to three years after dike removal in restoring marsh, previously restored marsh, undisturbed reference marsh, and adjacent tidal flats. Marine taxa immediately colonized the area recently restored to tidal inundation and population size grew exponentially thereafter for several of them. Community composition and diversity recovered completely, and density and biomass were approaching recovery three years later. Invertebrate communities converged between restoring and pre-existing marsh (previously restored and reference), suggesting an influence of reestablished connectivity. Just offshore from the dike line, invertebrates declined one year after dike removal but then rebounded indicating resilience to short-term disturbance. Dike removal effects were not detected farther offshore. Near the offshore edge of the delta, invertebrate biomass and body size were greater than elsewhere and a diverse assemblage of crustaceans, polychaetes, and bivalves was present. Farther inshore, tidal flats were dominated by a few species of small-bodied polychaetes and had higher density but lower biomass and diversity. Facultative detritivores, which can also filter feed, were the dominant feeding guild everywhere on the tidal flats. Density, biomass, diversity, and community composition on the marsh were more similar to the inner than outer tidal flats. Environmental variables most associated with invertebrate community variation were elevation, salinity, and sediment grain size and organic content. Our results are relevant to assessing performance and setting expectations for future restorations and have broad implications for the role of benthic invertebrates in estuarine ecosystems.
{"title":"Benthic macroinvertebrate response to estuarine emergent marsh restoration across a delta-wide environmental gradient","authors":"Stephen P. Rubin, Melanie J. Davis, Eric E. Grossman, Isa Woo, Susan E. W. De La Cruz, Glynnis Nakai, John Y. Takekawa","doi":"10.3389/fevo.2024.1356679","DOIUrl":"https://doi.org/10.3389/fevo.2024.1356679","url":null,"abstract":"Benthic invertebrates play vital roles in estuarine ecosystems, but like other taxa they have been excluded from former marshlands by diking and land use conversion. Dike removal is one way of restoring marsh, but the response of benthic invertebrates has been little studied. Also understudied is variation in benthic invertebrate communities across entire deltas, particularly in the Pacific Northwest of North America where deltas receive high flows and sediment loads for their size. Our goals were to evaluate invertebrate response to large-scale dike removal on the Nisqually River Delta in Puget Sound, Washington, U.S.A., characterize delta-wide invertebrate community variation, and relate invertebrate response and spatial variation to environmental conditions. We sampled invertebrates annually from one year before to three years after dike removal in restoring marsh, previously restored marsh, undisturbed reference marsh, and adjacent tidal flats. Marine taxa immediately colonized the area recently restored to tidal inundation and population size grew exponentially thereafter for several of them. Community composition and diversity recovered completely, and density and biomass were approaching recovery three years later. Invertebrate communities converged between restoring and pre-existing marsh (previously restored and reference), suggesting an influence of reestablished connectivity. Just offshore from the dike line, invertebrates declined one year after dike removal but then rebounded indicating resilience to short-term disturbance. Dike removal effects were not detected farther offshore. Near the offshore edge of the delta, invertebrate biomass and body size were greater than elsewhere and a diverse assemblage of crustaceans, polychaetes, and bivalves was present. Farther inshore, tidal flats were dominated by a few species of small-bodied polychaetes and had higher density but lower biomass and diversity. Facultative detritivores, which can also filter feed, were the dominant feeding guild everywhere on the tidal flats. Density, biomass, diversity, and community composition on the marsh were more similar to the inner than outer tidal flats. Environmental variables most associated with invertebrate community variation were elevation, salinity, and sediment grain size and organic content. Our results are relevant to assessing performance and setting expectations for future restorations and have broad implications for the role of benthic invertebrates in estuarine ecosystems.","PeriodicalId":12367,"journal":{"name":"Frontiers in Ecology and Evolution","volume":"156 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140931622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-10DOI: 10.3389/fevo.2024.1399584
Zhenya Liu, Yiqing Zhao, Hongyan Yu, Yao Zhao, Huijun Guo, Mei Sun
The impact of climate warming on wetland ecosystems is a current focal point in ecological research. In this study, the Napahai wetland, a typical plateau wetland in northwest Yunnan Province, was selected as the study site to understand the growth and survival strategies of emergent plants in a plateau wetland under climate warming conditions. Open-top chambers (OTCs) were used to simulate warming in three treatments (i.e., control group, 2.0 ± 0.5°C, and 4.0 ± 0.5°C) in order to study the responses of the functional traits of the dominant emergent plant Schoenoplectus tabernaemontani to simulated warming. The results showed that simulated warming significantly reduced the photosynthetic carbon assimilation capacity and biomass accumulation of S. tabernaemontani, as well as its nitrogen content and vascular bundle density, while it significantly increased the vascular bundle size. The growing season accumulated temperature (AT) and the mean temperature of the hottest month (WT) were the main temperature factors influencing the functional traits of S. tabernaemontani. In summary, simulated warming significantly affected the functional traits of S. tabernaemontani, which demonstrated effective adaptation to warming conditions. As the temperature rises and the light and productivity decrease, S. tabernaemontani prioritizes the supply of limited resources to the underground part to ensure the biomass supply of the reproductive structure. This study provides a case for revealing the response patterns and ecological adaptation strategies of plateau wetland plants to climate warming.
