Pub Date : 2024-10-05DOI: 10.1016/j.fm.2024.104652
Emily Everhart, Sarah Carson, Kathleen Atkinson, Dennis J. D'Amico
Listeria monocytogenes was the etiologic agent in nearly all recent outbreaks in North America attributed to pasteurized dairy products, whereas Escherichia coli O157 infections were responsible for most of the rare, yet serious complications from outbreaks involving unpasteurized dairy. This study determined the susceptibility of selected strains of L. monocytogenes and Shiga toxin-producing E. coli (STEC) to commercial phage preparations and their ability to control these pathogens in pasteurized and raw milk during 7-day storage at 7 °C. Both phage products demonstrated high lytic efficiency against 17 strains of L. monocytogenes whereas the efficiency of E. coli phages was more variable against 11 strains of O157 and non-O157 STEC. Broth microdilution assays identified effective endpoint multiplicities of infection (MOI) ranging from log 2.53 to 5.13, which differed between strains of L. monocytogenes and phage products. Mean log MOIs of E. coli phages against STEC also varied within and between products from 0.43 to 7.05. Despite these observations, the change in counts over time of three L. monocytogenes strains exposed to phage in pasteurized milk (log MOI 6) was similar with counts ∼ 4 log CFU/mL lower than control at day 7. Results for STEC O157 varied by strain but counts were lower than control in all cases by 72 h thorough day 7. Titers on isolates of both pathogens isolated from pasteurized milk indicated that the surviving populations were less susceptible to phage. The addition of a phage preparation to raw milk did not reduce populations of either pathogen or affect the change in counts of any strain over time when compared to control. Reduced efficacy in raw milk may be attributed to reduced phage binding as titers in raw milk decreased steadily (∼2 log PFU/mL) during storage. Commercial phage products may be a promising pathogen control intervention for pasteurized dairy products, warranting further investigation.
{"title":"Commercial bacteriophage preparations for the control of Listeria monocytogenes and Shiga toxin-producing Escherichia coli in raw and pasteurized milk","authors":"Emily Everhart, Sarah Carson, Kathleen Atkinson, Dennis J. D'Amico","doi":"10.1016/j.fm.2024.104652","DOIUrl":"10.1016/j.fm.2024.104652","url":null,"abstract":"<div><div><em>Listeria monocytogenes</em> was the etiologic agent in nearly all recent outbreaks in North America attributed to pasteurized dairy products, whereas <em>Escherichia coli</em> O157 infections were responsible for most of the rare, yet serious complications from outbreaks involving unpasteurized dairy. This study determined the susceptibility of selected strains of <em>L. monocytogenes</em> and Shiga toxin-producing <em>E. coli</em> (STEC) to commercial phage preparations and their ability to control these pathogens in pasteurized and raw milk during 7-day storage at 7 °C. Both phage products demonstrated high lytic efficiency against 17 strains of <em>L. monocytogenes</em> whereas the efficiency of <em>E. coli</em> phages was more variable against 11 strains of O157 and non-O157 STEC. Broth microdilution assays identified effective endpoint multiplicities of infection (MOI) ranging from log 2.53 to 5.13, which differed between strains of <em>L. monocytogenes</em> and phage products. Mean log MOIs of <em>E. coli</em> phages against STEC also varied within and between products from 0.43 to 7.05. Despite these observations, the change in counts over time of three <em>L. monocytogenes</em> strains exposed to phage in pasteurized milk (log MOI 6) was similar with counts ∼ 4 log CFU/mL lower than control at day 7. Results for STEC O157 varied by strain but counts were lower than control in all cases by 72 h thorough day 7. Titers on isolates of both pathogens isolated from pasteurized milk indicated that the surviving populations were less susceptible to phage. The addition of a phage preparation to raw milk did not reduce populations of either pathogen or affect the change in counts of any strain over time when compared to control. Reduced efficacy in raw milk may be attributed to reduced phage binding as titers in raw milk decreased steadily (∼2 log PFU/mL) during storage. Commercial phage products may be a promising pathogen control intervention for pasteurized dairy products, warranting further investigation.</div></div>","PeriodicalId":12399,"journal":{"name":"Food microbiology","volume":"125 ","pages":"Article 104652"},"PeriodicalIF":4.5,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142420688","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-05DOI: 10.1016/j.fm.2024.104649
Maria Diaz , Heather Aird , Thanh Le Viet , Ana Victoria Gutiérrez , Nasmille Larke-Mejia , Oleksii Omelchenko , Lluis Moragues-Solanas , Joachim Fritscher , Nicolle Som , Jim McLauchlin , Falk Hildebrand , Frieda Jørgensen , Matthew Gilmour
Listeria monocytogenes is a foodborne pathogen of significant concern for the food industry due to its remarkable ability to persist through safety control efforts, posing a subsequent health threat to consumers. Understanding the microbial communities coexisting with L. monocytogenes in food processing environments provides insights into its persistence mechanisms. We investigated the microbial communities on non-food contact surfaces in a facility producing ready-to-eat foods, known to harbour a ST121 L. monocytogenes strain over multiple years. A 10-week sampling period was coordinated with the company and public health authorities. Metagenomic analysis revealed a stable microbial composition dominated by Pseudomonas fluorescens. While highly related populations were present in high-care production zones, distinctive taxa characteristic of specific areas were observed (e.g., Sphingomonas aerolata). Although Listeria spp. were not detected in metagenomes, they were detected in cultured samples, suggesting low relative abundance in factory settings. The findings suggest that a stable resident microbiota, with distinct adaptations to different areas within the factory, was selected for by their collective ability to survive control efforts in this environment. Listeria spp. was a member of this microbial community, albeit at low abundance, and may likewise benefit from the mutualism of the overall microbial community.
{"title":"Microbial composition and dynamics in environmental samples from a ready-to-eat food production facility with a long-term colonization of Listeria monocytogenes","authors":"Maria Diaz , Heather Aird , Thanh Le Viet , Ana Victoria Gutiérrez , Nasmille Larke-Mejia , Oleksii Omelchenko , Lluis Moragues-Solanas , Joachim Fritscher , Nicolle Som , Jim McLauchlin , Falk Hildebrand , Frieda Jørgensen , Matthew Gilmour","doi":"10.1016/j.fm.2024.104649","DOIUrl":"10.1016/j.fm.2024.104649","url":null,"abstract":"<div><div><em>Listeria monocytogenes</em> is a foodborne pathogen of significant concern for the food industry due to its remarkable ability to persist through safety control efforts, posing a subsequent health threat to consumers. Understanding the microbial communities coexisting with <em>L. monocytogenes</em> in food processing environments provides insights into its persistence mechanisms. We investigated the microbial communities on non-food contact surfaces in a facility producing ready-to-eat foods, known to harbour a ST121 <em>L. monocytogenes</em> strain over multiple years. A 10-week sampling period was coordinated with the company and public health authorities. Metagenomic analysis revealed a stable microbial composition dominated by <em>Pseudomonas fluorescens</em>. While highly related populations were present in high-care production zones, distinctive taxa characteristic of specific areas were observed (e.g., <em>Sphingomonas aerolata</em>). Although <em>Listeria</em> spp. were not detected in metagenomes, they were detected in cultured samples, suggesting low relative abundance in factory settings. The findings suggest that a stable resident microbiota, with distinct adaptations to different areas within the factory, was selected for by their collective ability to survive control efforts in this environment. <em>Listeria</em> spp. was a member of this microbial community, albeit at low abundance, and may likewise benefit from the mutualism of the overall microbial community.</div></div>","PeriodicalId":12399,"journal":{"name":"Food microbiology","volume":"125 ","pages":"Article 104649"},"PeriodicalIF":4.5,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142421329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-04DOI: 10.1016/j.fm.2024.104653
Tamiru N. Alkie , Neda Nasheri , Pablo Romero-Barrios , Angela Catford , Jay Krishnan , Lemarie Pama , Kathleen Hooper-McGrevy , Charles Nfon , Todd Cutts , Yohannes Berhane
Highly pathogenic avian influenza (HPAI) clade 2.3.4.4b H5Nx viruses continue to cause episodic incursions and have been detected in more than 12 taxonomic orders encompassing more than 80 avian species, terrestrial and marine mammals, including lactating dairy cows. HPAI H5N1 spillover to dairy cattle creates a new interface for human exposure and raises food safety concerns. The presence of H5N1 genetic material in one out of five retail pasteurized milk samples in the USA has prompted the evaluation of the pasteurization processes for the inactivation of influenza viruses. Our study examined whether pasteurization could effectively inactivate HPAI H5N1 spiked into raw whole milk. First, we heated 1 mL of non-homogenized cow milk samples to attain an internal temperature of 63°C or 72°C and spiked with 6.3 log10 EID50 of clade 2.3.4.4b H5N1 virus. Complete inactivation was achieved after incubation of the H5N1 spiked raw milk at 63°C for 30 min. In addition, viral inactivation was observed in seven of eight experimental replicates when treated at 72°C for 15s. In one of the replicates, a 4.44 log10 virus reduction was achieved, which is about 1 log higher than the average viral quantities detected in bulk milk in affected areas. Therefore, we conclude that pasteurization of milk is an effective strategy for mitigation of the risk of human exposure to milk contaminated with H5N1 virus.