气候变暖对湿地生态系统的影响是当前生态学研究的一个焦点。本研究选择了云南省西北部典型的高原湿地--纳帕海湿地作为研究地点,以了解气候变暖条件下高原湿地挺水植物的生长和生存策略。在三个处理(即对照组、2.0±0.5°C和4.0±0.5°C)中使用开顶室(OTC)模拟升温,以研究优势挺水植物Schoenoplectus tabernaemontani的功能性状对模拟升温的响应。结果表明,模拟升温显著降低了S. tabernaemontani的光合碳同化能力和生物量积累,也降低了其氮含量和维管束密度,但显著增加了维管束尺寸。生长季积温(AT)和最热月平均气温(WT)是影响S. tabernaemontani功能性状的主要温度因子。总之,模拟升温对 S. tabernaemontani 的功能性状有明显影响,表明其能有效适应升温条件。随着气温升高,光照和生产力下降,S. tabernaemontani会优先将有限的资源供给地下部分,以确保生殖结构的生物量供应。本研究为揭示高原湿地植物对气候变暖的响应模式和生态适应策略提供了案例。
{"title":"Response of the functional traits of Schoenoplectus tabernaemontani to simulated warming in the Napahai wetland of northwestern Yunnan, China","authors":"Zhenya Liu, Yiqing Zhao, Hongyan Yu, Yao Zhao, Huijun Guo, Mei Sun","doi":"10.3389/fevo.2024.1399584","DOIUrl":"https://doi.org/10.3389/fevo.2024.1399584","url":null,"abstract":"The impact of climate warming on wetland ecosystems is a current focal point in ecological research. In this study, the Napahai wetland, a typical plateau wetland in northwest Yunnan Province, was selected as the study site to understand the growth and survival strategies of emergent plants in a plateau wetland under climate warming conditions. Open-top chambers (OTCs) were used to simulate warming in three treatments (i.e., control group, 2.0 ± 0.5°C, and 4.0 ± 0.5°C) in order to study the responses of the functional traits of the dominant emergent plant Schoenoplectus tabernaemontani to simulated warming. The results showed that simulated warming significantly reduced the photosynthetic carbon assimilation capacity and biomass accumulation of S. tabernaemontani, as well as its nitrogen content and vascular bundle density, while it significantly increased the vascular bundle size. The growing season accumulated temperature (AT) and the mean temperature of the hottest month (WT) were the main temperature factors influencing the functional traits of S. tabernaemontani. In summary, simulated warming significantly affected the functional traits of S. tabernaemontani, which demonstrated effective adaptation to warming conditions. As the temperature rises and the light and productivity decrease, S. tabernaemontani prioritizes the supply of limited resources to the underground part to ensure the biomass supply of the reproductive structure. This study provides a case for revealing the response patterns and ecological adaptation strategies of plateau wetland plants to climate warming.","PeriodicalId":12367,"journal":{"name":"Frontiers in Ecology and Evolution","volume":"71 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141257928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-09DOI: 10.3389/fevo.2024.1344065
Emily Heffernan, Megan Barkdull, Noah Brady
We are nearing the 20-year anniversary of a groundbreaking paper which details how microsatellite marker development in Lepidoptera is “extremely difficult for no apparent reason.” How far have we come in these past 20 years? Microsatellites are still the marker of choice in many population genetics studies for their ease of use, high degrees of polymorphism, species-specificity, and low cost. The rise of next-generation sequencing technologies (e.g. 454, Illumina, PacBio, etc.) has greatly advanced our abilities to generate many microsatellite markers per species. In this paper, we summarize the improvements in marker development using next-generation technology. Using case studies, we review the use and implementation of microsatellite markers in different conservation programs. Lastly, we provide a guide to data interpretation of microsatellite data generated for butterflies, with the goal of supporting student researchers and conservation practitioners in evaluating the meaning in their data.