{"title":"Effectiveness of pasteurization for the inactivation of H5N1 influenza virus in raw whole milk","authors":"Tamiru N. Alkie , Neda Nasheri , Pablo Romero-Barrios , Angela Catford , Jay Krishnan , Lemarie Pama , Kathleen Hooper-McGrevy , Charles Nfon , Todd Cutts , Yohannes Berhane","doi":"10.1016/j.fm.2024.104653","DOIUrl":"10.1016/j.fm.2024.104653","url":null,"abstract":"<div><div>Highly pathogenic avian influenza (HPAI) clade 2.3.4.4b H5Nx viruses continue to cause episodic incursions and have been detected in more than 12 taxonomic orders encompassing more than 80 avian species, terrestrial and marine mammals, including lactating dairy cows. HPAI H5N1 spillover to dairy cattle creates a new interface for human exposure and raises food safety concerns. The presence of H5N1 genetic material in one out of five retail pasteurized milk samples in the USA has prompted the evaluation of the pasteurization processes for the inactivation of influenza viruses. Our study examined whether pasteurization could effectively inactivate HPAI H5N1 spiked into raw whole milk. First, we heated 1 mL of non-homogenized cow milk samples to attain an internal temperature of 63°C or 72°C and spiked with 6.3 log<sub>10</sub> EID<sub>50</sub> of clade 2.3.4.4b H5N1 virus. Complete inactivation was achieved after incubation of the H5N1 spiked raw milk at 63°C for 30 min. In addition, viral inactivation was observed in seven of eight experimental replicates when treated at 72°C for 15s. In one of the replicates, a 4.44 log<sub>10</sub> virus reduction was achieved, which is about 1 log higher than the average viral quantities detected in bulk milk in affected areas. Therefore, we conclude that pasteurization of milk is an effective strategy for mitigation of the risk of human exposure to milk contaminated with H5N1 virus.</div></div>","PeriodicalId":12399,"journal":{"name":"Food microbiology","volume":"125 ","pages":"Article 104653"},"PeriodicalIF":4.5,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142420686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
To unlock the potential of strains for further enhancing the aromatic complexity of kiwifruit wines while avoiding undesirable flavors, indigenous non-Saccharomyces yeast extracellular extract treatment for fermentation was established. The extracellular extract from Zygosaccharomyces rouxii, Pichia kudriavzevii, and Meyerozyma guilliermondii were prepared and supplemented individually or in pairs to the kiwifruit wine fermentation system. Subsequently, the changes in physicochemical properties, antioxidants, and volatile characteristics of kiwifruit wines produced by different protocols were comprehensively evaluated, and the major aroma descriptors affecting sensory acceptability were analyzed by sensory evaluation and partial least squares regression. The results showed that extracellular extract treatment significantly improved the organic acids and monomeric phenols content, antioxidant capacity, and volatiles of kiwifruit wines. Compared to Sc, the increase in esters and alcohols, along with the decrease in aldehydes and acids in Pk-Zr and Mg-Zr, enhanced the aromatic complexity while reduce grassy and fungal flavors, resulting in higher sensory acceptability.