{"title":"Microsatellites for butterfly conservation: historical challenges, current relevance, and a guide to implementation","authors":"Emily Heffernan, Megan Barkdull, Noah Brady","doi":"10.3389/fevo.2024.1344065","DOIUrl":"https://doi.org/10.3389/fevo.2024.1344065","url":null,"abstract":"We are nearing the 20-year anniversary of a groundbreaking paper which details how microsatellite marker development in Lepidoptera is “extremely difficult for no apparent reason.” How far have we come in these past 20 years? Microsatellites are still the marker of choice in many population genetics studies for their ease of use, high degrees of polymorphism, species-specificity, and low cost. The rise of next-generation sequencing technologies (e.g. 454, Illumina, PacBio, etc.) has greatly advanced our abilities to generate many microsatellite markers per species. In this paper, we summarize the improvements in marker development using next-generation technology. Using case studies, we review the use and implementation of microsatellite markers in different conservation programs. Lastly, we provide a guide to data interpretation of microsatellite data generated for butterflies, with the goal of supporting student researchers and conservation practitioners in evaluating the meaning in their data.","PeriodicalId":12367,"journal":{"name":"Frontiers in Ecology and Evolution","volume":"65 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140931855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-09DOI: 10.3389/fevo.2024.1271824
Steven Lee, Robert Klinger, Matthew L. Brooks, Scott Ferrenberg
Soil seed banks help maintain species diversity through temporal storage effects and function as germination pools that can optimize fitness across varying environmental conditions. These characteristics promote the persistence of native plant communities, yet disturbances such as fire and associated invasions by non-native species can disrupt these reserves, fundamentally altering successional trajectories. This may be particularly true in deserts, where native plant communities are less adapted to fire. While studies of fire effects on desert plant communities are not uncommon, information regarding the short- and long-term effects of fire on seed banks is less available. To better understand the influence of fire and invasive species on desert seed banks, we investigated soil seed bank biodiversity from 30 wildfires that burned between 1972 and 2010 across the Mojave Desert ecoregion of North America. We assessed how characteristics of fire regimes (frequency, time since fire, and burn severity) interacted with climate and invasive plants on measures of α-, β-, and γ-diversities. Because β-diversity is a direct measure of community variability and reveals important information about biodiversity loss, we further examined the nestedness and turnover components of β-diversity. Mean α- and γ-diversities were generally higher for burned locations than in unburned reference sites, however individual fire variables had little influence on patterns of seed bank diversity. Burned area seed banks tended to be dominated by non-native invasive species, primarily two grasses, (Bromus rubens, Bromus tectorum), as well as an invasive forb (Erodium cicutarium). The most striking pattern we observed was a collective sharp decline in α-, β-, and γ-diversities with increased invasive species dominance, indicating the homogenization of seed bank communities with the colonization of invasive species after fire. Evidence of homogenization was further supported by reduced turnover and increased nestedness in burn areas compared to reference areas indicating potential biodiversity loss. Our findings highlight how biological processes such as plant invasions can combine with disturbance from fire to alter patterns of seed bank composition and diversity in desert ecosystems.
{"title":"Homogenization of soil seed bank communities by fire and invasive species in the Mojave Desert","authors":"Steven Lee, Robert Klinger, Matthew L. Brooks, Scott Ferrenberg","doi":"10.3389/fevo.2024.1271824","DOIUrl":"https://doi.org/10.3389/fevo.2024.1271824","url":null,"abstract":"Soil seed banks help maintain species diversity through temporal storage effects and function as germination pools that can optimize fitness across varying environmental conditions. These characteristics promote the persistence of native plant communities, yet disturbances such as fire and associated invasions by non-native species can disrupt these reserves, fundamentally altering successional trajectories. This may be particularly true in deserts, where native plant communities are less adapted to fire. While studies of fire effects on desert plant communities are not uncommon, information regarding the short- and long-term effects of fire on seed banks is less available. To better understand the influence of fire and invasive species on desert seed banks, we investigated soil seed bank biodiversity from 30 wildfires that burned between 1972 and 2010 across the Mojave Desert ecoregion of North America. We assessed how characteristics of fire regimes (frequency, time since fire, and burn severity) interacted with climate and invasive plants on measures of α-, β-, and γ-diversities. Because β-diversity is a direct measure of community variability and reveals important information about biodiversity loss, we further examined the nestedness and turnover components of β-diversity. Mean α- and γ-diversities were generally higher for burned locations than in unburned reference sites, however individual fire variables had little influence on patterns of seed