{"title":"Enhancing nutritional composition and aroma characteristics of kiwifruit wines through indigenous non-Saccharomyces yeast extracellular extract treatment","authors":"Wangsheng Sun, Xiaowen Chen, Sinuo Feng, Jia Han, Shiqi Li, Fangyu Long, Jing Guo","doi":"10.1016/j.fm.2024.104651","DOIUrl":"10.1016/j.fm.2024.104651","url":null,"abstract":"<div><div>To unlock the potential of strains for further enhancing the aromatic complexity of kiwifruit wines while avoiding undesirable flavors, indigenous non-<em>Saccharomyces</em> yeast extracellular extract treatment for fermentation was established. The extracellular extract from <em>Zygosaccharomyces rouxii</em>, <em>Pichia kudriavzevii</em>, and <em>Meyerozyma guilliermondii</em> were prepared and supplemented individually or in pairs to the kiwifruit wine fermentation system. Subsequently, the changes in physicochemical properties, antioxidants, and volatile characteristics of kiwifruit wines produced by different protocols were comprehensively evaluated, and the major aroma descriptors affecting sensory acceptability were analyzed by sensory evaluation and partial least squares regression. The results showed that extracellular extract treatment significantly improved the organic acids and monomeric phenols content, antioxidant capacity, and volatiles of kiwifruit wines. Compared to Sc, the increase in esters and alcohols, along with the decrease in aldehydes and acids in Pk-Zr and Mg-Zr, enhanced the aromatic complexity while reduce grassy and fungal flavors, resulting in higher sensory acceptability.</div></div>","PeriodicalId":12399,"journal":{"name":"Food microbiology","volume":"125 ","pages":"Article 104651"},"PeriodicalIF":4.5,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142420685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-29DOI: 10.1016/j.fm.2024.104650
Danielle de Sousa Severo , Wiaslan Figueiredo Martins , Marília Miotto , Silvani Verruck , Rafael Rodrigues de Oliveira , Gláucia Maria Falcão de Aragão
This study compares the plate count (PC) and the Propidium Monoazide-quantitative Polymerase Chain Reaction (PMA-qPCR) methods to assess the growth of a cocktail of three serotypes of Salmonella enterica (Heidelberg, Typhimurium, and Enteritidis) in cooked, sliced, and vacuum-packaged turkey breast (STB) under isothermal storage temperatures (8 °C–20 °C), using predictive models. Standard curves were developed for PMA-qPCR, demonstrating high efficiency (101%) and sensitivity, with quantification limits ranging from 1 to 2 log10 CFU/g for all temperatures studied. Comparative analysis revealed a significant correlation (R2 = 0.99; 95% CI) between the PC and PMA-qPCR methods; however, the agreement analysis indicated a mean difference (Bias) of −0.11 log10 CFU/g (p < 0.05), suggesting underestimation by the PC method. This indicates the presence of stressed or viable but nonculturable (VBNC) cells, detectable by PMA-qPCR but not by PC. The Baranyi and Roberts model showed a good ability to describe the behavior of S. enterica cocktail in STB for PC and PMA-qPCR data under all isothermal conditions. The exponential secondary model more accurately represented the temperature dependence of the maximum specific growth rate compared to the Ratkowsky square root model, with R2 values ≥ 0.984 and RMSE values ≤ 0.011 for both methods. These results suggest that combining PMA-qPCR with predictive modeling allows for a more accurate prediction of S. enterica growth, compared to PC method. In the event of cold chain disruptions of meat products, the use of PMA-qPCR method allow the quantification of VBNC cells, that can still pose a health risk to consumers, especially in ready-to-eat products.
{"title":"Propidium monoazide (PMA) qPCR assay compared to the plate count method for quantifying the growth of Salmonella enterica serotypes in vacuum-packaged turkey breast combined with a mathematical modeling approach","authors":"Danielle de Sousa Severo , Wiaslan Figueiredo Martins , Marília Miotto , Silvani Verruck , Rafael Rodrigues de Oliveira , Gláucia Maria Falcão de Aragão","doi":"10.1016/j.fm.2024.104650","DOIUrl":"10.1016/j.fm.2024.104650","url":null,"abstract":"<div><div>This study compares the plate count (PC) and the Propidium Monoazide-quantitative Polymerase Chain Reaction (PMA-qPCR) methods to assess the growth of a cocktail of three serotypes of <em>Salmonella enterica</em> (Heidelberg, Typhimurium, and Enteritidis) in cooked, sliced, and vacuum-packaged turkey breast (STB) under isothermal storage temperatures (8 °C–20 °C), using