bank diversity. Burned area seed banks tended to be dominated by non-native invasive species, primarily two grasses, (<jats:italic>Bromus rubens</jats:italic>, <jats:italic>Bromus tectorum</jats:italic>), as well as an invasive forb (<jats:italic>Erodium cicutarium</jats:italic>). The most striking pattern we observed was a collective sharp decline in α-, β-, and γ-diversities with increased invasive species dominance, indicating the homogenization of seed bank communities with the colonization of invasive species after fire. Evidence of homogenization was further supported by reduced turnover and increased nestedness in burn areas compared to reference areas indicating potential biodiversity loss. Our findings highlight how biological processes such as plant invasions can combine with disturbance from fire to alter patterns of seed bank composition and diversity in desert ecosystems.","PeriodicalId":12367,"journal":{"name":"Frontiers in Ecology and Evolution","volume":"42 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140931648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-08DOI: 10.3389/fevo.2024.1405459
Kristin M. Robinson, Kaitlin M. Baudier
IntroductionThe current state of anthropogenic climate change is particularly concerning for tropical insects, species predicted to be the most negatively affected. Researching climatic tolerance in social insects is challenging because adaptations exist at both individual and societal levels. Division of labor research helps to bridge the gap between our understanding of these adaptations at different scales, which is important because social insects comprise a tremendous portion of global animal biomass, biodiversity, and ecosystem services. Considering how individual physiologies construct group-level adaptations can improve climate change impact assessments for social species. Tetragonisca angustula is a neotropical stingless bee species that exhibits high worker subcaste specialization with a morphologically distinct soldier caste.MethodsWe used this species to investigate 1) whether age- and size-differentiated subcastes differ in thermal tolerance, 2) which worker subcaste operates closest to their thermal limits, and 3) the extent to which this species selects active foraging times to offset thermal stress. We measured the thermal tolerance (CTmax and CTmin) of small-bodied foragers and two soldier subcastes (hovering guards and standing guards) in T. angustula.Results and discussionDespite body size differences between foragers and guards, no differences in the upper or lower thermal limits were observed. However, the average thermal tolerance breadth of foragers was significantly larger than that of guards, and foraging sites were more thermally variable than nest sites, supporting the Climatic Variability Hypothesis at a microclimate scale and in the context of division of labor. Warming tolerance was significantly lower among small-bodied foragers compared to hovering and standing guards. The magnitude of warming tolerances indicated low risk of imminent climate change impacts in this environment but suggests that increasing temperatures and heatwave prevalence may cause foragers to meet their upper thermal limits before other subcastes. Foraging occurred at a narrower range of temperatures than would challenge critical temperatures, with higher morning activity. Directionally increasing temperatures will likely confine these preferred foraging temperatures to a narrower time window. Further study is needed to elucidate how foragers may shift times of activity in response to anthropogenic warming, but changing climates may impact plant pollination rates in natural and agricultural systems.
{"title":"Stingless bee foragers experience more thermally stressful microclimates and have wider thermal tolerance breadths than other worker subcastes","authors":"Kristin M. Robinson, Kaitlin M. Baudier","doi":"10.3389/fevo.2024.1405459","DOIUrl":"https://doi.org/10.3389/fevo.2024.1405459","url":null,"abstract":"IntroductionThe current state of anthropogenic climate change is particularly concerning for tropical insects, species predicted to be the most negatively affected. Researching climatic tolerance in social insects is challenging because adaptations exist at both individual and societal levels. Division of labor research helps to bridge the gap between our understanding of these adaptations at different scales, which is important because social insects comprise a tremendous portion of global animal biomass, biodiversity, and ecosystem services. Considering how individual physiologies construct group-level adaptations can improve climate change impact assessments for social species. <jats:italic>Tetragonisca angustula</jats:italic> is a neotropical stingless bee species that exhibits high worker subcaste specialization with a morphologically distinct soldier caste.MethodsWe used this species to investigate 1) whether age- and size-differentiated subcastes differ in thermal tolerance, 2) which worker subcaste operates closest to their thermal limits, and 3) the extent to which this species selects active foraging times to offset thermal stress. We measured the thermal tolerance (CT<jats:sub>max</jats:sub> and CT<jats:sub>min</jats:sub>) of small-bodied foragers and two soldier subcastes (hovering guards and standing guards) in <jats:italic>T. angustula</jats:italic>.Results and discussionDespite body size differences between foragers and guards, no differences in the upper or lower thermal limits were observed. However, the average thermal tolerance breadth of foragers was significantly larger than that of guards, and foraging sites were more thermally variable than nest sites, supporting the Climatic Variability Hypothesis at a microclimate scale and in the context of division of labor. Warming tolerance was significantly lower among small-bodied foragers compared to hovering and standing guards. The magnitude of warming tolerances indicated low risk of imminent climate change impacts in this environment but suggests that increasing temperatures and heatwave prevalence may cause foragers to meet their upper thermal limits before other subcastes. Foraging occurred at a narrower range of temperatures than would challenge critical temperatures, with higher morning activity. Directionally increasing temperatures will likely confine these preferred foraging temperatures to a narrower time window. Further study is needed to elucidate how foragers may shift times of activity in response to anthropogenic warming, but changing climates may impact plant pollination rates in natural and agricultural systems.","PeriodicalId":12367,"journal":{"name":"Frontiers in Ecology and Evolution","volume":"42 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140931605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-03DOI: 10.3389/fevo.2024.1385516
Jianqing Bi, Yonghang Ge, Zhuqing Wang, Hongzhe Peng, Bo Dong
Lumen formation, as a key process of biological tube construction, is essential in various physiological processes such as nutrient and waste transporting, gas exchanging, and structural supporting. However, the mechanisms underlying tubular lumen development are still not fully understood. In the present study, we identified a matrix metalloproteinase, Nas15, which is enriched in the apical domain of the Ciona embryonic notochord. The expression level of the Nas15 gene significantly increased during notochord lumen formation and expansion. Nas15 loss-of-function resulted in abnormal notochord lumen expansion in Ciona embryos. Besides, yeast two-hybrid screening and CO-IP results indicated a Phosphatase 2 Catalytic Subunit Alpha (PPP2CA) physically interacted with Nas15. PPP2CA also involved in notochord lumen formation via localizing Nas15. Furthermore, we investigated the distribution of laminin in Nas15 disrupted embryos. In conclusion, our results revealed a mechanisms of how notochord cells regulating lumen expansion via metalloproteinase-mediated ECM localization. This findings provide insight into the mechanisms of tubular organ lumen formation and serve as a reference for research on human abnormal lumenogenesis diseases.
{"title":"Matrix metalloproteinase Nas15 regulates the lumen formation and expansion in Ciona notochord","authors":"Jianqing Bi, Yonghang Ge, Zhuqing Wang, Hongzhe Peng, Bo Dong","doi":"10.3389/fevo.2024.1385516","DOIUrl":"https://doi.org/10.3389/fevo.2024.1385516","url":null,"abstract":"Lumen formation, as a key process of biological tube construction, is essential in various physiological processes such as nutrient and waste transporting, gas exchanging, and structural supporting. However, the mechanisms underlying tubular lumen development are still not fully understood. In the present study, we identified a matrix metalloproteinase, Nas15, which is enriched in the apical domain of the <jats:italic>Ciona</jats:italic> embryonic notochord. The expression level of the <jats:italic>Nas15</jats:italic> gene significantly increased during notochord lumen formation and expansion. Nas15 loss-of-function resulted in abnormal notochord lumen expansion in <jats:italic>Ciona</jats:italic> embryos. Besides, yeast two-hybrid screening and CO-IP results indicated a Phosphatase 2 Catalytic Subunit Alpha (PPP2CA) physically interacted with Nas15. PPP2CA also involved in notochord lumen formation via localizing Nas15. Furthermore, we investigated the distribution of laminin in Nas15 disrupted embryos. In conclusion, our results revealed a mechanisms of how notochord cells regulating lumen expansion via metalloproteinase-mediated ECM localization. This findings provide insight into the mechanisms of tubular organ lumen formation and serve as a reference for research on human abnormal lumenogenesis diseases.","PeriodicalId":12367,"journal":{"name":"Frontiers in Ecology and Evolution","volume":"138 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140829926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-03DOI: 10.3389/fevo.2024.1338166
Xiaojing Cai, Falin Liu
IntroductionIn the aftermath of a fire, prompt reforestation of the affected areas is crucial to mitigate economic losses and ecological impacts.MethodsThis paper introduces an ecological function assessment model leveraging the Back Propagation Neural Network (BPNN). The model's efficacy is validated through simulation comparison experiments. Subsequently, an analysis of the ecosystem's material circulation and energy flow capabilities is undertaken.ResultsSimulation outcomes reveal that our proposed model attains convergence by the 10th training iteration, with a loss function value of just 0.28, highlighting minimal training loss. This underscores the model's rapid convergence and impressive training performance. Our method proves superior to the comparison method in both initial and later operational phases. Notably, it offers a significantly faster response speed and boasts an accuracy rate exceeding 95%.DiscussionConsequently, employing this model to analyze ecological function changes is deemed feasible. The analysis of ecosystem material circulation and energy flow capabilities reveals that while initial assessments show minimal change, scores exhibit a clear acceleration as the cycle progresses.