predictive models. Standard curves were developed for PMA-qPCR, demonstrating high efficiency (101%) and sensitivity, with quantification limits ranging from 1 to 2 log<sub>10</sub> CFU/g for all temperatures studied. Comparative analysis revealed a significant correlation (<em>R</em><sup><em>2</em></sup> = 0.99; 95% CI) between the PC and PMA-qPCR methods; however, the agreement analysis indicated a mean difference (Bias) of −0.11 log<sub>10</sub> CFU/g (<em>p</em> < 0.05), suggesting underestimation by the PC method. This indicates the presence of stressed or viable but nonculturable (VBNC) cells, detectable by PMA-qPCR but not by PC. The Baranyi and Roberts model showed a good ability to describe the behavior of <em>S</em>. <em>enterica</em> cocktail in STB for PC and PMA-qPCR data under all isothermal conditions. The exponential secondary model more accurately represented the temperature dependence of the maximum specific growth rate compared to the Ratkowsky square root model, with <em>R</em><sup><em>2</em></sup> values ≥ 0.984 and <em>RMSE</em> values ≤ 0.011 for both methods. These results suggest that combining PMA-qPCR with predictive modeling allows for a more accurate prediction of <em>S</em>. <em>enterica</em> growth, compared to PC method. In the event of cold chain disruptions of meat products, the use of PMA-qPCR method allow the quantification of VBNC cells, that can still pose a health risk to consumers, especially in ready-to-eat products.</div></div>","PeriodicalId":12399,"journal":{"name":"Food microbiology","volume":"125 ","pages":"Article 104650"},"PeriodicalIF":4.5,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142359646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-27DOI: 10.1016/j.fm.2024.104646
Dongliang Ren , Shuangping Liu , Hui Qin , Mengyang Huang , Xiaolin Bai , Xiao Han , Suyi Zhang , Jian Mao
Strong-flavor Baijiu (SFB) production has relied on pit mud (PM) as a starter culture. The maturation time of natural PM (NPM) is about 30 years, so artificial PM (APM) with a shorter maturation time has attracted widespread attention. This study reveals the microbial and functional dissimilarities of APM and NPM, and helps to elucidate the different metabolic roles of microbes during substrate degradation and flavor formation. Significant differences in the microbial community were observed between APM and NPM, manifesting as variations in the abundance of core microorganisms. Total of 187 high-quality metagenome-assembled genomes (MAGs) were obtained based on the metagenomic binning technology, mainly including Firmicutes (n = 106), Bacteroidota (n = 15) and Chloroflexota (n = 14). Furthermore, the relative concentration of flavor compounds in 4-year APM was similar to those in 30-year NPM, but different from those in 100-year NPMs. Methanosarcina, Methanobacterium, Methanoculleus, Anaerolineae bacterium and Aminobacterium were the key bacteria responsible for the flavor differences. From a functional perspective, amino acid and carbohydrate metabolism were key functions of PM microbial, and showed differences between APM and NPM. Finally, substrate degradation and flavor generation pathways were found to exist in multiple microorganisms. Combine the relative abundance of microorganisms with the absolute abundance of enzymes, Clostridium, Lactobacillus, Petrimonas, Methanoculleus, Prevotella, Methanobacterium, Methanosarcina, Methanothrix, Proteiniphilum, Bellilinea, Anaerolinea, Anaeromassilibacillus, Syntrophomonas and Brevefilum were identified as the key microorganisms in APM and NPM.
{"title":"Metagenomics-based insights into the microbial community dynamics and flavor development potentiality of artificial and natural pit mud","authors":"Dongliang Ren , Shuangping Liu , Hui Qin , Mengyang Huang , Xiaolin Bai , Xiao Han , Suyi Zhang , Jian Mao","doi":"10.1016/j.fm.2024.104646","DOIUrl":"10.1016/j.fm.2024.104646","url":null,"abstract":"<div><div>Strong-flavor Baijiu (SFB) production has relied on pit mud (PM) as a starter culture. The maturation time of natural PM (NPM) is about 30 years, so artificial PM (APM) with a shorter maturation time has attracted widespread attention. This study reveals the microbial and functional dissimilarities of APM and NPM, and helps to elucidate the different metabolic roles of microbes during substrate degradation and flavor formation. Significant differences in the microbial community were observed between APM and NPM, manifesting as variations in the abundance of core microorganisms. Total of 187 high-quality metagenome-assembled genomes (MAGs) were obtained based on the metagenomic binning technology, mainly including Firmicutes (n = 106), Bacteroidota (n = 15) and Chloroflexota (n = 14). Furthermore, the relative concentration of flavor compounds in 4-year APM was similar to those in 30-year NPM, but different from those in 100-year NPMs. <em>Methanosarcina</em>, <em>Methanobacterium</em>, <em>Methanoculleus</em>, Anaerolineae bacterium and <em>Aminobacterium</em> were the key bacteria responsible for the flavor differences. From a functional perspective, amino acid and carbohydrate metabolism were key functions of PM microbial, and showed differences between APM and NPM. Finally, substrate degradation and flavor generation pathways were found to exist in multiple microorganisms. Combine the relative abundance of microorganisms with the absolute abundance of enzymes, <em>Clostridium</em>, <em>Lactobacillus</em>, <em>Petrimonas</em>, <em>Methanoculleus</em>, <em>Prevotella</em>, <em>Methanobacterium</em>, <em>Methanosarcina</em>, <em>Methanothrix</em>, <em>Proteiniphilum</em>, <em>Bellilinea</em>, <em>Anaerolinea</em>, <em>Anaeromassilibacillus</em>, <em>Syntrophomonas</em> and <em>Brevefilum</em> were identified as the key microorganisms in APM and NPM.</div></div>","PeriodicalId":12399,"journal":{"name":"Food microbiology","volume":"125 ","pages":"Article 104646"},"PeriodicalIF":4.5,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142359645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-26DOI: 10.1016/j.fm.2024.104647
Siwen Hou , Zihua Liang , Qi Wu , Qiqi Cai , Qibiao Weng , Weiling Guo , Li Ni , Xucong Lv
Chinese rice wine (CRW) is an alcoholic beverage made mainly from rice or grain through saccharification and fermentation with Jiuqu (starter). Jiuqu makes an important contribution to the formation of the flavor characteristics of rice wine. Hongqu and Maiqu are two kinds of Jiuqu commonly used in CRW brewing. This study compared the microbial community, biogenic amines (BAs), and volatile flavor components (VFCs) of two types of rice wine brewed with Hongqu and Maiqu as fermentation agents. The results showed that the amino acid content of rice wine fermented with Maiqu (MQW) was significantly lower than that of rice wine fermented with Hongqu (HQW). On the contrary, the majority of BAs in MQW were significantly higher than those in HQW, except for putrescine. Multivariate statistical analysis indicated that most of the VFCs detected were enriched in HQW, while ethyl 3-phenylpropanoate and citronellol were enriched in MQW. The results of metagenomic analysis showed that Weissiella, Enterobacter, Leuconostoc, Kosakonia, Saccharomyces, Aspergilus and Monascus were identified as the predominant microbial genera in HQW brewing process, while Saccharopolyspora, Lactococcus, Enterobacter, Leuconostoc, Kosakonia, Pediococcus, Pantoea, Saccharomyces, Aspergillus, Lichtheimia and Nakaseomyces were the predominant microbial genera in MQW brewing. In addition, some VFCs and BAs were strongly correlated with dominant microbial genera in HQW and MQW brewing. Bioinformatics analysis showed that the abundance of genes involved in BAs synthesis in MQW brewing was much higher than that in HQW brewing, while the abundances of genes related to metabolic pathway of characteristic VFCs in HQW brewing were obviously higher than those in MQW, which explained the differences in flavor quality between HQW and MQW from the perspective of microbial genes. Collectively, these findings provide scientific evidence for elucidating the contribution of different microbial genera to the formation of flavor quality of CRW, and is helpful for screening beneficial microbes to enhance flavor quality and drinking comfort of CRW.
{"title":"Metagenomics reveals the differences in flavor quality of rice wines with Hongqu and Maiqu as the fermentation starters","authors":"Siwen Hou , Zihua Liang , Qi Wu , Qiqi Cai , Qibiao Weng , Weiling Guo , Li Ni , Xucong Lv","doi":"10.1016/j.fm.2024.104647","DOIUrl":"10.1016/j.fm.2024.104647","url":null,"abstract":"<div><div>Chinese rice wine (CRW) is an alcoholic beverage made mainly from rice or grain through saccharification and fermentation with <em>Jiuqu</em> (starter). <em>Jiuqu</em> makes an important contribution to the formation of the flavor characteristics of rice wine. <em>Hongqu</em> and <em>Maiqu</em> are two kinds of <em>Jiuqu</em> commonly used in CRW brewing. This study compared the microbial community, biogenic amines (BAs), and volatile flavor components (VFCs) of two types of rice wine brewed with <em>Hongqu</em> and <em>Maiqu</em> as fermentation agents. The results showed that the amino acid content of rice wine fermented with <em>Maiqu</em> (MQW) was significantly lower than that of rice wine fermented with <em>Hongqu</em> (HQW). On the contrary, the majority of BAs in MQW were significantly higher than those in HQW, except for putrescine. Multivariate statistical analysis indicated that most of the VFCs detected were enriched in HQW, while ethyl 3-phenylpropanoate and citronellol were enriched in MQW. The results of metagenomic analysis showed that <em>Weissiella</em>, <em>Enterobacter</em>, <em>Leuconostoc</em>, <em>Kosakonia</em>, <em>Saccharomyces</em>, <em>Aspergilus</em> and <em>Monascus</em> were identified as the predominant microbial genera in HQW brewing process, while <em>Saccharopolyspora</em>, <em>Lactococcus</em>, <em>Enterobacter</em>, <em>Leuconostoc</em>, <em>Kosakonia</em>, <em>Pediococcus</em>, <em>Pantoea</em>, <em>Saccharomyces</em>, <em>Aspergillus</em>, <em>Lichtheimia</em> and <em>Nakaseomyces</em> were the predominant microbial genera in MQW brewing. In addition, some VFCs and BAs were strongly correlated with dominant microbial genera in HQW and MQW brewing. Bioinformatics analysis showed that the abundance of genes involved in BAs synthesis in MQW brewing was much higher than that in HQW brewing, while the abundances of genes related to metabolic pathway of characteristic VFCs in HQW brewing were obviously higher than those in MQW, which explained the differences in flavor quality between HQW and MQW from the perspective of microbial genes. Collectively, these findings provide scientific evidence for elucidating the contribution of different microbial genera to the formation of flavor quality of CRW, and is helpful for screening beneficial microbes to enhance flavor quality and drinking comfort of CRW.</div></div>","PeriodicalId":12399,"journal":{"name":"Food microbiology","volume":"125 ","pages":"Article 104647"},"PeriodicalIF":4.5,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142359644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-19DOI: 10.1016/j.fm.2024.104644
Huijie Pei , Yilun Wang , Wei He , Yue Zhang , Lamei Yang , Jinhai Li , Yixuan Ma , Xinjie Hu , Shuhong Li , Jianlong Li , Kaidi Hu , Aiping Liu , Xiaolin Ao , Hui Teng , Ran Li , Qin Li , Likou Zou , Shuliang Liu , Yong Yang
Histamine is predominantly produced in sausages via the decarboxylation of histidine by bacteria. Furthermore, histamine-producing bacteria usually possess the enzyme histidine decarboxylase (hdc). Enterobacter hormaechei RH3 isolated from sausages exhibited significant levels of histamine production despite the absence of hdc. In this study, we elucidated the previously unidentified mechanism underlying histamine production by RH3. We identified an enzyme, NehdX-772, exhibiting the hdc activity from the cell lysate supernatant of RH3, which was annotated as ornithine decarboxylase. The optimal activity of NehdX-772 was recorded at 35 °C and pH 6.0, and it could tolerate a salt concentration of 2.5% (w/v) NaCl. Moreover, artificial inoculation revealed that NehdX-772 was synthesized at significant levels in sausages, leading to an increase in histamine levels. The discovery of NehdX-772 explains the underlying mechanism of histamine production by RH3 and can be applied to decrease histamine production in sausages.
{"title":"Characterization of ornithine decarboxylase with histidine decarboxylase activity in natural histidine decarboxylase gene deletion Enterobacter hormaechei RH3","authors":"Huijie Pei , Yilun Wang , Wei He , Yue Zhang , Lamei Yang , Jinhai Li , Yixuan Ma , Xinjie Hu , Shuhong Li , Jianlong Li , Kaidi Hu , Aiping Liu , Xiaolin Ao , Hui Teng , Ran Li , Qin Li , Likou Zou , Shuliang Liu , Yong Yang","doi":"10.1016/j.fm.2024.104644","DOIUrl":"10.1016/j.fm.2024.104644","url":null,"abstract":"<div><p>Histamine is predominantly produced in sausages via the decarboxylation of histidine by bacteria. Furthermore, histamine-producing bacteria usually possess the enzyme histidine decarboxylase (hdc). <em>Enterobacter hormaechei</em> RH3 isolated from sausages exhibited significant levels of histamine production despite the absence of <em>hdc</em>. In this study, we elucidated the previously unidentified mechanism underlying histamine production by RH3. We identified an enzyme, NehdX-772, exhibiting the hdc activity from the cell lysate supernatant of RH3, which was annotated as ornithine decarboxylase. The optimal activity of NehdX-772 was recorded at 35 °C and pH 6.0, and it could tolerate a salt concentration of 2.5% (w/v) NaCl. Moreover, artificial inoculation revealed that NehdX-772 was synthesized at significant levels in sausages, leading to an increase in histamine levels. The discovery of NehdX-772 explains the underlying mechanism of histamine production by RH3 and can be applied to decrease histamine production in sausages.</p></div>","PeriodicalId":12399,"journal":{"name":"Food microbiology","volume":"125 ","pages":"Article 104644"},"PeriodicalIF":4.5,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142242855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-19DOI: 10.1016/j.fm.2024.104645