{"title":"Effects of different fire slash artificial promotion regeneration and natural material regeneration on ecological function","authors":"Xiaojing Cai, Falin Liu","doi":"10.3389/fevo.2024.1338166","DOIUrl":"https://doi.org/10.3389/fevo.2024.1338166","url":null,"abstract":"IntroductionIn the aftermath of a fire, prompt reforestation of the affected areas is crucial to mitigate economic losses and ecological impacts.MethodsThis paper introduces an ecological function assessment model leveraging the Back Propagation Neural Network (BPNN). The model's efficacy is validated through simulation comparison experiments. Subsequently, an analysis of the ecosystem's material circulation and energy flow capabilities is undertaken.ResultsSimulation outcomes reveal that our proposed model attains convergence by the 10th training iteration, with a loss function value of just 0.28, highlighting minimal training loss. This underscores the model's rapid convergence and impressive training performance. Our method proves superior to the comparison method in both initial and later operational phases. Notably, it offers a significantly faster response speed and boasts an accuracy rate exceeding 95%.DiscussionConsequently, employing this model to analyze ecological function changes is deemed feasible. The analysis of ecosystem material circulation and energy flow capabilities reveals that while initial assessments show minimal change, scores exhibit a clear acceleration as the cycle progresses.","PeriodicalId":12367,"journal":{"name":"Frontiers in Ecology and Evolution","volume":"11 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140829819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01DOI: 10.3389/fevo.2024.1392050
Tirtha Das Banerjee, Cédric Finet, Kwi Shan Seah, Antónia Monteiro
Previous studies have shown that Optix regulates lower lamina thickness and the type of pigment that is produced in wing scales of a few butterfly species. However, the role of Optix in regulating pigment production across species, and in regulating additional aspects of scale morphology remains to be investigated. By combining microspectrophotometry, scanning electron microscopy, and focused ion beam technology on wild-type and Optix Bicyclus anynana crispants, we show that Optix regulates the production of orange pigments (ommochromes), represses the production of brown pigments (melanins), and regulates the morphology of the lower and upper surface of orange scales. Our findings suggest a conserved role of Optix as a switch gene that activates ommochrome and represses melanin synthesis across butterflies. By comparing these effects with other mutations, where only melanin is removed from scales, we propose that pigmentary changes, alone, affect the way that chitin polymerizes within a scale, changing lower lamina thickness as well as multiple intricate structures of the upper surface.
{"title":"Optix regulates nanomorphology of butterfly scales primarily via its effects on pigmentation","authors":"Tirtha Das Banerjee, Cédric Finet, Kwi Shan Seah, Antónia Monteiro","doi":"10.3389/fevo.2024.1392050","DOIUrl":"https://doi.org/10.3389/fevo.2024.1392050","url":null,"abstract":"Previous studies have shown that <jats:italic>Optix</jats:italic> regulates lower lamina thickness and the type of pigment that is produced in wing scales of a few butterfly species. However, the role of <jats:italic>Optix</jats:italic> in regulating pigment production across species, and in regulating additional aspects of scale morphology remains to be investigated. By combining microspectrophotometry, scanning electron microscopy, and focused ion beam technology on wild-type and <jats:italic>Optix Bicyclus anynana</jats:italic> crispants, we show that <jats:italic>Optix</jats:italic> regulates the production of orange pigments (ommochromes), represses the production of brown pigments (melanins), and regulates the morphology of the lower and upper surface of orange scales. Our findings suggest a conserved role of <jats:italic>Optix</jats:italic> as a switch gene that activates ommochrome and represses melanin synthesis across butterflies. By comparing these effects with other mutations, where only melanin is removed from scales, we propose that pigmentary changes, alone, affect the way that chitin polymerizes within a scale, changing lower lamina thickness as well as multiple intricate structures of the upper surface.","PeriodicalId":12367,"journal":{"name":"Frontiers in Ecology and Evolution","volume":"25 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140829816","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01DOI: 10.3389/fevo.2024.1322751
Jessica Bleuel, Luiza Waechter, Mariana Bender, Guilherme O. Longo
The Southwestern Atlantic (SWA) harbors a relatively species poor but highly endemic coral assemblage due to historical processes, environmental and ecological drivers. Despite its low to moderate cover, corals still have a disproportionate contribution to ecosystem function and stability in this region. In the context of global change, it is imperative to know corals’ diversity and biogeographic patterns, yet a comprehensive approach is still missing for SWA corals. We integrated occurrence data from 21 sites and nine functional traits across 20 coral (scleractinian and hydrozoan) species to explore the taxonomic and functional diversity of coral assemblages in the SWA (1°N-27°S). We identified eight regions based on coral species composition, and then described their functional diversity using four metrics: functional richness (FRic), functional dispersion (FDis), functional evenness (FEve), and functional originality (FOri). Taxonomic and functional diversity peak between latitudes 13°S-20°S, decreasing with increasing distance from this diversity center, known as the Abrolhos Bank that harbors a wide continental platform. Our findings reveal a prevalent pattern of high functional redundancy across these eight regions (indicated by low functional originality), with species occupying the edges of the trait space (high functional evenness) and converging around few trait values (low functional dispersion). Such patterns resulted in low taxonomic and functional beta diversity and increased nestedness among regions caused by dispersal barriers and environmental filtering. The Southernmost region (24°-27°S) has the lowest taxonomic and functional diversity and comprises only two species that share similar traits, with these corals being: hermaphrodites, brooders and depth-tolerant, and having a wide corallite. As this region might become critical for corals in a future tropicalization scenario, tropical corals that share similar traits to those of the southernmost region can be more likely to thrive. Knowledge on taxonomic and functional diversity patterns can offer critical information to conservation by helping prioritizing areas with higher diversity and species with traits that enhance survival under climate change.
{"title":"Taxonomic and functional diversity of zooxanthellate corals and hydrocorals in Southwestern Atlantic reefs","authors":"Jessica Bleuel, Luiza Waechter, Mariana Bender, Guilherme O. Longo","doi":"10.3389/fevo.2024.1322751","DOIUrl":"https://doi.org/10.3389/fevo.2024.1322751","url":null,"abstract":"The Southwestern Atlantic (SWA) harbors a relatively species poor but highly endemic coral assemblage due to historical processes, environmental and ecological drivers. Despite its low to moderate cover, corals still have a disproportionate contribution to ecosystem function and stability in this region. In the context of global change, it is imperative to know corals’ diversity and biogeographic patterns, yet a comprehensive approach is still missing for SWA corals. We integrated occurrence data from 21 sites and nine functional traits across 20 coral (scleractinian and hydrozoan) species to explore the taxonomic and functional diversity of coral assemblages in the SWA (1°N-27°S). We identified eight regions based on coral species composition, and then described their functional diversity using four metrics: functional richness (FRic), functional dispersion (FDis), functional evenness (FEve), and functional originality (FOri). Taxonomic and functional diversity peak between latitudes 13°S-20°S, decreasing with increasing distance from this diversity center, known as the Abrolhos Bank that harbors a wide continental platform. Our findings reveal a prevalent pattern of high functional redundancy across these eight regions (indicated by low functional originality), with species occupying the edges of the trait space (high functional evenness) and converging around few trait values (low functional dispersion). Such patterns resulted in low taxonomic and functional beta diversity and increased nestedness among regions caused by dispersal barriers and environmental filtering. The Southernmost region (24°-27°S) has the lowest taxonomic and functional diversity and comprises only two species that share similar traits, with these corals being: hermaphrodites, brooders and depth-tolerant, and having a wide corallite. As this region might become critical for corals in a future tropicalization scenario, tropical corals that share similar traits to those of the southernmost region can be more likely to thrive. Knowledge on taxonomic and functional diversity patterns can offer critical information to conservation by helping prioritizing areas with higher diversity and species with traits that enhance survival under climate change.","PeriodicalId":12367,"journal":{"name":"Frontiers in Ecology and Evolution","volume":"92 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140829922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01DOI: 10.3389/fevo.2024.1305898
Ellie Lo, Rui-E Nie, Alfried P. Vogler
IntroductionDNA barcoding in insects has progressed rapidly, with the ultimate goal of a complete inventory of the world’s species. However, the barcoding effort to date has been driven by a few national campaigns and leaves much of the world unsampled. This study investigates to what degree the current barcode data cover the species diversity across the globe, using the leaf beetle family Chrysomelidae as an example.MethodsA recent version (June 2023) of the Barcode-of-Life database was subjected to test of sampling completeness using the barcode-to-BIN ratio and sampling coverage (SC) metric. All barcodes were placed in a phylogenetic tree of ~600 mitochondrial genomes, applying phylogenetic diversity (PD) and metrics of community phylogenetics to national barcode sets to test for sampling completeness at clade level and reveal the global structure of species diversity.ResultsThe database included 73342 barcodes, grouped into 5310 BINs (species proxies) from 101 countries. Costa Rica contributed nearly half of all barcode sequences, while nearly 50 countries were represented by less than ten barcodes. Only five countries, Costa Rica, Canada, South Africa, Germany, and Spain, had a high sampling completeness, although collectively the barcode database covers most major taxonomic and biogeographically confined lineages. PD showed moderate saturation as more species diversity is added in a country, and community phylogenetics indicated clustering of national faunas. However, at the species level the inventory remained incomplete even in the most intensely sampled countries, and the sampling was insufficient for assessment of global species richness patterns.DiscussionThe sequence-based inventory in Chrysomelidae needs to be greatly expanded to include more areas and deeper local sampling before reaching a knowledge base similar to the existing Linnaean taxonomy. However, placing the barcodes into a backbone phylogenetic tree from mitochondrial genomes, a taxonomically and biogeographically highly structured pattern of global diversity emerges into which all species can be integrated via their barcodes.