Ruthchelly Tavares da Silva , Alyson José dos Santos Franco , Maria Mayara de Souza Grilo , Atila Lima , Karina Lidiane Alcântara Saraiva , Rafaela de Siqueira Ferraz Carvalho , Geany Targino de Souza Pedrosa , Donald W. Schaffner , Marciane Magnani
This study assessed the SARS-CoV-2 surrogate bacteriophage φ6 cross-contamination between high-density polyethylene or polyvinyl chloride gloves and fruits (tomato and cucumber) using different inoculum levels (6.0 and 4.0 log PFU/sample). Bacteriophage φ6 survival on contaminated gloves was assessed over 9 days at 25 °C. The effectiveness of photodynamic treatment using curcumin as a photosensitizer to inactivate φ6 on fruits was determined. The fruit type and the glove material influenced the φ6 transfer. Longer contact times resulted in greater φ6 transfer. The highest φ6 transfer occurred from tomato to HDPE glove (0.8% or −1.1 log % transfer) after 30 s of contact at the higher inoculum level. Bacteriophage φ6 was detected on cross-contaminated HDPE gloves for up to 6 days. Bacteriophage φ6 survived better on vinyl gloves cross-contaminated by cucumber vs. tomato (detected up to 6 vs 3 days). Photodynamic inactivation of φ6 was time-dependent and varied with the tested fruit but was not influenced by viral starting concentration. Photodynamic treatment decreased the φ6 titer by 3.0 and 2.2 log PFU/sample in tomato and cucumber, respectively. Transmission electronic microscopy showed that photodynamic treatment changed the structure of the φ6 capsid. These findings may help in the management of SARS-CoV-2 contamination risks in fruit handling. They may also help in the establishment of effective measures to manage cross-contamination risk.
{"title":"SARS-CoV-2 surrogate bacteriophage φ6 cross-contamination between fruits and gloves, survival on discarded gloves and inactivation by photodynamic treatment","authors":"Ruthchelly Tavares da Silva , Alyson José dos Santos Franco , Maria Mayara de Souza Grilo , Atila Lima , Karina Lidiane Alcântara Saraiva , Rafaela de Siqueira Ferraz Carvalho , Geany Targino de Souza Pedrosa , Donald W. Schaffner , Marciane Magnani","doi":"10.1016/j.fm.2024.104645","DOIUrl":"10.1016/j.fm.2024.104645","url":null,"abstract":"<div><div>This study assessed the SARS-CoV-2 surrogate bacteriophage φ6 cross-contamination between high-density polyethylene or polyvinyl chloride gloves and fruits (tomato and cucumber) using different inoculum levels (6.0 and 4.0 log PFU/sample). Bacteriophage φ6 survival on contaminated gloves was assessed over 9 days at 25 °C. The effectiveness of photodynamic treatment using curcumin as a photosensitizer to inactivate φ6 on fruits was determined. The fruit type and the glove material influenced the φ6 transfer. Longer contact times resulted in greater φ6 transfer. The highest φ6 transfer occurred from tomato to HDPE glove (0.8% or −1.1 log % transfer) after 30 s of contact at the higher inoculum level. Bacteriophage φ6 was detected on cross-contaminated HDPE gloves for up to 6 days. Bacteriophage φ6 survived better on vinyl gloves cross-contaminated by cucumber vs. tomato (detected up to 6 vs 3 days). Photodynamic inactivation of φ6 was time-dependent and varied with the tested fruit but was not influenced by viral starting concentration. Photodynamic treatment decreased the φ6 titer by 3.0 and 2.2 log PFU/sample in tomato and cucumber, respectively. Transmission electronic microscopy showed that photodynamic treatment changed the structure of the φ6 capsid. These findings may help in the management of SARS-CoV-2 contamination risks in fruit handling. They may also help in the establishment of effective measures to manage cross-contamination risk.</div></div>","PeriodicalId":12399,"journal":{"name":"Food microbiology","volume":"125 ","pages":"Article 104645"},"PeriodicalIF":4.5,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142311933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}