引言昆虫的 DNA 条形码研究进展迅速,其最终目标是编制一份完整的世界物种目录。然而,迄今为止的条形码工作都是由几个国家的活动推动的,世界上大部分地区都没有样本。本研究以叶甲科 Chrysomelidae 为例,调查了当前条形码数据对全球物种多样性的覆盖程度。方法使用条形码与 BIN 的比率和采样覆盖率(SC)指标对最新版本(2023 年 6 月)的生命条形码数据库进行采样完整性测试。将所有条形码放入约 600 个线粒体基因组的系统发生树中,将系统发生多样性(PD)和群落系统发生学指标应用于国家条形码集,以测试支系水平的取样完整性,并揭示物种多样性的全球结构。哥斯达黎加的条形码序列占所有条形码序列的近一半,而近 50 个国家的条形码序列不足 10 个。只有五个国家(哥斯达黎加、加拿大、南非、德国和西班牙)的采样完整性较高,尽管总的来说,条形码数据库涵盖了大多数主要的分类学和生物地理学上的限制系。随着一个国家物种多样性的增加,条形码数据库显示出适度的饱和度,群落系统发生学显示出国家动物群的聚类。然而,即使在采样最密集的国家,物种水平的清单仍然不完整,采样也不足以评估全球物种丰富度模式。然而,将条形码放入线粒体基因组的主干系统发生树中,就会出现一个在分类学和生物地理学上高度结构化的全球多样性模式,所有物种都可以通过条形码整合到该模式中。
{"title":"The geographic and phylogenetic structure of public DNA barcode databases: an assessment using Chrysomelidae (leaf beetles)","authors":"Ellie Lo, Rui-E Nie, Alfried P. Vogler","doi":"10.3389/fevo.2024.1305898","DOIUrl":"https://doi.org/10.3389/fevo.2024.1305898","url":null,"abstract":"IntroductionDNA barcoding in insects has progressed rapidly, with the ultimate goal of a complete inventory of the world’s species. However, the barcoding effort to date has been driven by a few national campaigns and leaves much of the world unsampled. This study investigates to what degree the current barcode data cover the species diversity across the globe, using the leaf beetle family Chrysomelidae as an example.MethodsA recent version (June 2023) of the Barcode-of-Life database was subjected to test of sampling completeness using the barcode-to-BIN ratio and sampling coverage (SC) metric. All barcodes were placed in a phylogenetic tree of ~600 mitochondrial genomes, applying phylogenetic diversity (PD) and metrics of community phylogenetics to national barcode sets to test for sampling completeness at clade level and reveal the global structure of species diversity.ResultsThe database included 73342 barcodes, grouped into 5310 BINs (species proxies) from 101 countries. Costa Rica contributed nearly half of all barcode sequences, while nearly 50 countries were represented by less than ten barcodes. Only five countries, Costa Rica, Canada, South Africa, Germany, and Spain, had a high sampling completeness, although collectively the barcode database covers most major taxonomic and biogeographically confined lineages. PD showed moderate saturation as more species diversity is added in a country, and community phylogenetics indicated clustering of national faunas. However, at the species level the inventory remained incomplete even in the most intensely sampled countries, and the sampling was insufficient for assessment of global species richness patterns.DiscussionThe sequence-based inventory in Chrysomelidae needs to be greatly expanded to include more areas and deeper local sampling before reaching a knowledge base similar to the existing Linnaean taxonomy. However, placing the barcodes into a backbone phylogenetic tree from mitochondrial genomes, a taxonomically and biogeographically highly structured pattern of global diversity emerges into which all species can be integrated via their barcodes.","PeriodicalId":12367,"journal":{"name":"Frontiers in Ecology and Evolution","volume":"30 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140829927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}